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GENERALIZED HYERS––ULAM STABILITY OF

MAPPINGS ON NORMED LIE TRIPLE SYSTEMS

MOHAMMAD SAL MOSLEHIAN AND THEMISTOCLES M. RASSIAS

Abstract. We prove the generalized Hyers–Ulam stability of mappings on normed spaces for the
Pexiderized Cauchy–Jensen additive mapping
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Then we apply the results for investigating the stability of homomorphisms and derivations on
normed Lie triple systems.
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Birkhäuser, Basel, 1998.
[15] D. H. HYERS AND TH. M. RASSIAS, Approximate homomorphisms, Aequationes Math. 44 (1992),

125–153.



[16] G. ISAC AND TH. M. RASSIAS, Stability of ψ -additive mappings: Applications to nonlinear analysis,
Internat. J. Math. Math. Sci. 19 (1996), 219–228.

[17] S.-M. JUNG, Hyers–Ulam–Rassias Stability of FunctionalEquations inMathematical Analysis, Hadronic
Press lnc. Palm Harbor, Florida, 2001.

[18] Y.-H. LEE AND K.-W. JUN, A generalization of the Hyers–Ulam–Rassias stability of Jensen’s equation,
J. Math. Anal. Appl. 238 (1999), 305–315.

[19] W. G. LISTER, A structure theory of Lie triple systems, Trans. Amer. Math. Soc. 72 (1952), 217–242.
[20] M. S. MOSLEHIAN, Approximately vanishing of topological cohomology groups, J. Math. Anal. Appl.

318 (2006), 758–771.
[21] M. S. MOSLEHIAN AND TH. M. RASSIAS, Orthogonal stability of additive type equations, Aequationes

Math., 73 (2007) 249–259.
[22] M. S. MOSLEHIAN AND TH. M. RASSIAS, Stability of functional equations in non-Arhimedian spaces,

Appl. Anal. Disc. Math. 1 (2007), 325–334.
[23] S. OKUBO, Introduction to Octonion and Other Non-Associative Algebras in Physics, Montroll Memorial

Lecture Series in Mathematical Physics, 2. Cambridge University Press, Cambridge, 1995.
[24] C. PARK, Lie ∗ -homomorphisms between Lie C∗ -algebras and Lie ∗ -derivations on Lie C∗ -algebras,

J. Math. Anal. Appl. 293 (2004), 419–434.
[25] C.PARK, HomomorphismsbetweenLie JC∗ -algebrasandCauchy–Rassias stability of Lie JC∗ -algebra

derivations, J. Lie Theory 15 (2005), 393–414.
[26] C. PARK, Isomorphisms between C∗ -ternary algebras, J. Math. anal. Appl. (to appear).
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