athematical
nequalities
& Papplications
Volume 11, Number 3 (2008), 393413

HARDY INEQUALITY WITH THREE
MEASURES ON MONOTONE FUNCTIONS

MARIA JOHANSSON, VLADIMIR D. STEPANOV AND ELENA P. USHAKOVA

(communicated by L.-E. Persson)

Abstract. Characterization of 14,0, 00) — LZ [0, 00) boundedness of the general Hardy operator
1
(Hsf)(x) = <‘]'[0~X]fsud/l) * restricted to monotone functions f > 0 for 0 < p,q,s < oo

with positive Borel o -finite measures A, u and v is obtained.

1. Introduction

Let 9" be the class consisting of all Borel functions f: [0, 00) — [0, 4+00] and
M | (9 1) beasubcelass of M which consists of all non-increasing (non-decreasing)
functions f € M*. Suppose that A, u and v are positive Borel o -finite measures on
[0,00) and u,v,w € IMMT are weight functions.

For 0 < p,q,s < oo we study the problem when the Hardy inequality of the form

L L
q p
/ (Hf )vdu | <C fPwdv | | (1.1)
[0,00) [0.00)

holds for all f € 9t | orforall f € 91 T, where

HE @ = [ fuar) . (1.2)

[0.4]

Since by the substitution f* — f the inequality (1.1) can be reduced to the
equivalent inequality with new parameters p and g of the form

1
p

1

q
/ (Hf )" vy gc/ frwav| (1.3)
[0,00) [0,00)
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where

) 0= ) 09 = [ ud (14)
we may and shall restrict our studies to the inequality (1.3). All the characterizations
of (1.1) can be easily reproduced from the results for (1.3).

The weighted inequality (1.3) for f € 9 |, when A = u = v is the Lebesgue
measure, was essentially characterized in [9] and [13] with the complement for the case
0 < g < 1 = p in [12] and recent contribution in [1] for the case 0 < g < p < 1.
In fact, [9], [13], [12] and [1] deal with the case u(x) = 1, but a weight u can be
incorporated with no change in the arguments. A piece of historical remarks and the
literature can be found in ( [3] and [4], Chapter 6 ). We summarize these results in the
following

THEOREM 1.1. Let A = u = v be the Lebesgue measure. Then the inequality
(1.3) holds for all f € O | if and only if:
(a) 1 <p < g < oo, max (Ag,A;) < oo, where

s ([ ([ ) ([)”
([ ([ () () o)

and C =~ Ag + A;.
(b)0<g<p<oo,l<p<oo, 1:=

w= (1 ()
s (LU LU () )

and C =~ By + B;.
(¢) 0 < g<p<1. max(By, %) < oo, where

o ([ s ([ ([ ) ) ([72) o

and C ~ By + %,.
(d0<p<g<oo, 0<p< 1, max (Ag, &) < oo, where

= ([ () ([)

and
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Itis important to note, that the weighted case of (1.3) for 1 < p,q < oo was solved
in [9] by proving the principle of duality which allows to reduce an inequality with a
positive operator on monotone functions to an inequality with modified operator on
non-negative functions. The other cases, when p, g & (1, 00) were studied by different
methods.

Our aim is twofold. First we study the inequality (1.3) in the case 0 < p < 1
proving a complete analog of the parts (c) and (d) of Theorem 1.1 (Section 3). In
the case 0 < g < p < 1 our method is based on the characterization of the Hardy
inequality on nonnegative functions in the case 0 < g < 1 = p, which we establish
in Section 3 (Theorem 3.1). This approach is direct and different from discretization
methods of [1] and [2].

Hardy inequality (1.3) on monotone functions with two different measures was
recently investigated by G. Sinnamon [11]. Namely, for 1 < p < o0 and 0 < ¢ < c©
the author established the equivalence of (1.3) with u =v=w =1 and dA = dv for
f € 9T to the same inequality restricted to f € 9 | . Moreover, such equivalence
takes place also for more general operator than (1.4), that is for the operator (Kf') (x) =
f[o,x] k(x,y)f (v)dA (y) with akernel k (x,y) > 0, which is monotone in the variable y
(see [5, Theorem 2.3]). Moreover, G. Sinnamon [11] extended the Sawyer principle of
duality for measures. We apply this extension to characterize (1.3) incase 1 < p, g < oo
(Section 4) combining with the recent results by D.V. Prokhorov [6] for the inequality
(I3)on f € M* with 1 < p < oo and 0 < g < co extended by the same author for
the Hardy operator with Oinarov kernel [7].

