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ON AN ABSTRACT VERSION OF A FUNCTIONAL INEQUALITY

WLODZIMIERZ FECHNER

(communicated by Zs. Pales)

Abstract. The purpose of the present paper is to provide a joint generalization of some previously
obtained results connected with functional inequalities, stability of functional equations and
stability of functional inequalities.

1. Introduction

Throughout the paper it is assumed that N = {1,2,...}, R is the real line and
[c,+00) ={t € R:t > c} for c € R. We use additive notation in abelian groups;
abelian group Y is uniquely 2 -divisible if the mapping ¥ 2 ¢ — ¢+ 1 € Y is bijective.
By a topological group Y we understand a group endowed with a topology such that Y
is a Hausdorff space and both mappings

Yo>t— —teY

and
YxY>3(s,1)—s+1€Y

are continuous. In particular, each real or complex linear-topological space is a uniquely
2 -divisible abelian topological group. A systematic study of the theory of topological
groups can be found in the monograph of E. Hewitt and K. Ross [5].

Let X and Y be abelian groups. A mappping a:X — Y is called additive if it
satisfies the Cauchy functional equation:

alx+y)=alx)+aly), x,yeX
A map A: X — R is subadditive if
Alx+y) <AX)+AQY), xyeX,

a mappping A: X — R is superadditive if —A is subadditive. Function ¢: X — Y is
quadratic if it satisfies the following functional equation:

g(x+y) +qlx —y) =2q(x) +24q(y), x,y€X.
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Finally, a mapping B: X X X — Y is symmetric and biadditive if
B(x,y) = B(y,x), x,y€X,

and for each x € X the function B(x,-): X — Y is additive.

Relationships between quadratic mappings and biadditive and symmetric function-
als are described by the following theorem (see J. Aczél & J. Dhombres [1, Chapter 11,
Proposition 1]).

THEOREM A. Let X be an abelian group and Y a uniquely 2 -divisible abelian
group. A mapping q:X — Y is quadratic if and only if there exists a biadditive and
symmetric functional B:X x X — Y such that

1
q(x) = EB(x,x)7 xeX
Moreover,
q(x+y) —q(x) —q(y) = B(x,y), xyeX.
From this theorem it follows thatif K C Y is an arbitrary nonempty set, g: X — Y
is a quadratic mapping, B: X X X — Y is the corresponding biadditive and symmetric

functional, A: X — Y satisfies

A(X+y)fA(X)7A(y) €K7 X,yEX, (1)
and f = g+ A, then the following relation holds true:
f(x+y) 7f(x) *f(y)*B(X,y)EK, X,yEX. (2)

In the present paper we are interested in situations, where the converse implication is
valid. At least two special cases of this problem have already been investigated.
In [2] and [3] we have dealt with the following functional inequality:

f(X+y) 7f(x) 7f(y)>¢(xay)’ x7y€X7
where (X, +) is an abelian group and f and ¢ are real mappings defined on X. We
have found conditions that are sufficient for the representation

F3) = 30053) +AG), rEX

where A: X — R is a superadditive mapping and ¢: X x X — R is biadditive and
symmetric (see [2, Theorem 1 and Corollary 1] and [3, Theorem 16]).

In [4] we have investigated some Hyers-Ulam stability problems connected with
quadratic mappings. In particular, we have solved the following system:

|lf(‘x+y) —f(X) _f(y)_2¢(x7y)|| < &, .X,yEX,
lo(x,y) + o0, =yl < n, xyeX,
where € > 0, n > 0 and f and ¢ map an abelian group into a Banach space ([4,
Corollary 3]).

The purpose of the present paper is to generalize the above-mentioned results. We
will be working in the following framework: functions considered will have their values
in a uniquely 2 -divisible topological group Y, a fixed set K C Y will be playing the
role of the closed halfline [0, +00) C R or of the closed ball B(0, &) C X with the
center at 0 and of radius & = max{&, n}, respectively.
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2. Main results

Let (Y,4) be a uniquely 2-divisible abelian group and let K C Y; denote

K~ := KN (—=K). Let us start with enumeration of assumptions we impose upon the
set K.
K+...+K CnK, neN, (K1)
————
n times
|
N 35 = (o), (K2)
neN
if (x,)nen is a sequence from Y having the following two properties : (K3)

® Xpi1 — X, € zi,,K for sufficiently large n € N,

LK for sufficiently large

e there exists ¢ € Y such that ¢ — x, € T

neN,
then the sequence (x,)nen iS convergent.
Note that from (K1) and (K2) it follows in particular that 0 € K and nK C mK
for n,m € N such that n < m.

