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Abstract. In this paper, we introduce and study a new system of generalized nonlinear mixed
variational inequalities which contains some classes of variational inequalities and systems of
variational inequalities in the literature as special cases. We prove the existence and uniqueness
of solution and the convergence of some new n -step iterative algorithms with mixed errors for
this system of generalized nonlinear mixed variational inequalities and its special cases. The
results in this paper unify, extend and improve some known results in the literature.

1. Introduction

Variational inequality problems are among the most interesting and intensively
studied classes of mathematical problems and have wide applications in the fields
of optimization and control, economics and transportation equilibrium, engineering
science. For the past years, many existence results and iterative algorithms for various
variational inequality problems have been studied. For details, please see [1–6, 8–31,
33–49, 51, 52] and the references therein.

Recently, some new and interesting problems, which are called to be system
of variational inequality problems were introduced and studied. Pang [37], Cohen
and Chaplais [14], Bianchi [6] and Ansari and Yao [4] considered a system of scalar
variational inequalities and Pang showed that the traffic equilibriumproblem, the spatial
equilibrium problem, the Nash equilibrium, and the general equilibrium programming
problem can be modeled as a system of variational inequalities. Ansari et al. [5]
introduced and studied a system of vector equilibrium problems and a system of vector
variational inequalities by a fixed point theorem. Allevi et al. [1] considered a system
of generalized vector variational inequalities and established some existence results
with relative pseudomonotonicity. Kassay and Kolumbán [23] introduced a system
of variational inequalities and proved an existence theorem by the Ky Fan lemma.
Kassay, Kolumbán and Páles [24] studied Minty and Stampacchia variational inequality
systems with the help of the Kakutani-Fan-Glicksberg fixed point theorem. Peng
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[38, 39] introduced a system of quasi-variational inequality problems and proved its
existence theorem by maximal element theorems. Verma [41–45] introduced and studied
some systems of variational inequalities and developed some iterative algorithms for
approximating the solutions of system of variational inequalities in Hilbert spaces.
Kim and Kim [25] introduced a new system of generalized nonlinear quasi-variational
inequalities and obtained some existence and uniqueness results of solution for this
system of generalized nonlinear quasi-variational inequalities in Hilbert spaces. Cho
et al. [13] introduced and studied a new system of nonlinear variational inequalities in
Hilbert spaces. They proved some existence and uniqueness theorems of solutions for
the system of nonlinear variational inequalities.

Inspired and motivated by the above works, in this paper, we introduce and study
a new system of generalized nonlinear mixed variational inequalities in Hilbert spaces
which contains the mathematical models in [41–44, 25] as special cases. We prove the
existence and uniqueness of solution for this new system of generalized nonlinear mixed
variational inequalities and its special cases. We also give the convergence of some n-
step iterative sequenceswith mixed errors for this system of generalized nonlinearmixed
variational inequalities and its special cases. The results obtained in this paper unify,
extend and improve those results in [41–44, 25] and the reference therein.

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert space with the inner
product 〈 ·, · 〉 and norm ‖ · ‖ , we recall some definitions and lemmas needed later.

DEFINITION 2.1. Let T : H −→ H be a single-valued operator. T is said to be
(i) monotone if

〈Tu − Tv, u − v〉 � 0, ∀u, v ∈ H;

(ii) strictly monotone if T is monotone and

〈Tu − Tv, u − v〉 = 0 if and only if u = v;

(iii) strongly monotone if there exists a constant r > 0 such that

〈Tu − Tv, u − v〉 � r‖u − v‖2, ∀u, v ∈ H.

(iv) Lipschitz continuous if there exists a constant s > 0 such that

‖Tu − Tv‖ � s‖u − v‖, ∀u, v ∈ H.

LEMMA 2.1. ([7, 50]) For any given u ∈ H , the point z ∈ H satisfies the
following inequality

〈 u − z, v − u〉 � ρφ(u) − ρφ(v), ∀v ∈ H

if and only if
u = Jρ∂φ(z),

where Jρ∂φ = (I + ρ∂φ)−1 and ∂φ is the subdifferential of a proper convex lower
semicontinuous function φ .
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LEMMA 2.2. [32] Let {an}, {bn} and {cn} be three sequences of nonnegative
numbers satisfying the following conditions: there exists n0 such that

an+1 � (1 − tn)an + bntn + cn, ∀n � n0,

where

tn ∈ [0, 1],
∞∑
n=0

tn = ∞, lim
n→∞ bn = 0,

∞∑
n=0

cn < +∞.

