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Abstract. The purpose of the present paper is to provide a joint generalization of some previously
obtained results connected with functional inequalities, stability of functional equations and
stability of functional inequalities.

1. Introduction

Throughout the paper it is assumed that N = {1, 2, . . .} , R is the real line and
[c, +∞) = {t ∈ R : t � c} for c ∈ R . We use additive notation in abelian groups;
abelian group Y is uniquely 2 -divisible if the mapping Y � t �→ t + t ∈ Y is bijective.
By a topological group Y we understand a group endowed with a topology such that Y
is a Hausdorff space and both mappings

Y � t �→ −t ∈ Y

and
Y × Y � (s, t) �→ s + t ∈ Y

are continuous. In particular, each real or complex linear-topological space is a uniquely
2 -divisible abelian topological group. A systematic study of the theory of topological
groups can be found in the monograph of E. Hewitt and K. Ross [5].

Let X and Y be abelian groups. A mappping a: X → Y is called additive if it
satisfies the Cauchy functional equation:

a(x + y) = a(x) + a(y), x, y ∈ X.

A map A: X → R is subadditive if

A(x + y) � A(x) + A(y), x, y ∈ X,

a mappping A: X → R is superadditive if −A is subadditive. Function q: X → Y is
quadratic if it satisfies the following functional equation:

q(x + y) + q(x − y) = 2q(x) + 2q(y), x, y ∈ X.
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Finally, a mapping B: X × X → Y is symmetric and biadditive if

B(x, y) = B(y, x), x, y ∈ X,

and for each x ∈ X the function B(x, ·): X → Y is additive.
Relationships between quadratic mappings and biadditive and symmetric function-

als are described by the following theorem (see J. Aczél & J. Dhombres [1, Chapter 11,
Proposition 1]).

THEOREM A. Let X be an abelian group and Y a uniquely 2 -divisible abelian
group. A mapping q: X → Y is quadratic if and only if there exists a biadditive and
symmetric functional B: X × X → Y such that

q(x) =
1
2
B(x, x), x ∈ X.

Moreover,
q(x + y) − q(x) − q(y) = B(x, y), x, y ∈ X.

From this theorem it follows that if K ⊂ Y is an arbitrary nonempty set, q: X → Y
is a quadratic mapping, B: X × X → Y is the corresponding biadditive and symmetric
functional, A: X → Y satisfies

A(x + y) − A(x) − A(y) ∈ K, x, y ∈ X, (1)

and f = q + A , then the following relation holds true:

f (x + y) − f (x) − f (y) − B(x, y) ∈ K, x, y ∈ X. (2)

In the present paper we are interested in situations, where the converse implication is
valid. At least two special cases of this problem have already been investigated.

In [2] and [3] we have dealt with the following functional inequality:

f (x + y) − f (x) − f (y) � φ(x, y), x, y ∈ X,

where (X, +) is an abelian group and f and φ are real mappings defined on X . We
have found conditions that are sufficient for the representation

f (x) =
1
2
φ(x, x) + A(x), x ∈ X,

where A: X → R is a superadditive mapping and φ: X × X → R is biadditive and
symmetric (see [2, Theorem 1 and Corollary 1] and [3, Theorem 16]).

In [4] we have investigated some Hyers-Ulam stability problems connected with
quadratic mappings. In particular, we have solved the following system:

‖f (x + y) − f (x) − f (y) − 2φ(x, y)‖ � ε, x, y ∈ X,

‖φ(x, y) + φ(x,−y)‖ � η, x, y ∈ X,

where ε � 0 , η � 0 and f and φ map an abelian group into a Banach space ([4,
Corollary 3]).

The purpose of the present paper is to generalize the above-mentioned results. We
will be working in the following framework: functions considered will have their values
in a uniquely 2 -divisible topological group Y , a fixed set K ⊂ Y will be playing the
role of the closed halfline [0, +∞) ⊂ R or of the closed ball B(0, ε1) ⊂ X with the
center at 0 and of radius ε1 = max{ε,η} , respectively.
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2. Main results

Let (Y, +) be a uniquely 2 -divisible abelian group and let K ⊂ Y ; denote
K− := K ∩ (−K) . Let us start with enumeration of assumptions we impose upon the
set K .