We use the following notations and conventions. A < B means that A < ¢B with
¢ depending only on p and g, A = B is equivalentto A < B < A. Uncertainties of
the form O - co are taken to be zero. We also use the notation : = for introducing new
quantities.

2. Preliminary remarks

Denote
Ar (x) == fda, and As (x) := fdAa. (2.1)
[0,] [x,00)

We need the following statements.
LEMMA 2.1. ([6], Lemma 1) If y > O, then

Ar (OO)YH ¥ Ay (OO)YH
max {1,y + 1} ~ [07oo)f () Ay (x)" 2 (x) < min{l,y + 1} (22)
holds. If y € (—1,0) and Ay (00) < 400, then (2.2) holds.
LEMMA 2.2. ([6], Lemma 2) If y > 0, then
A y+1 N y+1
A0 £ 008 () i () < 1) 23)

max {1,y + 1} = 10,00) = min {1,y + 1}
holds. If vy € (—1,0) and Ay (0) < +o0, then (2.3) holds.
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The following two statements can be obtained from [[10], Lemma 1.2] (see also
[[11], Proposition 1.5]).

LEMMA 2.3. Let f € M 1 with f(0) = 0 and let N be a Borel measure on
[0,00). Then there exist fo € MM 1 and the sequence {h,},>1 C IM' such that

(1) fo(x) <f(x) forall x €[0,00).

(2) folx) =f (x) for n-a.e. x € [0,00).

(3) falx) = f[ ]hdn<f0()f0i’allx€[0,oo),

(4) For all x € [0,00) the sequence {fy(x)},>1 is nondecreasing in n and

So(x) = lim,—, o0 fn(x) N-a.e. x € [0,00).

LEMMA 2.4. Let f € 9 | with f(+00) = 0 and let N be a Borel measure on
Then there exist fo € M | and the sequence {hy}n>1 C M such that

[0,

00).

(1) fo(x) < f(x) forall x € [0,00).

(2) folx) =f(x) for n-a.e. x € [0,00).

(3) fu(x) = [, oy Indn < fo(x) for all x € [0,00).

(4) For all x € [0,00) the sequence {fy(x)},>1 is nondecreasing in n and

So(x) = lim,—, o0 fn(x) N-a.e. x € [0,00).

REMARK 2.5. Two similar lemmas are valid for the approximation from above.

The following statements are taken from [7] and concern the weighted L [0, 00) —
L} [0, 00) inequality with the operator of the form

(Kuf ) (x) = / k(x,y)u(y)f (v)dr (v).
0.4

Here the kernel & (x,y) > 0 is u x A - measurable on [0, 00) X [0,00) and satisfies
the following Oinarov condition. There is a constant D > 1 such that

D'k (x,y) < k(x,2) +k(z,y) < Dk(xr,y), 0< y<z<x (2.4)

THEOREM 2.6. Let 1 < p < g < oco. Then the inequality

1

(/ (Kuf)quu> "< C( f”d/l)p (2.5)
[0,00) [0,00)

holds for all f € M™ if and only if A : =max (Ag1,Ap2) < 00, where

1

i N\
Aoy = sup / v(x)k (x,2)? du (x) / wdr |
t€[0,00) [t,00) [0,7]

1 4
7

{'_] ’ ’ I)
Aoz i= sup ( / vdu) ( / Kty u () dA <y>> |
t€[0,00) [t,00) [0,1]
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Ifl<g<p<ooandl=1- %, then inequality (2.5) holds for all f € M" if and

1
q
only if B : =max (Bo,1,Bo2) < oo, where
/ wdl | u@)? dr(t)] ,
0.