Then, an −→ 0 as n → ∞ .

3. System of generalized nonlinear mixed variational inequalities

In this section, we will introduce a new system of generalized nonlinear mixed
variational inequalities and construct a new n -step iterative algorithm for solving this
system of generalized nonlinear mixed variational inequalities. In what follows, unless
other specified, for each i = 1, 2, ..., n , we always suppose that Ti : H −→ H is a
single-valued mapping, φi : H → R∪{+∞} is a proper convex lower semi-continuous
function. We consider the following problem:

find (x∗1 , x
∗
2 , ..., x

∗
n) ∈ Hn such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈 ρ1T1x∗2 + ρ1S1x∗2 + x∗1 − x∗2 , x − x∗1〉 � ρ1φ1(x∗1 ) − ρ1φ1(x), ∀x ∈ H,

〈 ρ2T2x∗3 + ρ2S2x∗3 + x∗2 − x∗3 , x − x∗2〉 � ρ2φ2(x∗2 ) − ρ2φ2(x), ∀x ∈ H,

· · ·,
〈 ρn−1Tn−1x∗n + ρn−1Sn−1x∗n + x∗n−1 − x∗n , x − x∗n−1〉

� ρn−1φn−1(x∗n−1) − ρn−1φn−1(x), ∀x ∈ H,

〈 ρnTnx∗1 + ρnSnx∗1 + x∗n − x∗1 , x − x∗n〉 � ρnφn(x∗n ) − ρnφn(x), ∀x ∈ H,

(3.1)

which is called the system of generalized nonlinearmixed variational inequalities, where
ρi > 0 (i = 1, 2, · · · , n) are constants.

Below are some special cases of the problem (3.1).
(1) If n = 2 , then the problem (3.1) reduces to the problem of finding (x∗1 , x

∗
2) ∈

H × H such that{ 〈 ρ1T1x∗2 + ρ1S1x∗2 + x∗1 − x∗2 , x − x∗1〉 � ρ1φ1(x∗1 ) − ρ1φ1(x), ∀x ∈ H,

〈 ρ2T2x∗1 + ρ2S2x∗1 + x∗2 − x∗1 , x − x∗2〉 � ρ2φ2(x∗2 ) − ρ2φ2(x), ∀x ∈ H.
(3.2)

Moreover, If φ1 = φ2 = ϕ , then problem (3.2) becomes the system of generalized
nonlinear mixed variational inequalities introduced and studied by Kim and Kim in
[45].

If φ1 = φ2 = ϕ and T1 = T2 = 0 , then problem (3.2) becomes the system of
nonlinear mixed variational inequalities in [43].

(2) For i = 1, 2, ..., n , if φi = δki (the indicator function of a nonempty closed
convex subset Ki ⊂ H ), then the problem (3.1) reduces to the problem of finding
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(x∗1 , x
∗
2 , ..., x

∗
n) ∈

∏n
i=1 Ki , such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

〈 ρ1T1x∗2 + ρ1S1x∗2 + x∗1 − x∗2 , x − x∗1〉 � 0, ∀x ∈ K1,

〈 ρ2T2x∗3 + ρ2S2x∗3 + x∗2 − x∗3 , x − x∗2〉 � 0, ∀x ∈ K2,

· · ·,
〈 ρn−1Tn−1x∗n + ρn−1Sn−1x∗n + x∗n−1 − x∗n , x − x∗n−1〉 � 0, ∀x ∈ Kn−1,

〈 ρnTnx∗1 + ρnSnx∗1 + x∗n − x∗1 , x − x∗n〉 � 0, ∀x ∈ Kn,

(3.3)

(3) For i = 1, 2, ..., n , if Ti = 0 , then the problem (3.3) reduces to the problem
of finding (x∗1 , x

∗
2 , ..., x

∗
n) ∈

∏n
i=1 Ki , such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

〈 ρ1S1x∗2 + x∗1 − x∗2 , x − x∗1〉 � 0, ∀x ∈ K1,

〈 ρ2S2x∗3 + x∗2 − x∗3 , x − x∗2〉 � 0, ∀x ∈ K1,

· · ·,
〈 ρn−1Sn−1x∗n + x∗n−1 − x∗n , x − x∗n−1〉 � 0, ∀x ∈ Kn−1,

〈 ρnSnx∗1 + x∗n − x∗1 , x − x∗n〉 � 0, ∀x ∈ Kn,

(3.4)