K + . . . + K︸ ︷︷ ︸
n times

⊂ nK, n ∈ N, (K1)

⋂
n∈N

1
4n

K− = {0}, (K2)

if (xn)n∈N is a sequence from Y having the following two properties : (K3)

• xn+1 − xn ∈ 1
2n K for sufficiently large n ∈ N ,

• there exists c ∈ Y such that c − xn ∈ 1
2n K for sufficiently large

n ∈ N ,
then the sequence (xn)n∈N is convergent.
Note that from (K1) and (K2) it follows in particular that 0 ∈ K and nK ⊂ mK

for n, m ∈ N such that n � m .

We start with a lemma, which is a generalization of [3, Lemma 3]. To prove this
lemma we do not need (K3).

LEMMA 1. Let X be an abelian group, Y a uniquely 2 -divisible abelian group
and let K ⊂ Y fulfill (K1) and (K2). Assume that f : X → Y and φ: X×X → Y satisfy

f (x + y) − f (x) − f (y) − φ(x, y) ∈ K, x, y ∈ X, (3)

φ(x, y) + φ(x,−y) ∈ K, x, y ∈ X, (4)

and
f (2x) = 3f (x) + f (−x), x ∈ X. (5)

Then, there exist an additive mapping a: X → Y and a quadratic mapping q: X → Y
such that f = a + q . Moreover,

f (x + y) − f (x) − f (y) − φ(x, y) ∈ 2K−, x, y ∈ X. (6)

Proof. Apply (3) with y replaced by −y to get

f (x − y) − f (x) − f (−y) − φ(x,−y) ∈ K, x, y ∈ X.

Then, add side by side this relation, (3) and (4) and then use (K1) to obtain

f (x + y) + f (x − y) − 2f (x) − f (y) − f (−y) ∈ K + K + K = 3K, x, y ∈ X. (7)

Now, split f into its odd and even part: f = f e + f o , where

f e(x) :=
f (x) + f (−x)

2
, f o(x) :=

f (x) − f (−x)
2

, x ∈ X.
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From (7) it follows that

f e(x + y) + f e(x − y) − 2f e(x) − 2f e(y)

=
1
2

[f (x + y) + f (x − y) − 2f (x) − f (y) − f (−y)]

+
1
2

[f (−x − y) + f (−x + y) − 2f (−x) − f (−y) − f (y)]

∈ 1
2

[3K + 3K] = 3K, x, y ∈ X. (8)

On the other hand, (5) gives us

f e(2x) = 4f e(x), x ∈ X. (9)

In particular, f (0) = f e(0) = 0 .
Now, let us apply (8) with x replaced by x + y and y replaced by x − y . Taking

(9) into account we get

4f e(x) + 4f e(y) − 2f e(x + y) − 2f e(x − y)
= f e(2x) + f e(2y) − 2f e(x + y) − 2f e(x − y)
= f e((x + y) + (x − y)) + f e((x + y) − (x − y)) − 2f e(x + y) − 2f e(x − y)
∈ 3K, x, y ∈ X,

which means that

f e(x + y) + f e(x − y) − 2f e(x) − 2f e(y) ∈ −3
2
K, x, y ∈ X.

This, jointly with (8) and with (K1) implies that

f e(x + y) + f e(x − y) − 2f e(x) − 2f e(y) ∈ 3K ∩
(
−3

2
K

)
⊂ 3K−, x, y ∈ X.

From this and from (9) we derive that

4n[f e(x + y) + f e(x − y) − 2f e(x) − 2f e(y)]
= f e(2nx + 2ny) + f e(2nx − 2ny) − 2f e(2nx) − 2f e(2ny)
∈ 3K−, x, y ∈ X, n ∈ N,

which together with (K2) leads to the equality

f e(x + y) + f e(x − y) − 2f e(x) − 2f e(y) = 0, x, y ∈ X.

Now, this compared with (7) gives us

f o(x + y) + f o(x − y) − 2f o(x)
= f o(x + y) + f o(x − y) − 2f o(x) − f o(y) − f o(−y)
= f (x + y) + f (x − y) − 2f (x) − f (y) − f (−y)
− [f e(x + y) + f e(x − y) − 2f e(x) − f e(y) − f e(−y)]
∈ 3K, x, y ∈ X. (10)
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After replacing x by −x and y by −y and using the oddness of f o we arrive at

f o(x + y) + f o(x − y) − 2f o(x) ∈ 3K−, x, y ∈ X.