We start with a lemma, which is a generalization of [3, Lemma 3]. To prove this
lemma we do not need (K3).

LEMMA 1. Let X be an abelian group, Y a uniquely 2 -divisible abelian group
andlet K C Y fulfill (K1) and (K2). Assumethat f:X — Y and ¢:X x X — Y satisfy

f(x+y) 7f(x) 7f(y)*¢(x’y)€K7 x’yGX’ (3)
¢(x7y)+¢(x7 *Y) €K7 x’yGX’ (4)

and
f(2x)=3f(x)+f(—x), xeX (5)

Then, there exist an additive mapping a:X — Y and a quadratic mapping q:X — Y
such that f = a+ q. Moreover,

f+y)=fx) —f() -9 y) €2K™, xyeX (6)
Proof. Apply (3) with y replaced by —y to get
f(x_y) _f(x) _f(_y) - ¢(x> _y) €K, xyeX
Then, add side by side this relation, (3) and (4) and then use (K1) to obtain
fa+y) +fx=y)=2f () =) —f(-y) e K+ K+K=3K, xyeX (7)
Now, split f into its odd and even part: f = f, +f,, where

f()C) —’_2.](‘(_')6)7 fu(-x) ::f(.X) _f(_x)7 xeX.

fe(x) := >
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From (7) it follows that
fex+y) + felx—=y) = 2fe(x) = 2(y)
= S ) =) = S (@)~ £ 0) ~ ()]
b= 3) + (x4 3) = 2 (<) £ (=) £ O]
e %[3K+3K]:3K, xy€eX. 8)

On the other hand, (5) gives us
fe(2x) = 4fo(x), x€X. 9)

In particular, f (0) = f.(0) =0.
Now, let us apply (8) with x replaced by x + y and y replaced by x — y. Taking
(9) into account we get

4fe(x) + 4fe(y) *ng(X+y) —ng(x—y)
= fe(2%) +fe(2y) = 2fe(x +y) — 2fe(x — )
= fe((x+y)+ (x =) +fe((x +y) = (x =) = 2fe(x +y) = 2fe(x —y)
€ 3K, x,yeX,

which means that

3
fe(x +y) +felx —y) = 2fe(x) — 2fc(y) € *EKa x,y €X.

This, jointly with (8) and with (K1) implies that

P43 H16=9) = .00 - 20.0) € 360 (-3K) <3k, wyex
From this and from (9) we derive that
Afelx+y) + felx—y) = 2fe(x) = 2fe(y)]

= fe(2"x+2"y) 4+ fo(2"x — 2"y) — 2f.(2"x) — 2f.(2"y)
€ 3K7, x,yeX,neN,

which together with (K2) leads to the equality
fex+y) +fe(x —y) = 2fe(x) = 2fc(y) =0, x,y€X.

Now, this compared with (7) gives us

folx4+y) + folx—y) —2fo(x)
= fo(x+¥) +folx =¥) = 2fo(x) = fo(y) = fo(—Y)
= flx+y)+f(x—y)=2f(x) = f () —f(=y)
— [felx+y) +fe(x =) = 2fe(x) = fe(y) = fe(—V)]
€ 3K, x,yeX (10)
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After replacing x by —x and y by —y and using the oddness of f, we arrive at
Fo(x+y) +folx—y) —2fo(x) €3K™, x,yeX.
Observe also that from (5) and the definition of f, it follows that
So(dx) =4f,(x), xeX.
Using this we get the relation
Afolx+y) + folx =) = 2fo(x)]

= fo(4'x +4"y) + fo(4"x — 4"y) — 2f,(4"x)

€ 3K, x,yeX,neN,
which jointly with (K2) implies that

fo(x+y) +folx —y) =2fo(x) =0, x,yeX.