Both problem (3.3) and (3.4) are called the system of nonlinear variational in-
equalities. Moreover, if n = 2 , then problem (3.4) reduces to the following system of
nonlinear variational inequalities, which is to find (x∗1 , x

∗
2) ∈ K1 × K2 such that

{ 〈 ρ1S1x∗2 + x∗1 − x∗2 , x − x∗1〉 � 0, ∀x ∈ K1,

〈 ρ2S2x∗1 + x∗2 − x∗1 , x − x∗2〉 � 0, ∀x ∈ K2.
(3.5)

If S1 = S2 and K1 = K2 = K , then problem (3.5) reduces to the problem
introduced and researched by Verma [40–42].

LEMMA 3.1. For any given x∗i ∈ H(i = 1, 2, · · · , n) , (x∗1 , x
∗
2 , ..., x

∗
n) is a solution

of the problem (3.1) if and only if

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x∗1 = Jρ1

∂φ1
[x∗2 − ρ1(T1x∗2 + S1x∗2)],

x∗2 = Jρ2

∂φ2
[x∗3 − ρ2(T2x∗3 + S2x∗3)],

· · · ,

x∗n−1 = J
ρn−1

∂φn−1
[x∗n − ρn−1(Tn−1x∗n + Sn−1x∗n)],

x∗n = Jρn
∂φn

[x∗1 − ρn(Tnx∗1 + Snx∗1)],

(3.6)

where Jρi
∂φi

= (I + ρi∂φi)−1 is the resolvent operators of ∂φi for i = 1, 2, · · · , n .

Proof. It is easy to know that Lemma 3.1 follows from Lemma 2.1 and so the
proof is omitted. �
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4. Existence and uniqueness

In this section, we will show the existence and uniqueness of solution for problems
(3.1) and its special cases.

THEOREM 4.1. For i = 1, 2, · · · , n , let Si : H −→ H be strongly monotone and
Lipschitz continuous with constants ki and μi , respectively, Ti : H −→ H be Lipschitz
continuous with constant νi . If for each i = 1, 2, · · · , n ,

0 < ρi < min

{
2(ki − νi)
μ2

i − ν2
i

,
1
νi

}
, νi < ki. (4.1)

then problem (3.1) has a unique solution (x∗1 , x
∗
2 , ..., x

∗
n) ∈ Hn .

Proof. First, we prove the existence of the solution. Define a mapping F : H −→
H as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F(x) = Jρ1

∂φ1
[x2 − ρ1(T1x2 + S1x2)],

x2 = Jρ2

∂φ2
[x3 − ρ2(T2x3 + S2x3)],

...,

xn−1 = J
ρn−1

∂φn−1
[xn − ρn−1(Tn−1xn + Sn−1xn)],

xn = Jρn
∂φn

[x − ρn(Tnx + Snx)].

(4.2)

For i = 1, 2, · · · , n , since Jρi
∂φi

is nonexpansivemapping, Si is strongly monotone
and Lipschitz continuous with constants ki and μi , respectively, and Ti is Lipschitz
continuous with constant νi , for any x, y ∈ H , we have:

‖F(x) − F(y)‖
= ‖Jρ1

∂φ1
[x2 − ρ1(T1x2 + S1x2)] − Jρ1

∂φ1
[y2 − ρ1(T1y2 + S1y2)]‖

� ‖(x2 − y2) − ρ1((T1x2 + S1x2) − (T1y2 + S1y2))‖
� ‖(x2 − y2) − ρ1(S1x2 − S1y2)‖ + ρ1‖T1x2 − T1y2‖
�

√
‖x2 − y2‖2 − 2ρ1〈 S1x2 − S1y2, x2 − y2〉 + ρ2

1‖S1x2 − S1y2‖2 + ρ1ν1‖x2 − y2‖]

= (
√

1 − 2ρ1k1 + ρ2
1μ2

1 + ρ1ν1)‖x2 − y2‖

= (
√

1 − 2ρ1k1 + ρ2
1μ2

1 + ρ1ν1)‖Jρ2

∂φ2
[x3 − ρ2(T2x3 + S2x3)]