By, := /[O,oo) </[r,oo) v(x)k (x,2)? du (x))
Bo, == /[0’00) (/[Z’OO) VdM> (/[O’]k(hy)p u(y)” di (Y)> v (1) dp (1)

The next statement is an analog of the previous theorem for the operator K| of the
dual form

[~
~

~i—

(K2f) (x) = / k() u () () dA (3)

[x,oo)

with a kernel satisfying Oinarov’s condition (2.4).

THEOREM 2.7. Let 1 < p < g < co. Then the inequality

(/ (K;‘f)"vdu> <c( fw> (2.6)
[0,00) [0,00)

holds for all f € M*' if and only if A* : =max (Aal, Aaz) < 00, where

1 1

q , I
Aj = sup (/ v(x)k (¢, x)? du (x)) (/ u’ d/l) )
' 1€[0,00) \ J/[0,4]) [t,00)
1 L
q , , P
Aj, = sup (/ vdu) (/ k(y, ) u(y)y dA (y)> :
1€[0,00) \ J[0,] [t,00)

0,
Ifl<qg<p<ooand!= é — %, then inequality (2.6) holds for all f € M" if and
only if B* : =max (]Béal,IB%az) < oo, where

r r -

B, = /[O’O@ </[0,} v(x)k (t,x)? du (x)) (/[wo) uw d)t) u@®’ da(e) | ,
By, = /[ N ( /[ . vdu) ( /[ k) @ <y>> v (1) dua (1)

In the following theorems we collect weight versions of the results obtained by G.
Sinnamon in [11] for embeddings the cones of monotone functions. Put

W (r) ::/ wdv, and W (x) ::/ wdv. (2.7)
(0.7 [x,00)

~i—

~i—
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THEOREM 2.8. If 0 < p < g < o0, then

1 L
(f - qudu)q (f deu)q
sup [0)—1 = sup Ll T (2.8)
Fem| (f[ooo) FdeV) P X€[0,00) (f[ox] wdv P
THEOREM 2.9. If 0 < g < p < 00, and 1 = é f% then

1
ooy Fivau ) q
sup (m)—)lz / w(y) Wlhdu | avy)| . (29)

Analogous results take place for F € 9 1 .

THEOREM 2.10. If 0 < p < g < 00, then

1
(f[() ) FquI"") !
sup ~———— = sup

U )"
FeM (f[o,oo) prdv)% x€[0,00) (f[xp@ de)% .

THEOREM 2.11. If 0 < g < p < oo and 1 =

(2.10)

(‘[[O ()o) F‘quu,)é _ q
sup ~————— 7 & / w(y) Wlvdu | avy)| . (2.11)
remt (f[o ) F”wdv) ! [0,00) [0.]

Note that Theorems 2.9 and 2.11 with ¢ = 1 give analogs of Sawyer’s principle
of duality with general Borel measures.

3. Thecase 0 <p <1

We need the following extension of ([12], Theorem 3.3) from the weighted case to
the case of measures.

THEOREM 3.1. Let 0 < g < 1, vV = v, + v, where dv, = L2dA and v, L A .

(/[070@ (/[()J]fud/l> v (x)du (x)> < C/[Om)fwdv (3.1)

holds for all f € M™ if and only if

B @\ L
B = /[ N (/{ e ) Wdn) | <o,

Then
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where

W= A and  Ww(x)| : —etses[om]fxw() (3.2)
Moreover, C ~ 2.

Proof. Let us start with proving that (3.1) is equivalent to the following inequality

q 7
(/ (/ fud/l) v(x)d,u(x)) <c| fw dv“ . (3.3)
[0,00) [0.x] [0,00)

Obviously, (3.3) implies (3.1). Let (3.1) hold and f € 9M*. If v, L A, then there
exists A C [0,00) such that A (A) = 0,suppvs; = A and supp v, = [0,00)\A . Let
S =1 Xp,000\a - Then

( I ( / J}fudxl)t]v(X) du <x>>é - ( /| ( / Mfud)t)qv(x) du (x))é

<C fwdv=C ( fwdv, + f~wdv5> =C fwdv,.
[0,00) [0,00) [0,00) [0,00)