Since f, is odd, then f, is additive.
Denote g :=f., a :=f, and define B: X x X — Y by

B(x,y) :=q(x+y) —q(x) —q(y), xyeX
Theorem A states that B is biadditive and symmetric. We have
Bx,y) = ¢(x,y) =f(x+y) —f(x) =f(y) —0(x,y) €K, xyeX
On the other hand, this together with (4) gives us
—B(x,y) + ¢(x,y) = B(x,—y) = ¢(x, —y) + ¢(x,y) + ¢(x, —y)
€ K+K=2K, x,yeX
Therefore, we eventually arrive at
B(x,y) — ¢(x,y) e KN(=2K) C2K~, x,y€X,
and (6) follows. O

Now, we are able to state and prove our main result. The following theorem is a
generalization of [3, Theorem 16].

THEOREM 2. Let X be an abelian group, Y a uniquely 2 -divisible abelian
topological group and let K C Y be a closed set which fulfills (K1), (K2) and (K3).
Assume that f:X — Y and ¢:X x X — Y satisfy (3), (4) and

ViexJeer [c — 4%(1)(2")@ 2"x) € 4%1( for sufficiently large n] , }
v)c,yEX [limn—>+<x> 4an)(2”x7 2ny) - ¢(x7 y) € K] .
If for each x € X the sequence

(f(Z”X) —f(-2m) ) )

on+l

(11)
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is convergent and its pointwise limit satisfies (1), then there exist a quadratic mapping
q:X — Y and a solution A:X — Y of

Ax+y) —Ax) —A(y) € 18K, x,y€ X, (13)
such that f = q+ A. Moreover,
q(x+y) —q(x) —q(y) = ¢(x,y) € 7K™, x,y€X. (14)

Proof. Apply (3) and (4) for x = y = 0 to get that —f(0) — ¢(0,0) € K and
¢(0,0) € 1K . From this we deduce that —f (0) € 2K. Next, put y = —x in (3) and
use (4) to obtain

¢(x,x) — fx) =f(=x)

= [F(0) =f (x) =f (=x) = ¢(x, —x)] + [@(x, ) + ¢(x, —x)] — £ (0)

7
€ K+K+%K:§K, xeX (15)

On the other hand, on applying (3) for y = x we derive that
F(2x) =2f(x) — ¢(x,x) €K, x€X,
which jointly with (15) implies that

F(2x) = 3f (x) —f (—x) €K+%K: gK, xeX. (16)

Now, for each x € X define two sequences of elements of Y in the following way:

() = TEV L2 g S SEOHTERN

The first sequence is convergent by assumption; therefore a map o: X — Y is well
defined by
ofx) == hT o(x), x€X,
and by assumption it satisfies
ax+y) —oax) —aly) €K, x,yeX (17)

We will check that the second sequence is convergent. This follows from (15), (16)
and from (K3). Indeed,

@1 +f (<2 L) — 4f (%) — 4F (=2")

Bui1(x) = Bulx) = e
= ﬁ [F(2-2"x) = 3f (2"x) — f(—2"x)]
+ ﬁlﬂ [f (2 (=2"%)) = 3f (=2"x) — £ (2"%)]

1 9 9 1
5 . gqntl {EK‘*‘EK} C4,,—,1K, xeX,neN.
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Next, let ¢ € Y (possibly depending upon x ) be chosen so that the first part of (11) is
fulfilled. We have

1 1 1 n an
EC — ﬁn(x) = EC — m¢(2 )C,2 .X)
1
b 02, 2) —f(2%) — f (~2")
€ ! K+ ! z K, xeX,neN.

R TR BT S T
Therefore, (B,(x))nen is convergent. Let : X — Y be the limit function:
B(x) := nEToo Bu(x), xe€X.
Now, it is clear that
o(2x) =2a(x), PB(2x) =4P(x), xeX.
Moreover, o is odd, whereas 3 is even. Next, put ¢ := o + 3 and observe that
0(2x) =30(x) +¢(—x), xeX
Define, ¢1: X x X — Y by

[0(x,y) + ¢(—x, —y)], =x,y€X.