Observe also that from (5) and the definition of f o it follows that

f o(4x) = 4f o(x), x ∈ X.

Using this we get the relation

4n[f o(x + y) + f o(x − y) − 2f o(x)]
= f o(4nx + 4ny) + f o(4nx − 4ny) − 2f o(4nx)
∈ 3K−, x, y ∈ X, n ∈ N,

which jointly with (K2) implies that

f o(x + y) + f o(x − y) − 2f o(x) = 0, x, y ∈ X.

Since f o is odd, then f o is additive.
Denote q := f e , a := f o and define B: X × X → Y by

B(x, y) := q(x + y) − q(x) − q(y), x, y ∈ X.

Theorem A states that B is biadditive and symmetric. We have

B(x, y) − φ(x, y) = f (x + y) − f (x) − f (y) − φ(x, y) ∈ K, x, y ∈ X.

On the other hand, this together with (4) gives us

−B(x, y) + φ(x, y) = B(x,−y) − φ(x,−y) + φ(x, y) + φ(x,−y)
∈ K + K = 2K, x, y ∈ X.

Therefore, we eventually arrive at

B(x, y) − φ(x, y) ∈ K ∩ (−2K) ⊂ 2K−, x, y ∈ X,

and (6) follows. �

Now, we are able to state and prove our main result. The following theorem is a
generalization of [3, Theorem 16].

THEOREM 2. Let X be an abelian group, Y a uniquely 2 -divisible abelian
topological group and let K ⊂ Y be a closed set which fulfills (K1), (K2) and (K3).
Assume that f : X → Y and φ: X × X → Y satisfy (3), (4) and

∀x∈X∃c∈Y
[
c − 1

4n φ(2nx, 2nx) ∈ 1
4n K for sufficiently large n

]
,

∀x,y∈X
[
limn→+∞ 1

4n φ(2nx, 2ny) − φ(x, y) ∈ K
]
.

}
(11)

If for each x ∈ X the sequence(
f (2nx) − f (−2nx)

2n+1

)
n∈N

(12)
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is convergent and its pointwise limit satisfies (1), then there exist a quadratic mapping
q: X → Y and a solution A: X → Y of

A(x + y) − A(x) − A(y) ∈ 18K, x, y ∈ X, (13)

such that f = q + A . Moreover,

q(x + y) − q(x) − q(y) − φ(x, y) ∈ 17K−, x, y ∈ X. (14)

Proof. Apply (3) and (4) for x = y = 0 to get that −f (0) − φ(0, 0) ∈ K and
φ(0, 0) ∈ 1

2K . From this we deduce that −f (0) ∈ 3
2K . Next, put y = −x in (3) and

use (4) to obtain

φ(x, x) − f (x) − f (−x)
= [f (0) − f (x) − f (−x) − φ(x,−x)] + [φ(x, x) + φ(x,−x)] − f (0)

∈ K + K +
3
2
K =

7
2
K, x ∈ X. (15)

On the other hand, on applying (3) for y = x we derive that

f (2x) − 2f (x) − φ(x, x) ∈ K, x ∈ X,

which jointly with (15) implies that

f (2x) − 3f (x) − f (−x) ∈ K +
7
2
K =

9
2
K, x ∈ X. (16)

Now, for each x ∈ X define two sequences of elements of Y in the following way:

αn(x) :=
f (2nx) − f (−2nx)

2n+1
, βn(x) :=

f (2nx) + f (−2nx)
2 · 4n

, n ∈ N.

The first sequence is convergent by assumption; therefore a map α: X → Y is well
defined by

α(x) := lim
n→+∞αn(x), x ∈ X,

and by assumption it satisfies

α(x + y) − α(x) − α(y) ∈ K, x, y ∈ X. (17)

We will check that the second sequence is convergent. This follows from (15), (16)
and from (K3). Indeed,

βn+1(x) − βn(x) =
f (2n+1x) + f (−2n+1x) − 4f (2nx) − 4f (−2nx)

2 · 4n+1

=
1

2 · 4n+1
[f (2 · 2nx) − 3f (2nx) − f (−2nx)]

+
1

2 · 4n+1
[f (2 · (−2nx)) − 3f (−2nx) − f (2nx)]

∈ 1
2 · 4n+1

[
9
2
K +

9
2
K

]
⊂ 1

4n−1
K, x ∈ X, n ∈ N.
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Next, let c ∈ Y (possibly depending upon x ) be chosen so that the first part of (11) is
fulfilled. We have

1
2
c − βn(x) =

1
2
c − 1

2 · 4n
φ(2nx, 2nx)

+
1

2 · 4n
[φ(2nx, 2nx) − f (2nx) − f (−2nx)]

∈ 1
2 · 4n

K +
1

2 · 4n
· 7
2
K ⊂ 1

4n−1
K, x ∈ X, n ∈ N.