− Jρ2

∂φ2
[y3 − ρ2(T2y3 + S2y3)]‖

� (
√

1 − 2ρ1k1 + ρ2
1μ2

1 + ρ1ν1)‖x3 − y3 − ρ2[(S2x3 − S2y3) + (T2x3 − T2y3)]‖

� (
√

1 − 2ρ1k1 + ρ2
1μ2

1 + ρ1ν1)‖x3 − y3 − ρ2(S2x3 − S2y3)‖ + ρ2‖T2x3 − T2y3‖
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� (
√

1 − 2ρ1k1 + ρ2
1μ2

1 + ρ1ν1)×

× [
√
‖x3−y3‖2−2ρ2〈 S2x3−S2y3, x3−y3〉+ρ2

2‖S2x3−S2y3‖2+ρ2ν2‖x3−y3‖]

� (
√

1 − 2ρ1k1 + ρ2
1μ2

1 + ρ1ν1)(
√

1 − 2ρ2k2 + ρ2
2μ2

2 + ρ2ν2)‖x3 − y3‖

� · · · �
n−1∏
i=1

(
√

1 − 2ρiki + ρ2
i μ2

i + ρiνi)‖xn − yn‖

=
n−1∏
i=1

(
√

1−2ρiki+ρ2
i μ2

i +ρiνi)‖Jρn
∂φn

[x−ρn(Tnx+Snx)]−Jρn
∂φn

[y−ρn(Tny+Sny)]‖

�
n−1∏
i=1

(
√

1 − 2ρiki + ρ2
i μ2

i + ρiνi)[‖x − y − ρn(Snx) − Sny)‖ + ρn‖Tnx − Tny‖]

�
n−1∏
i=1

(
√

1−2ρiki+ρ2
i μ2

i +ρiνi)[
√
‖x−y‖2−2ρn〈 Snx−Sny, x−y〉+ρ2

n‖Snx−Sny‖2

+ ρnνn‖x − y‖]

�
n∏

i=1

(
√

1 − 2ρiki + ρ2
i μ2

i + ρiνi)‖x − y‖. (4.3)

It follows from (4.1) that

0 <

n∏
i=1

(
√

1 − 2ρiki + ρ2
i μ2

i + ρiνi) < 1.

Thus, (4.3) implies that F is a contractive mapping and so there exists a point x∗1 ∈ H
such that

x∗1 = F(x∗1)

Let

x∗i = Jρi
∂φi

[x∗i+1 − ρi(Ti(x∗i+1) + Si(x∗i+1))], i = 1, 2, · · · , n − 1

x∗n = Jρn
∂φn

[x∗1 − ρn(Tn(x∗1) + Sn(x∗1))]

then by the definition of F , we have,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x∗1 = Jρ1

∂φ1
[x∗2 − ρ1(T1x∗2 + S1x∗2)],

x∗2 = Jρ2

∂φ2
[x∗3 − ρ2(T2x∗3 + S2x∗3)],

· · · ,

x∗n−1 = J
ρn−1

∂φn−1
[x∗n − ρn−1(Tn−1x∗n + Sn−1x∗n)],

x∗n = Jρn
∂φn

[x∗1 − ρn(Tnx1
∗ + Snx1

∗)]

i.e. (x∗1 , x
∗
2 , · · · , x∗n) is a solution of problem (3.1).
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Then, we show the uniqueness of the solution. Let (x̄1, x̄2, · · · , x̄n) be another
solution of problem (3.1). It follows from lemma 3.1 that⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x̄1 = Jρ1

∂φ1
[x̄2 − ρ1(T1x̄2 + S1x̄2)],

x̄2 = Jρ2

∂φ2
[x̄3 − ρ2(T2x̄3 + S2x̄3)],

· · · ,

x̄n−1 = J
ρn−1

∂φn−1
[x̄n − ρn−1(Tn−1x̄n + Sn−1x̄n)],

x̄n = Jρn
∂φn

[x̄1 − ρn(Tnx̄1 + Snx̄1)]

As the proof of (4.3), we have

‖x∗1 − x̄1‖ �
n∏

i=1

[
√

1 − 2ρiki + ρ2
i μ2

i + ρiνi]‖x∗1 − x̄1‖

It follows from (4.1) that

0 <
n∏

i=1

[
√

1 − 2ρiki + ρ2
i μ2

i + ρiνi] < 1.

Hence
x∗1 = x̄1

and so for i = 2, 3, · · · , n , we have

x∗i = x̄i.

This completes the proof. �

REMARK 4.1. By Theorem 4.1, it is easy to get the existence and uniqueness of
solutions for the special cases of problem (3.1), now we give some examples as follows.