Now if we use (3.2), then (3.3) is equivalent to

( /[Om) ( /[0 J]f ud)t) v (x)du (x)> <C /[0 - fuwdA. (3.4)

Then, by [10, Theorem 3.1] and changing fu to f, we get that (3.4) is equivalent to

q g
(/ (/ fd/l) v(x)du (x)) <C fwida. (3.5)
[0,00) [0,] [0,00)

Now we follow the proof of [12, Theorem 3.3]. First let w, (x) = f[x o) DA for
A-ae. x € [0,00) fOoo bdA = oo and f 1 bdA < 0. Then by changing order of
integration the rlght hand 31de of (3.5) is equal to

c /[0 N ( /[0 . fd/l) b(x)dA (x)

and so (3.5) is eqivalent to

</{0w> (/{(}J}fd)t) v (x) du (x)) < C/[Om) (/{(}J}fd/l) b(x)dA(x). (3.6)

Since f f dA is increasing we can replace it with F and so (3.6) is equivalent to

1

q
(/ qudu> < C/ FbdA with F € M 1 . (3.7)
[0,00) [0,00)
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By [11, Theorem 2.5] and using Lemma 2.2 we get

s </u wL0) ) b)dA ()
/[Ooo) /[t).,x] Wy () </[0»] W (2) > b (x) dA (x)

9 q

= v@du@ )\
) /[(’m) </[0,y} Wy (2) ) ) dp (v)

For a general w; we may and shall suppose that W (x) < oo forall x > 0. Let N € N
and

C

Q

I
Q|\
<

Q

wy (%) == X (X) W) (x).
Then wy (+00) = 0 and similar to Lemma 2.4 we find Wz(\(r)) € M| and h, € M
(n € N) such that
(1) wy(x) < w (x) forall x € [0, 00).
e )—w§$>(x) for A e X< [0, 00).
wrk(x) = [, o) hedA > O (x) forall x € [0, 00).
The sequence {wyx(x )}k>1 is nonincreasing in k for all x € [0,00) and

2

) w.
(2) w
3)
4)

wg)) (x) = kli>nolo wyi(x) A-ae. x € [0,00). Then by the previous part of the proof for
any f € 9" we have

l—q

</[0,N] (/{()J}fd?t)qv(x)du (x))q

MELTICA SR )
< /[O,N] </[0,x] wrk (2) > () dp (x) /[0 »N]f NkdA .

y [6, Lemma 5] this is equivalent to

([ ([, ) o)

Qa7 T
< /{O ; (/[O . WNJ{(Z)> Wit | [ ra.

By (3) and (1) we have
Theorem

m < ﬁ(z) and by (4), (2) and Monotone Convergence

im [ L= La-[ La

k=00 Ji0. WNk [0,4] w1(v> (0] WN
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Making the reverse change v{_N — f we find

( [ ( / MfdA)"V(x) i m)"

v(z)du () &’vx . ' "
< /H (/m,x]T(z)) an | [ runan

1—q

_ QAT o N e
B /[(),N] </[m Wy (2) > wan () [o,N]f ldk

< X fwidA.
[07(X>)

Letting N — oo we arrive at C < % . To show the reverse inequality we again ap-
proximate w| from above by a monotone sequence of functions wy, (x) := f[mo) brdA |

w,. Then applying (3.6), (3.7) and [11, Theorem 2.5] we find

1—g
4 q

v(z)du(z) |
/[o.oo> </[0»] T(z)) v(y)du(y) | <€

and since w; ' WII the result follows. O

DEFINITION 3.2. Let w € 91 | and be continuous on the left. It is known
([8, Chapter 12, §3]), that there exists a Borel measure, say 7, such that w(x) =
f[mo) dny, + w(400). We say that w € % (0) if there exist a constant C > 1 such

that | | 4
Nw
_f_gc/ ——, x>0.
w(x)  w(0) 04 W

COROLLARY 3.3. Let 0< g <1, we M | and w € % (0). Then

q i
(/ (/ hd)L) v (x)du (x)) < C/ hwdA
[0,00) [0,x] [0,00)

holds for all h € M™ if and only if

1—q

q

@
T—q
B:= / (/ Vd—“) v (x)du (x) < 00.
[0,00) 0x W

Moreover, C ~ B ~ By + B, where

1
q
By = (/ vdu) w(O)_IL’ ,
[0,00)
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l—q

g q

B = /[0700) w(x)_&i (/[mo) vdu) o v(x)du (x)