N —

¢1(x’y) =

With the aid of (3) we get

1
T (2"x +2") = f(2"x) = f(2"y) — ¢(2"x,2"y)] € mK’ x,y € X.

This, the second part of (11) and the fact that K is closed lead to the following
estimations:

Blx+y) — Blx)—BO)—¢i(xy)

1
= lim [P 2) —f (2 — £ () - 9(2x,2')

1
g (-2 = 2) = f (-2 — £ (=27) = 9(=2"x, ~2"y)]
111 n. An 1 " ;
+ 5 E¢(2 x,2 y) —o(x,y) + E¢(_2 x, —2"y) — ¢(_x7 _y)
€ %[K‘FK]:K, x,y €X. (18)

Now, deduce that

p(x+y) — o(x)— o) — di(x,y)
alx+y) —alx) —aly) + Bx+y) — Bx) — B(y) — ¢i(x,y)
€ K+K=2K, x,y€X, (19)
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and

1
O1(x,y) + o1 (x, —y) = 3 [01(x,y) + @1(x, =y) + @1 (—x, —y) + 1 (—x,y)]
€ %[K+K] =K C2K, xyeX

Thus, the assumptions of Lemma 1 are satisfied by ¢, ¢; and 2K . From this we get
that o is additive, f is quadratic and

P(x+y) —ox) — () — ¢i(x,y) €4K~, x,y€X,

which implies that

Bx+y) = B(x) = B) — ¢ilx,y) €4K™, x,yeX. (20)

Next, let us compare this with some inclusions used to check (18). In particular,
for each x,y € X the sequence

(@2 -rew -rem)

neN

is convergent and

n—-+o0o

lim [+ 2) — £ (2) ~ @] - 9(ey) €K, xyEX.

On the other hand, we have

lim 41,1 [f (2"x +2"y) = f(2"x) — f (2"y)] — ¢(x,)

= 20B(x+y) ~ B~ BO) — 0u(x.)]
(2= 2) — F(-2) — (-2 + 9% —)
€ 8K —KC —-9K, x,yeX

Joining this two facts we obtain

lim % F2"x+2%)—f(2"x) —f2")] —¢(x,y) € =9KNK C9K~, (21)

n—-+00o

for each x,y € X.
Now, put f1 :=f — @ and ¢, := ¢ — ¢ ; clearly,

filx+y) = filx) =f1(y) — d2(x,y)
= flx+y)—f&) =)= ox,y)
= o(x+y)+ o)+ o)+ di(x,y)
€ K—4K  C5K, x,yeX (22)
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Moreover, from (20) and (21) we derive that

n—-+00

lim 4% [F1(2"x +2") = f1(2"x) = 1(2"Y)] — d2(x,y)

= lim L 2) - 72— )] - 9xy)

n—+00
1
= im 2 o2 +2") — 9(2"%) — 9(2"Y)] + 1 (x.y)
€ 9K —Blx+y) +B(x) +BO) + ¢1(x,y)
C 9K~ —4K~ =13k, x,yeX (23)

Let us introduce two new functions, P: X — Y and g: X — Y by

_ i) +A(=x) _ i) = fi(=x)

P(x) : ) ;o gx): T

Observe also that

xe X

¢2()C,y) :—¢2(—X, _y)7 x7y€X7
and using this and (22) deduce that

Plx+y) — P(x)—P()
= S0+ 1) — A1) (-5 3) = Fil=3) ~ i)
= SG ) — A1) —f10) — )

£ 3= 3) = i)~ fi(=) — ()]

1
€ 35K +5K]=5K xyeX. (24)

Put x = y = 0 in (24) to obtain that —P(0) € 5K . Now, apply (24) with x =y to get
that P(2x) — 2P(x) € 5K for each x € X . Next, (24) used for y = —x leads to

P(0) —2P(x) € 5K, x€X.
Therefore, we have the following relations:

1

5

on+l ( ”+1x) - on+l P(2n'x) € ﬁKy xeX,neN,
1 1 5

on+l P(O) - EP(znx) € ﬁKy X e X, n € N.

(K3) implies that the sequence (4 P(2"x)),cn is pointwise convergent. In particular,
lim, 4 2 P(2"x) = 0 for each x € X. On joining this observation with (23) we
arrive at

. 1
lim —[g(2"x +2"y) — g(2"x) — g(2"y)] — ¢a(x,y) € 13K, x,y € X.
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On the other hand,
og@x) L f1(2") = f1(—2"x)
nl}IJPoo n o nl}IJPoo 2ntl
o f@) —f(=2) L 9(2") — o(—2"x)
- nl}Too on+l o nginoo on+l

= a(x)—ax)=0, xeX
Therefore, we have proved that ¢, (x,y) € 13K~ for each x,y € X.
Put A := f1 + o and g := B. To finish the proof one needs to join the last
observation with (20) to obtain (14):
qx+y) — qx) —q(y) = 0(x,y)
= Blx+y) = B(x) = BY) — di(x,y) — $a(x,y) € 4K~ + 13K~
= 17K, x,yeX.
And joining this with (3) one may prove (13):
Alx+y) — Alx) —A()
f+y) =) —f) —oxy)
[g(x +y) —q(x) —q(y) = ¢(x,y)]
€ K+ 17K~ C 18K, x,y€X. O

Now, let us derive two corollaries from Theorem 2.