For i = 1, 2, ..., n , let Ti = 0 and φi = δki , by Theorem 4.1, we have

COROLLARY 4.2. For i = 1, 2, · · · , n , let Si : H −→ H be strongly monotone and
Lipschitz continuouswith constants ki and μi , respectively. If for each i = 1, 2, · · · , n ,

0 < ρi <
2ki

μ2
i
. (4.4)

then problem (3.4) has a unique solution (x∗1 , x
∗
2 , ..., x

∗
n) ∈ Hn .

Let n = 2 , by Theorem 4.1 and Corollary 4.2, respectively, we have

COROLLARY 4.3. For i = 1, 2 , let Si : H −→ H be strongly monotone and
Lipschitz continuous with constants ki and μi , respectively, Ti : H −→ H be Lipschitz
continuous with constant νi . If for each i = 1, 2 ,

0 < ρi < min

{
2(ki − νi)
μ2

i − ν2
i

,
1
νi

}
, νi < ki. (4.5)

then problem (3.2) has a unique solution (x∗1 , x
∗
2 ) ∈ H2 .
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COROLLARY 4.4. For i = 1, 2 , let Si : H −→ H be strongly monotone and
Lipschitz continuous with constants ki and μi , respectively. If for each i = 1, 2 ,

0 < ρi <
2ki

μ2
i
. (4.6)

then problem (3.5) has a unique solution (x∗1 , x
∗
2 ) ∈ H2 .

REMARK 4.2. If φ1 = φ2 = ϕ , then by Corollary 4.3, we recover Theorem 2.1 in
[45]. And so Theorem 4.1 extends and improves the corresponding results in [43] and
[45] in several aspects.

5. Algorithms and Convergence

This section deals with an introduction of some n -step iterative sequences with
mixed errors for problem (3.1) and its special cases that can be applied to the convergence
analysis of the iterative sequences generated by the algorithms.

ALGORITHM 5.1. For any given point x0 ∈ H , define the generalized N -step
iterative sequences {x1,k}, {x2,k}, · · · , {xn,k} as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1,k+1 = (1 − αk)x1,k + αkJ
ρ1

∂φ1
[x2,k − ρ1(T1x2,k + S1x2,k)] + αku1,k + wk,

x2,k = Jρ2

∂φ2
[x3,k − ρ2(T2x3,k + S2x3,k)] + u2,k,

· · · ,

xn−1,k = J
ρn−1

∂φn−1
[xn,k − ρn−1(Tn−1xn,k + Sn−1xn,k)] + un−1,k,

xn,k = Jρn
∂φn

[x1,k − ρn(Tnx1,k + Snx1,k)] + un,k,

(5.1)

where x1,1 = x0 , {αk} is a sequence in [0,1], and {ui,k} ⊂ H(i = 1, 2, · · · , n), {wk} ⊂
H are the sequences satisfying the following conditions:

∞∑
k=1

αk = +∞;
∞∑
k=1

‖wk‖ < +∞; lim
k→∞

‖ui,k‖ = 0, i = 1, 2, · · · , n. (5.2)

We can also construct some new iterative algorithms for the special cases of
problem (3.1). For examples, we give the following iterative algorithms for problem
(3.2), (3.4) and (3.5).

ALGORITHM 5.2. For any given point x0 ∈ H , define the generalized n -step
iterative sequences {x1,k}, {x2,k}, · · · , {xn,k} as follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1,k+1 = (1 − αk)x1,k + αkPK1 [x2,k − ρ1S1x2,k] + αku1,k + wk,

x2,k = PK2 [x3,k − ρ2S2x3,k] + u2,k,

· · · ,

xn−1,k = PKn−1
[xn,k − ρn−1Sn−1xn,k] + un−1,k,

xn,k = PKn [x1,k − ρnSnx1,k] + un,k,
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where x1,1 = x0 , PKi is the projection of H onto Ki , ρi > 0, is a constant, {αk} ⊂
[0, 1] and {ui,k} ⊂ H (i = 1, 2, · · · , n) , {wk} ⊂ H are the sequences satisfying the
following conditions:

∞∑
k=1

αk = +∞;
∞∑
k=1

‖wk‖ < +∞; lim
k→∞

‖ui,k‖ = 0, i = 1, 2, · · · , n.