Proof. Tt follows from Theorem 3.1, Lemma 2.2 and [11, Theorem 2.6]. O
Denote

A@):=A, () = /[Or] udA (3.8)

and observe that by the change f? — f in the inequality (1.3) we get the following
equivalent inequality

(/ (Hf%)quu>q < ( fwdv) . feml. (39
[0,00) [0,00)

THEOREM 3.4. (a) Let 0 < p < g < 0o and 0 < p < 1. Then (1.3) holds for
all f € M | if and only if

1

_1 1
P 4
Ap := sup / wdv / Alvdu | < oo,
r€f0,00) \ /0] [0.]
1 1
p q
sup A (1) (/ wdv) (/ vdu) < oo
t€[0,00) [0,7] [t,00)
and C =~ Ay + o, .

(b) Let 0 < g <1 =p. Then (1.3) holds for all f € M | if and only if

A

1=q
T—q 4
By = / w(y) ( W_lAquu> dv (y) < o0,
[0,00) [y.00)

1

1=q
q

As) o
B, := ess supy, v(t)du(r) v (x)du (x) < o0
0.00) \Jj09) sefoq W (s)
and C =~ By + B;.

q

AP
(c) Let 0 < g < p < 1, ¥, (t) := esssup, (S) Then (1.3) holds for all
femly selog W (s)
€ i

L Iz

pP—q
By = / w(y) ( W_lAquu> dv (y) < 00,
[0,00) [y,00)
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@ [ (/ %(r)v(x)duoo) Cv@du( | <o
[0,00) 0]

and only if By + B, < oo, provided ¥, (t) is continuous on (0,00) and % €
S (0). Then C ~ By + %\ .

Proof. (a) Since f € M |, then (H,f) (x) > f (x) A(x) and (1.3) implies

i p
(/ ququ,u> SC( f”wdv) ,  feml.
[0,00) [0,00)

It is known (see Theorem 2.8) that C = Ap for 0 < p < ¢ < .
Now, if f; = xjo,q in (1.3) then

([ ) = ([ o) =am ([ )

which implies that C > 7. Consequently, Ag + < < 2C.

For the sufficiency we suppose first that f € 9 |, f (x) = f[x 00) hudA  for

A-ae. x € [0,00), where h € MM' and f (x) > f[x o) hud2. for all x € [0, 00). Let
0 < p < 1. We have by Lemma 2.2

/[0 . ( /[ N hud)L) u(s) 2. (s)
~ /[O] /[ - ( /b N hud)t)plh(y)u(y)dﬂt(y) ﬁ u () dA (s)

1
p

p—1
< /[O,X} /H (/Ly,@h”d’l) h()u(y)dA(y) | u(s)dA (s) + A (x)f (x)

[by Minkowski inequality] (3.10)

1
P

p—1
< / ( / hudx> WA Y o) | +A@S ).
(0,4] [v,00)

Applying (3.10) we obtain

0 g
(/ (Hf )1 vdu> < ( ququ,u> +J, (3.11)
[0,00) [0,00)
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where

<=

a
P

p—1
J = hudA A u(NA (VY dA v () du (x
/M /M ( /b - ) Wu)A )" dAy) | v(x)du(x)

For the first term on the right hand side of (3.11) by Theorem 2.8 we have

1 1
q P
( f‘fA‘fvdu> < A ( f”wdv) . (3.12)
[0,00) [0,00)

For the second term on the right hand side of (3.11) by Minkowski inequality with
[% > 1 and Lemma 2.2 we find

p—1 L
/ ( / ;Wm> RO u()A G ( / vdu) ar(y)
0.00) \JIv.00) [,00)
p—1 ’
< /[0700) (/Lyp@ hud?t) h(y)u(y) (/[o,y] wdv) dA(y)
~ (/{O’O@ (/[S’O@ hud?t) w(s)dv(s)) < o (/[O’w)fpwdv>

and the inequality

P

~
N

(/ (Hf)%du)q < (Ao + ) (/ fpwdv>p (3.13)
[0,00) [0,00)

in this case follows. For an arbitrary f € 9t | without loss of generality we may
suppose that f(+o0c0) = 0 and find by Lemma 2.4 that f, € 27 | and a sequence
{hn}n>1 C M such that

(1) fo(x) < f(x) forall x € [0, 00).