Therefore, (βn(x))n∈N is convergent. Let β : X → Y be the limit function:

β(x) := lim
n→+∞ βn(x), x ∈ X.

Now, it is clear that

α(2x) = 2α(x), β(2x) = 4β(x), x ∈ X.

Moreover, α is odd, whereas β is even. Next, put ϕ := α + β and observe that

ϕ(2x) = 3ϕ(x) + ϕ(−x), x ∈ X.

Define, φ1: X × X → Y by

φ1(x, y) :=
1
2

[φ(x, y) + φ(−x,−y)] , x, y ∈ X.

With the aid of (3) we get

1
2 · 4n

[f (2nx + 2ny) − f (2nx) − f (2ny) − φ(2nx, 2ny)] ∈ 1
2 · 4n

K, x, y ∈ X.

This, the second part of (11) and the fact that K is closed lead to the following
estimations:

β(x + y) − β(x) − β(y) − φ1(x, y)

= lim
n→+∞

1
2 · 4n

[f (2nx + 2ny) − f (2nx) − f (2ny) − φ(2nx, 2ny)]

+
1

2 · 4n
[f (−2nx − 2ny) − f (−2nx) − f (−2ny) − φ(−2nx,−2ny)]

+
1
2

[
1
4n
φ(2nx, 2ny) − φ(x, y) +

1
4n
φ(−2nx,−2ny) − φ(−x,−y)

]

∈ 1
2

[K + K] = K, x, y ∈ X. (18)

Now, deduce that

ϕ(x + y) − ϕ(x) − ϕ(y) − φ1(x, y)
= α(x + y) − α(x) − α(y) + β(x + y) − β(x) − β(y) − φ1(x, y)
∈ K + K = 2K, x, y ∈ X, (19)
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and

φ1(x, y) + φ1(x,−y) =
1
2

[φ1(x, y) + φ1(x,−y) + φ1(−x,−y) + φ1(−x, y)]

∈ 1
2

[K + K] = K ⊂ 2K, x, y ∈ X.

Thus, the assumptions of Lemma 1 are satisfied by ϕ , φ1 and 2K . From this we get
that α is additive, β is quadratic and

ϕ(x + y) − ϕ(x) − ϕ(y) − φ1(x, y) ∈ 4K−, x, y ∈ X,

which implies that

β(x + y) − β(x) − β(y) − φ1(x, y) ∈ 4K−, x, y ∈ X. (20)

Next, let us compare this with some inclusions used to check (18). In particular,
for each x, y ∈ X the sequence

(
1
4n

[f (2nx + 2ny) − f (2nx) − f (2ny)]
)

n∈N

is convergent and

lim
n→+∞

1
4n

[f (2nx + 2ny) − f (2nx) − f (2ny)] − φ(x, y) ∈ K, x, y ∈ X.

On the other hand, we have

lim
n→+∞

1
4n

[f (2nx + 2ny) − f (2nx) − f (2ny)] − φ(x, y)

= 2 [β(x + y) − β(x) − β(y) − φ1(x, y)]

− 1
4n

[f (−2nx − 2ny) − f (−2nx) − f (−2ny)] + φ(−x,−y)

∈ 8K− − K ⊂ −9K, x, y ∈ X.

Joining this two facts we obtain

lim
n→+∞

1
4n

[f (2nx + 2ny) − f (2nx) − f (2ny)] − φ(x, y) ∈ −9K ∩ K ⊂ 9K−, (21)

for each x, y ∈ X .
Now, put f 1 := f − ϕ and φ2 := φ − φ1 ; clearly,

f 1(x + y) − f 1(x) − f 1(y) − φ2(x, y)
= f (x + y) − f (x) − f (y) − φ(x, y)
− ϕ(x + y) + ϕ(x) + ϕ(y) + φ1(x, y)
∈ K − 4K− ⊂ 5K, x, y ∈ X. (22)
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Moreover, from (20) and (21) we derive that

lim
n→+∞

1
4n

[f 1(2nx + 2ny) − f 1(2nx) − f 1(2ny)] − φ2(x, y)