ALGORITHM 5.3. For any given point x0 ∈ H , define the generalized n -step
iterative sequences {x1,k}, {x2,k}, · · · , {xn,k} as follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1,k+1 = (1 − αk)x1,k + αkPK1 [x2,k − ρ1S1x2,k],
x2,k = PK2 [x3,k − ρ2S2x3,k],

· · · ,

xn−1,k = PKn−1
[xn,k − ρn−1Sn−1xn,k],

xn,k = PKn [x1,k − ρnSnx1,k],

where x1,1 = x0 , PKi is the projection of H onto Ki and ρi > 0 is a constant for
i = 1, 2, ..., n , {αk} ⊂ [0, 1] are the sequences satisfying the following conditions:

∞∑
k=1

αk = +∞.

ALGORITHM 5.4. For any given point x0 ∈ H , define the generalized N -step
iterative sequences {x1,k}, {x2,k}} as follows:{

x1,k+1 = (1 − αk)x1,k + αkJ
ρ1

∂φ1
[x2,k − ρ1(T1x2,k + S1x2,k)] + αku1,k + wk,

x2,k = Jρ2

∂φ2
[x1,k − ρ2(T2x1,k + S2x1,k)] + u2,k,

where x1,1 = x0 , {αk} is a sequence in [0,1], and {ui,k} ⊂ H(i = 1, 2), {wk} ⊂ H are
the sequences satisfying the following conditions:

∞∑
k=1

αk = +∞;
∞∑
k=1

‖wk‖ < +∞; lim
k→∞

‖ui,k‖ = 0, i = 1, 2.

ALGORITHM 5.5. For any given point x0 ∈ H , define the two-step iterative se-
quences {x1,k}, {x2,k} as follows:{

x1,k+1 = (1 − αk)x1,k + αkPK1 [x2,k − ρ1S1x2,k],
x2,k = PK2 [x1,k − ρ2S2x1,k],

where x1,1 = x0 , PKi is the projection of H onto Ki , ρi > 0, is a constant, and
{αk} ⊂ [0, 1] are the sequences satisfying the following conditions:

∞∑
k=1

αk = +∞.
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THEOREM 5.1. Let Ti and Si be the same as in Theorem 4.1, and suppose that
the sequences {x1,k}, {x2,k}, · · · , {xn,k} are generated by algorithm 4.1. If the con-
dition (4.1) holds, then (x1,k, x2,k, · · · , xn,k) converges strongly to the unique solution
(x∗1 , x

∗
2 , · · · , x∗n) of the problem (3.1).

Proof. By the Theorem 4.1, we know that problem (3.1) has a unique solution
(x∗1 , x

∗
2 , · · · , x∗n) , It follows from Lemma 3.1 that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x∗1 = Jρ1

∂φ1
[x∗2 − ρ1(T1x∗2 + S1x∗2 )],

x∗2 = Jρ2

∂φ2
[x∗3 − ρ2(T2x∗3 + S2x∗3 )],

· · · ,

x∗n−1 = J
ρn−1

∂φn−1
[x∗n − ρn−1(Tn−1x∗n + Sn−1x∗n)],

x∗n = Jρn
∂φn

[x∗1 − ρn(Tnx∗1 + Snx∗1)],

(5.3)

By (5.1) and (5.3), we have

‖x1,k+1 − x∗1‖
= ‖(1 − αk)x1,k + αkJ

ρ1

∂φ1
[x2,k − ρ1(T1x2,k + S1x2,k)] + αku1,k + wk − x∗1‖

� (1 − αk)‖x1,k − x∗1‖ + αk‖Jρ1

∂φ1
[x2,k − ρ1(T1x2,k + S1x2,k)]

− Jρ∂φ1
[x∗2 − ρ1(T1x

∗
2 + S1x

∗
2 )]‖ + αk‖u1,k‖ + ‖wk‖

� (1 − αk)‖x1,k − x∗1‖ + αk‖(x2,k − x∗2 ) − ρ1[(T1x2,k + S1x2,k) − (T1x
∗
2 + S1x

∗
2)]‖

+ αk‖u1,k‖ + ‖wk‖. (5.4)

For i = 1, 2, · · · , n , since Si is strongly monotone and Lipschitz continuous with
constants ki and μi , respectively, and Ti is Lipschitz continuous with constant νi , we
get for i = 1, 2, ..., n − 1

‖(xi+1,k − x∗i+1) − ρi[(Tixi+1,k + Sixi+1,k) − (Tix
∗
i+1 + Six

∗
i+1)]‖

� ‖(xi+1,k − x∗i+1) − ρi(Sixi+1,k − Six
∗
i+1)‖ + ρi‖Tixi+1,k − Tix

∗
i+1‖

�
√
‖xi+1,k − x∗i+1‖2 − 2ρi〈 Sixi+1,k − Six∗i+1, xi+1,k − x∗i+1〉 + ρ2

i ‖Sixi+1,k − Six∗i+1‖
+ ρiνi‖xi+1,k − x∗i+1‖

� ξi‖xi+1,k − x∗i+1‖, (5.5)

where ξi =
√

1 − 2ρiki + ρ2
i μ2

i + ρiνi , i = 1, 2, ..., n − 1.