(2) fo(x) =f (x) for A-ae. x € [0,00).

(3) fulx) := f[loo haudA < fo(x) forall x € [0, 00).
(

4) For all x € [0,00) the sequence {f,(x)},>1 is nondecreasing in n and
Sfo(x) = limy—o0 fu(x) A-ae. x € [0,00). Then by the Monotone Convergence
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Theorem and (3.13), it yields that

</[0~,<><>) (HFY vd‘u> | - </[0,oo) (Hfo)* vd#)

1

Q=

—
g

7 P
@ . q (3.13) 3
= lim (Hfw)"vdp | < (Ao + #4) lim frwdv
n—oo [0,00) oo [0,00)
(©)

<(Ao + ) (

Tl

’ Q)
fgwdv> <(Ag+ ) ( fpwdv>
0.00)

[0,00)

and the upper bound C < Ao + 7 is proved. The case p = 1 is treated by the same
method, but even simpler.

(b) Necessity. It follows from the inequality

(/ (Hf)quu> <c | fwav, fem|, (3.14)
[0,00) [0,00)

that

1
q
(/ f"A‘fvdu> <C fwdv, feMm]|. (3.15)
[0,00) [0,00)
The last inequality is characterized by By (see Theorem 2.9 with p = 1.) Hence,

By < C. Now, suppose & € 9T and f(x) = f[x 00) hudA. Then f € M | and (3.14)
gives

(/[0700) (/[M (/[S’O@ h”d/l> u(s)da (S)>q v(x)du (x)> '
< C/[O’@ (/{Sm) hud/l) w(s)dv(s).

This implies

q q
(/ (/ hAud/l) v(x)du (x)) < C/ hWudA.
[0,00) [0,x] [0,00)

Changing the variable 7Au — h we obtain

q 3 W
(/ (/ hd?t) v(x)du (x)) < C/ h—dA.
0,00) \ /[0, 0,00) A

The last inequality is characterized by Theorem 3.1. Consequently, B; < C.
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Sufficiency. Again, suppose first, that f € M |, f (x) = f[x 00) hudA for A -ae.
x € ]0,00), where h € M and f (x) > f[mo) hud) for all x € [0,00). Then we have

( /[ y vdu) = ( /[ N ( /[ . ( /[ N hudA> u(s)d2 <s>>q vdu> é
< (AM<AW<AMMM>MWM®>a¢Jé
+ (/{0700) (/[mo) hua’/l)qAq(x)v(x)a’/.t()c)>é
< (/[O’OO) </[o,x] hAud?L)qv(x)du(x)> é + ( [O’O@f”/\quu) '

[applying Theorem 3.1 and Theorem 2.9]

< By / / hudA | w(x)dv(x) | + Bo Swdv
[0,00) \ / [x,00] [0,00)

<(m+Bn/ Fwdv.

[0,00)

For an arbitrary f € 9 | we use the arguments from the end of the part (a).
(c) Sufficiency. To prove (3.9) we again, suppose first that f € I |, f (x) =
f[mo) hudA for A-ae. x € [0,00), where h € IM" and f (x) > f[x o) hud. for all

xe [0,00). Then, arguing as before and applying Minkowskii’s inequality, we find

(/mm) (Hf%)quuy
= /[(),oo) /[O,x] (/[S’O@ hud?t) u(s)dA(s) qv(x)du(x)
< /[0700) /[O,x] (/[M) hud?L) u(s)dA(s) qv(x)d,u(x)

< (/ (/ hApud/1> v(x)d,u(x)) + ( f’g’/\q"d.“>
[0,00) \ J[0.x] [0,00)

Tl
QT

T
QT

TR

A(x)v(x)du (x))
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applying Theorem 3.1 and Theorem 2.9

< B (/[OM (/[mo] hud)t) w(x)dv(x)> + % </[0,oo)deV>

< (B + A ; )fwdv.