= lim
n→+∞

1
4n

[f (2nx + 2ny) − f (2nx) − f (2ny)] − φ(x, y)

− lim
n→+∞

1
4n

[ϕ(2nx + 2ny) − ϕ(2nx) − ϕ(2ny)] + φ1(x, y)

∈ 9K− − β(x + y) + β(x) + β(y) + φ1(x, y)
⊂ 9K− − 4K− = 13K−, x, y ∈ X. (23)

Let us introduce two new functions, P: X → Y and g: X → Y by

P(x) :=
f 1(x) + f 1(−x)

2
, g(x) :=

f 1(x) − f 1(−x)
2

, x ∈ X.

Observe also that
φ2(x, y) = −φ2(−x,−y), x, y ∈ X,

and using this and (22) deduce that

P(x + y) − P(x) − P(y)

=
1
2

[f 1(x + y) − f 1(x) − f 1(y) + f 1(−x − y) − f 1(−x) − f 1(−y)]

=
1
2

[f 1(x + y) − f 1(x) − f 1(y) − φ2(x, y)]

+
1
2

[f 1(−x − y) − f 1(−x) − f 1(−y) − φ2(−x,−y)]

∈ 1
2

[5K + 5K] = 5K, x, y ∈ X. (24)

Put x = y = 0 in (24) to obtain that −P(0) ∈ 5K . Now, apply (24) with x = y to get
that P(2x) − 2P(x) ∈ 5K for each x ∈ X . Next, (24) used for y = −x leads to

P(0) − 2P(x) ∈ 5K, x ∈ X.

Therefore, we have the following relations:

1
2n+1

P(2n+1x) − 1
2n+1

P(2nx) ∈ 5
2n+1

K, x ∈ X, n ∈ N,

1
2n+1

P(0) − 1
2n

P(2nx) ∈ 5
2n+1

K, x ∈ X, n ∈ N.

(K3) implies that the sequence ( 1
2n P(2nx))n∈N is pointwise convergent. In particular,

limn→+∞ 1
4n P(2nx) = 0 for each x ∈ X . On joining this observation with (23) we

arrive at

lim
n→+∞

1
4n

[g(2nx + 2ny) − g(2nx) − g(2ny)] − φ2(x, y) ∈ 13K−, x, y ∈ X.
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On the other hand,

lim
n→+∞

g(2nx)
2n

= lim
n→+∞

f 1(2nx) − f 1(−2nx)
2n+1

= lim
n→+∞

f (2nx) − f (−2nx)
2n+1

− lim
n→+∞

ϕ(2nx) − ϕ(−2nx)
2n+1

= α(x) − α(x) = 0, x ∈ X.

Therefore, we have proved that φ2(x, y) ∈ 13K− for each x, y ∈ X .
Put A := f 1 + α and q := β . To finish the proof one needs to join the last

observation with (20) to obtain (14):

q(x + y) − q(x) − q(y) − φ(x, y)
= β(x + y) − β(x) − β(y) − φ1(x, y) − φ2(x, y) ∈ 4K− + 13K−

= 17K−, x, y ∈ X.

And joining this with (3) one may prove (13):

A(x + y) − A(x) − A(y)
= f (x + y) − f (x) − f (y) − φ(x, y)
− [q(x + y) − q(x) − q(y) − φ(x, y)]
∈ K + 17K− ⊂ 18K, x, y ∈ X. �

Now, let us derive two corollaries from Theorem 2.

COROLLARY 3. Let X be an abelian group, Y a uniquely 2 -divisible abelian
topological group and let K ⊂ Y be a closed set which fulfills (K1), (K2) and (K3).
Assume that f : X → Y and φ: X × X → Y satisfy (3), (4) and (11). If the map f is
even, then there exist a quadratic mapping q: X → Y and an even solution A: X → Y
of (13) such that f = q + A . Moreover, relation (14) is satisfied.