It follows from (5.4) and (5.5) that

‖x1,k+1 − x∗1‖ � (1 − αk)‖x1,k − x∗1‖ + αkξ1‖x2,k − x∗2‖ + αk‖u1,k‖ + ‖wk‖. (5.6)

By (5.1), (5.3) and (5.5), we have
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‖x2,k − x∗2‖
= ‖Jρ2

∂φ2
[x3,k − ρ2(T2x3,k + S2x3,k] − Jρ2

∂φ2
[x∗3 − ρ2(T2x

∗
3 + S2x

∗
3 )] + u2,k‖

� ‖(x3,k − x∗3) − ρ2[(T2x3,k + S2x3,k) − (T2x
∗
3 + S2x

∗
3)]‖ + ‖u2,k‖

� ξ2‖x3,k − x∗3‖ + ‖u2,k‖, (5.7)

and

‖x3,k − x∗3‖
= ‖Jρ3

∂φ3
[x4,k − ρ3(T3x4,k + S3x4,k] − Jρ3

∂φ3
[x∗4 − ρ3(T3x

∗
4 + S3x

∗
4)] + u3,k‖

� ‖(x4,k − x∗4) − ρ3[(T3x4,k + S3x4,k) − (T3x
∗
4 + S3x

∗
4)]‖ + ‖u3,k‖

� ξ3‖x4,k − x∗4‖ + ‖u3,k‖, (5.8)

...,

‖xn−1,k − x∗n−1‖
= ‖Jρn−1

∂φn−1
[xn,k − ρn−1(Tn−1xn,k + Sn−1xn,k]

− J
ρn−1

∂φn−1
[x∗n − ρn−1(Tn−1x

∗
n + Sn−1x

∗
n)] + un−1,k‖

� ‖(xn,k − x∗n) − ρn−1[(Tn−1xn,k + Sn−1xn,k) − (Tn−1x
∗
n + Sn−1x

∗
n)]‖ + ‖un−1,k‖

� ξn−1‖xn,k − x∗n‖ + ‖un−1,k‖, (5.9)

since Sn is strongly monotone and Lipschitz continuous with constants kn and μn ,
respectively, and Tn is Lipschitz continuous with constant νn , we get

‖xn,k − x∗n‖
= ‖Jρn

∂φn
[x1,k − ρn(Tnx1,k + Snx1,k] − Jρn

∂φn
[x∗1 − ρn(Tnx

∗
1 + Snx

∗
1 )] + un,k‖

� ‖(x1,k − x∗1) − ρn[(Tnx1,k + Snx1,k) − (Tnx
∗
1 + Snx

∗
1 )]‖ + ‖un,k‖

�
√
‖(x1,k − x∗1‖2 − 2ρn〈 Snx1,k) − Snx∗1 , x1,k − x∗1〉 + ρ2

n‖Snx1,k) − Snx∗1‖2

+ ρn‖Tnx1,k − Tnx
∗
1‖

� ξn‖x1,k − x∗1‖ + ‖un,k‖, (5.10)

where ξn =
√

1 − 2ρnkn + ρ2
nμ2

n + ρnνn .

It follows from (5.6)–(5.10) that

‖x1,k+1 − x∗1‖
� (1 − αk)‖x1,k − x∗1‖ + αkξ1‖x2,k − x∗2‖ + αk‖u1,k‖ + ‖wk‖
� (1 − αk)‖x1,k − x∗1‖ + αkξ1[ξ2‖x3,k − x∗3‖ + ‖u2,k‖] + αk‖u1,k‖ + ‖wk‖
� (1 − αk)‖x1,k − x∗1‖ + αkξ1ξ2‖x3,k − x∗3‖ + αkξ1‖u2,k‖ + αk‖u1,k‖ + ‖wk‖
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� (1 − αk)‖x1,k − x∗1‖ + αkξ1ξ2ξ3‖x4,k − x∗4‖ + αkξ1ξ2‖u3,k‖ + αkξ1‖u2,k‖
+ αk‖u1,k‖ + ‖wk‖