407

For an arbitrary f € 9t | we again use the arguments from the end of the part (a).
Necessity. The inequality %y < C follows by using similar arguments as in the

proof of A9 < C and By < C in the parts (a) and (b).

For the rest it is sufficient to show that (3.9) implies the inequality C > 4.

Suppose for simplicity, that %, (0) = 0. Let

g(t) = max{2’"7 me Z:2" < ”f/,,’_: (t)}

o}

Since ¥, (1) is continuous, then 7, exists forall m € Z, t,, T and

and

S 1h

T i= inf{y €1[0,00):2" <Y,

We note that

bt

8 (t) = Z 2m%[fmafm+l) (t) g 7/P (t)

mez
and define

o= %dg .

Then f € M | and by Lemma 2.2

i
/ fwdv = / (/ vdu) dg (x)
[0,00) [0,00) [x,00)

r

~ /[ W ( /[ N vdu) ) du

, :
< / 7,7 (x) (/ vd,u) v(x)du (x) =B
[0,00) [x,00)

(t) < 2m+17 re [Tnh Tm+l} )

’

2,1

(3.16)
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On the other hand

</[o,oo> ( 0.

Tl

WV

o —dg(s) | dA(y) | du(x)

Lv T

5
vdu vdu
Tm Tmi1) ‘L',,, )

(W % 5 ]<g<r,,,>g<y>>%dA<y>>>

(i) vt ’
rm Tint1) 0 T

WV

L

m q\ 4
p
m [T, Tins1) [Tm,00) w (Tm)p
1
v
( / vdu) V() du (5
[TmeH) [&00)

=

WV

Q=

r ﬁr r
> 9 (s) ( / vdu) Vs du(s) | =,
[0,00) [s,00)

pr

With such f (x) the inequality (3.9) implies C*%; | >> %’271 = C > %,,. Now, if
1

we put f = 0y in (3.9), we find that
W)\ 1\ 7
€= (/[o,w) Vd“) (AP <o>) B </[o,oo> Vd“) (% <o>> = %20
It follows from Corollary 3.3, that %, | + %, > %,. Hence, C > %, and the proof
is complete. O

<=

In conclusion of this section we give an analog of part (a) of the previous theorem
for non-decreasing functions.

THEOREM 3.5. Let 0 < p < g < 00 and 0 < p < 1. Then, (1.3) holds for all
f € M7 ifand only if

-

Ay := sup (/ AT (x, 1) v (x)du (x)) Wor (1) < o0,
[,00)

1€[0,00)

<=
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where

A (x,1) ::/ udA.,
[.x]
and C =~ A.

Proof. Replacing f in (1.3) by f; := X1 We find A; < C. For sufficiency we
suppose that

fx) :/ hudi, h € M*
(0]

andlet 0 < p < 1. Then, by Minkowskii inequality and Lemma 2.1, we find

/ (/ hud/l)u(s)d,x(s)
(0] \ J[0.]
p—1 »
) /[0] /[o] </m hud&) h(y)u(y)dr (y) | u(s)dA(s)

1

p—1 D
</ ( / hudA> B u () A (%) dAG) |
[0,4] (0.y]

Thus, again by Minkowskii inequality

1

( / (Hf )" vdu)
[0,00)
p—1
/[0 | hud/l) R ) u () AP (x,y) dA <y>) v (x) it ()

p—1 ¢

(/ hud}t) h(y)u(y) (/ A% (x,y) v (x) du (X)> dA. (Y))
0,00) \ /[0y] [y:00)

p—1 5

( hud?t) h(y)u(y) (/ wdv) da (y))
[y:00)

f”wdv)

N

N

=

N

N

%

O
A general case [ € 9 | follows by Lemma 2.3 similar to the proof of Theorem 3.4.
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4. Thecase 1 <p,g < oo

The result of this section is based on the following statement, which follows from
Theorems 2.9 and 2.11 with g = 1.