Proof. Since f is even, then the sequence (12) from Theorem 2 is constant and
equal to zero and thus the assumptions of this theorem are satisfied. The evenness of A
follows from the evenness of f and q . �

COROLLARY 4. Let X be an abelian group, Y a uniquely 2 -divisible abelian
topological group and let K ⊂ Y be a closed set which fulfills (K1), (K2) and (K3).
Assume that f : X → Y and φ: X × X → Y satisfy (3), (4), (11) and

φ(x, y) = φ(−x,−y), x, y ∈ X. (25)

Then there exist a quadratic mapping q: X → Y and a solution A: X → Y of (13) such
that f = q + A . Moreover, relation (14) is satisfied.

Proof. Split f into its even and odd parts, say f e and f o , and check that the even
part f e satisfies assumptions of Corollary 3. In particular, relation (14) holds true with
a quadratic mapping q . Now, it sufficies to use this and repeat the last calculation from
the proof of Theorem 2 to check that the map A := f − q fulfills (13). �
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3. Concluding remarks

We will terminate this paper with some additional remarks.

REMARK 5. In Lemma 1 it is not stated that functional φ is biadditive and sym-
metric. This was proved in [3, Lemma 3] in the special case K = [0, +∞) . Clearly, it
holds true if K− = {0} ; one may find an example which shows that this is not true in
general. Take X = Y = R , c > 0 and put f = 0 , φ = c and K = [−2c, +2c] to see
that the assumptions of Lemma 1 are satisfied by these mappings. Therefore, Lemma 1
cannot be strengthen in that way.

REMARK 6. Constants 17 and 18 appearing in Corollary 3 and in Corollary 4 can
be sharpened by a thorough inspection of the proof of Theorem 2 and by applying there
the evenness of f or the assumption (25), respectively. Moreover, some additional
informations about the set K may lead to further improvements of these estimations.
In particular, if the set K is not symmetric with respect to 0 , then inclusion K− ⊂ K ,
which was frequently used in the proof of Theorem 2, may be replaced by a sharper
one.

REMARK 7. If Y is a Banach space and the set K is bounded, then the celebrated
Hyers Theorem (see D.H. Hyers [6]) can be applied to relation (13). Therefore, on
joining the presented results with the Hyers Theorem one may obtain that in this case f
is uniformly close to the sum a + q of an additive mapping a and a quadratic one q .

REMARK 8. We will provide one more example of sets K satisfying assumptions
(K1), (K2) and (K3). Let Y be a real locally convex linear-topological space. Denote
by Y∗ the family of all linear and continuous functionals on Y . For any subfamily
E∗ ⊂ Y∗ let T (E∗) stand for the weakest topology on Y such that all elements of E∗

remain continuous under this topology. Therefore, T (Y∗) is the weak topology on Y .
If Y is considered with the weak topology, then in particular Y is a uniquely

2 -divisible abelian group and each nonempty set K ⊂ Y having the following property:

T ({y∗ ∈ Y∗ : ∀x∈K [y∗(x) � −c]}) = T (Y∗)

for a certain fixed c � 0 is closed and satisfies (K1), (K2) and (K3). In particular,
taking Y = R

2 and c = 0 we can see that each closed quarter of the real plane R
2

fulfills this condition.
Similarly, each nonempty set K ⊂ Y satisfying

T ({y∗ ∈ Y∗ : ∀x∈K [−c � y∗(x) � c]}) = T (Y∗)

fulfills all this conditions and additionally is compact.
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[1] J. ACZÉL, J. DHOMBRES, Functional equations in several variables, Encyclopedia Math. Appl. 31,
Cambridge Univ. Press, Cambridge, 1989.

[2] W. FECHNER, On functions with the Cauchy difference bounded by a functional, Bull. Polish Acad. Sci.
Math. 52 (2004), 265–271.

[3] W. FECHNER, On functions with the Cauchy difference bounded by a functional. Part II, Int. J. Math. Sci.
2005:12 (2005), 1889–1898.

[4] W. FECHNER, On the Hyers-Ulam stability of functional equations connected with additive and quadratic
mappings, J. Math. Anal. Appl. 322/2 (2006), 774–786.

[5] E. HEWITT-K. ROSS, Abstract harmonic analysis. Vol I: Structure of topological groups. Integration theory,
group representations., Die Grundlehren der Mathematischen Wissenschaften, Bd. 115, Academic Press,
Inc. Publishers, New York, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.

[6] D. H. HYERS, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941),
222–224.

(Received October 16, 2006) Włodzimierz Fechner
Institute of Mathematics

Silesian University
Bankowa 14

40-007 Katowice
Poland

e-mail: fechner@ux2.math.us.edu.pl

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