� · · · � (1 − αk)‖x1,k − x∗1‖ + αkξ1ξ2 · · · ξn−1‖xn,k − x∗n‖
+ αkξ1ξ2 · · · ξn−2‖un−1,k‖ + · · · + αkξ1‖u2,k‖ + αk‖u1,k‖ + ‖wk‖

� (1 − αk)‖x1,k − x∗1‖ + αkξ1ξ2 · · · ξn‖x1,k − x∗1‖ + αkξ1ξ2 · · · ξn−1‖un,k‖
+ αkξ1ξ2 · · · ξn−2‖un−1,k‖ + · · · + αkξ1‖u2,k‖ + αk‖u1,k‖ + ‖wk‖

= [1 − αk(1 − ξ1ξ2 · · · ξn)]‖x1,k − x∗1‖ + αk(1 − ξ1ξ2 · · · ξn)
1

1 − ξ1ξ2 · · · ξn
×

× (‖u1,k‖ + ξ1‖u2,k‖ + · · · + ξ1ξ2 · · · ξn−1‖un,k‖) + ‖wk‖. (5.11)

Let

ak = ‖x1,k − x∗1‖, tk = αk(1 − ξ1ξ2 · · · ξn), ck = ‖wk‖,
bk =

1
1 − ξ1ξ2 · · · ξn

(‖u1,k‖ + ξ1‖u2,k‖ + · · · + ξ1ξ2 · · · ξn−1‖un,k‖).

Then (5.11) can be written as follows:

ak+1 � (1 − tk)ak + bktk + ck.

From the assumption (5.2), we know that {ak} , {bk} , {tk} , {ck} satisfy the conditions
of Lemma 2.2.

Thus ak → 0(k → ∞) , that is, ‖x1,k − x∗1‖ → 0(k → ∞) . It follows from
(5.6)–(5.10) that ‖xn,k − x∗n‖ → 0 (k → ∞) , ‖xn−1,k − x∗n−1‖ → 0 (k → ∞) ,...,
‖x2,k − x∗2‖ → 0 (k → ∞) .

And so xi,k → x∗i (k → ∞) for i = 1, 2, ..., n . That is, (x1,k, x2,k, · · · , xn,k)
converges strongly to the unique solution (x∗1 , x

∗
2 , · · · , x∗n) of the problem (3.1).

By using similar argument with the proof of Theorem 5.1, we have

COROLLARY 5.2. Let Si be the same as in Corollary 4.2, and suppose that the
sequences {x1,k}, {x2,k}, · · · , {xn,k} are generated by algorithm 4.2. If the condi-
tion (4.4) holds, then (x1,k, x2,k, · · · , xn,k) converges strongly to the unique solution
(x∗1 , x

∗
2 , · · · , x∗n) of the problem (3.4).

COROLLARY 5.3. Let Si be the same as in Corollary 4.2, and suppose that the
sequences {x1,k}, {x2,k}, · · · , {xn,k} are generated by algorithm 4.3. If the condi-
tion (4.4) holds, then (x1,k, x2,k, · · · , xn,k) converges strongly to the unique solution
(x∗1 , x

∗
2 , · · · , x∗n) of the problem (3.4).

Let n = 2 , by Theorem 5.1 and Corollary 5.3, respectively, we have

COROLLARY 5.4. Let Ti and Si be the same as in Corollary 4.3, and suppose
that the sequences {x1,k}, {x2,k} are generated by algorithm 4.4. If the condition (4.5)
holds, then (x1,k, x2,k, · · · , xn,k) converges strongly to the unique solution (x∗1 , x

∗
2 ) of

the problem (3.2).
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COROLLARY 5.5. Let Si be the same as in Corollary 4.5, and suppose that the
sequences {x1,k}, {x2,k} are generated by algorithm 4.5. If the condition (4.6) holds,
then (x1,k, x2,k) converges strongly to the unique solution (x∗1 , x

∗
2) of the problem (3.5).

REMARK 5.1. By Corollary 5.4 and Corollary 5.5, respectively, we can recover
Theorem 3.5 in [25] and Theorem 2.1(b) in [41]. And so Theorem 5.1, Corollary 5.2
and Corollary 5.3 extend and improve the corresponding results in [41–44, 25].
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