COROLLARY 3. Let X be an abelian group, Y a uniquely 2 -divisible abelian
topological group and let K C Y be a closed set which fulfills (K1), (K2) and (K3).
Assume that f:X — Y and ¢:X x X — Y satisfy (3), (4) and (11). If the map f is
even, then there exist a quadratic mapping q: X — Y and an even solution A:X — Y
of (13) such that f = q + A. Moreover, relation (14) is satisfied.

Proof. Since f is even, then the sequence (12) from Theorem 2 is constant and
equal to zero and thus the assumptions of this theorem are satisfied. The evenness of A
follows from the evenness of f and ¢. [

COROLLARY 4. Let X be an abelian group, Y a uniquely 2 -divisible abelian
topological group and let K C Y be a closed set which fulfills (K1), (K2) and (K3).
Assume that f:X — Y and ¢:X x X — Y satisfy (3), (4), (11) and

¢(x7y) :‘P(*xa 7y)7 x,y€X. (25)

Then there exist a quadratic mapping q:X — Y and a solution A:X — Y of (13) such
that f = q+ A. Moreover, relation (14) is satisfied.

Proof. Split f into its even and odd parts, say f, and f,, and check that the even
part f. satisfies assumptions of Corollary 3. In particular, relation (14) holds true with
a quadratic mapping g . Now, it sufficies to use this and repeat the last calculation from
the proof of Theorem 2 to check that the map A :=f — ¢ fulfills (13). O
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3. Concluding remarks

We will terminate this paper with some additional remarks.

REMARK 5. In Lemma 1 it is not stated that functional ¢ is biadditive and sym-
metric. This was proved in [3, Lemma 3] in the special case K = [0, +00). Clearly, it
holds true if K~ = {0}; one may find an example which shows that this is not true in
general. Take X =Y =R, ¢ >0 andput f =0, ¢ = ¢ and K = [—2¢, +2c] to see
that the assumptions of Lemma 1 are satisfied by these mappings. Therefore, Lemma 1
cannot be strengthen in that way.

REMARK 6. Constants 17 and 18 appearing in Corollary 3 and in Corollary 4 can
be sharpened by a thorough inspection of the proof of Theorem 2 and by applying there
the evenness of f or the assumption (25), respectively. Moreover, some additional
informations about the set K may lead to further improvements of these estimations.
In particular, if the set K is not symmetric with respect to 0, then inclusion K~ C K,
which was frequently used in the proof of Theorem 2, may be replaced by a sharper
one.

REMARK 7. If Y is a Banach space and the set K is bounded, then the celebrated
Hyers Theorem (see D.H. Hyers [6]) can be applied to relation (13). Therefore, on
joining the presented results with the Hyers Theorem one may obtain that in this case f
is uniformly close to the sum a + ¢ of an additive mapping a and a quadratic one g.

REMARK 8. We will provide one more example of sets K satisfying assumptions
(K1), (K2) and (K3). Let Y be areal locally convex linear-topological space. Denote
by Y* the family of all linear and continuous functionals on Y. For any subfamily
E* C Y* let (E*) stand for the weakest topology on Y such that all elements of E*
remain continuous under this topology. Therefore, 7 (Y*) is the weak topology on Y .

If Y is considered with the weak topology, then in particular Y is a uniquely
2 -divisible abelian group and each nonempty set K C Y having the following property:

Ty e Y Ve Y (x) 2 —c]}) = T(Y7)

for a certain fixed ¢ > 0 is closed and satisfies (K1), (K2) and (K3). In particular,
taking ¥ = R? and ¢ = 0 we can see that each closed quarter of the real plane R?
fulfills this condition.

Similarly, each nonempty set K C Y satisfying

T {y" €Y Vaex [me <y (x) <c]}) = T(Y7)

fulfills all this conditions and additionally is compact.
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