COROLLARY 4.1. Let (Tf)(x) = f[o 00) k(x, )f O0)u(y)dA(y), where k(x,y) is a
defined on [0,00) X [0, 00), non-negative, U x A -measurable kernel.

(a) The inequality

1

(/ (Tf)‘ﬁ»du) ' <C ( f”wdv) ! (4.1)
[0,00) [0,00)

for f € M |, holds if and only if the inequality

, L
o

/ w(y) ( W_l(T*g)ud7L> dv(y) (4.2)
(0,00) [v,00)

1

/

’ q
< C(/ qudu) : gem,
[0700)

holds with (T*g)(z) = f[O,oo) k(z,x)g(2)v(z)du(z).
(b) The inequality (4.1) for f € M T holds if and only if the following inequality
holds:

I v 7
/ w(y) ( W_l(T*g)ud)L> dv(y) <C (/ q? vdu) ,  geMt.
[0,00) (0.y] [0,00)

Now let us present our result for the case 1 < p,qg < co .

THEOREM 4.2. Let K(x,y) = [ 4 W=ludA and f € M | . The inequality (1.3)
holds for 1 < p < g < oo ifand only if &/ = max{e| + Ho} < 0o, where

1 1

/ v a
sup ( | vy dv<y>> ( / vdu> ,
t€]0,00) [0.7] [t,00)

1

o i
NP8 sup / wdv / v()k(x, 0)4du(x) | .
ref0,00) \ /(0,1 [t,00)

Moreover, if C is the best constant in (1.3), then C = & .
In the case 1 < g < p < oo the inequality (1.3) holds if and only if B =
max {%o1 + Boa} < 00, where

1
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S

PBoy: = /[O - ( /[O ’]W(y)k(hy)p dV(y)> ( /[t - vdu) v(t)au() |
Bor: = /[O’O@ </[0,} wdv) (/[Z’OO) v(x)k(x, t)‘fd,u(x)> w(t)dv(r)

. Moreover; if C is the best constant in (1.3), then C = A.

1_1
roq p

Proof. Because of Corollary 4.1 (a) the inequality (1.3) is equivalent to

he
o

/ w<y>( W)l ( / gvdu) u(x)dx<x>> avy) (43)
[0,00) [y,00) [x,00)

1

! q/
< C(/ qudu> , geMr.
[0700)

By changing the order of integration in the left hand side of (4.3) we obtain the Hardy
inequality with Oinarov kernel of the form

/[0700) w(y) (/MO)g(Z)k(Z,Y)v(Z)dH(Z)> dv(y) <C (/[om) 4 vdu> '

By substitution f = gq’v and according to Lemma 7 from [7] the last inequality is
equivalent to

/ W(y)< f(Z)k(z,y)v(z)”"du(z)> dv(y) | < C( / f‘/du>q.
0.00) f.00) 0.00)

Thus the proof follows by applying Theorem 2.7. (]

Similarly we can obtain the result for non-decreasing functions as follows.

THEOREM 4.3. Let k(y,x) = f[xy] W~ludA and f € M 1 . The inequality (1.3)

holds for 1 < p < q < oo ifand only if &/ = max {527{071 + 42%2} < 00, where

L 1

— - / ]‘)l a

1= sup ( / w(y)k(y, 1)’ dV(y)> ( / vdu) ;
r€]0,00) \ J[t,00) 0]
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L 1
/ q

P
o= sup / wdv / v(x)k(t, x)7du (x)
) \”[1,00) (0.7

t€[0,00

Moreover, if C is the best constant in (1._3), then C = . Inthe case 1 < q <p < o0
the inequality (1.3) holds if and only if 98 = max {%’0’1 + 930,2} < 00, where

a1t
~I—

xr
/

— _ ! ’)
Boy:= / / wO)KG 1P dv(y) / v | v@du@) |
[0,00) [t,00) (0,1

QU
~i—

L
7

i — /[0 N /[, v /[0 K0t | v

%. Moreover, if C is the best constant in (1.3), then C = 5*.
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