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Abstract. As a continuation of our previous research, we give an estimate of the difference
between the weighted arithmetic mean and the geometric one of positive invertible operators.

1. Introduction

We recall the Kubo-Ando theory of operator means [3]: A map (A, B) → A σ B
in the cone of positive invertible operators is called an operator mean if the following
conditions are satisfied:
monotonity: A � C and B � D imply A σ B � C σ D ,
upper continuity: An ↓ A and Bn ↓ B imply An σBn ↓ A σ B ,
transformer inequality: T∗(A σ B)T � (T∗AT) σ (T∗BT) for every operator T ,
normalized condition: A σ A = A .

Mićić, Pečarić and Seo in [5, 6] obtained several inequalities associated with
operator means. For example, they determined the bound β in the inequality

Φ(A σ1 B) � αΦ(A) σ2 Φ(B) + βΦ(A),

where A and B are positive invertible operators on a Hilbert space H , σ1,σ2 are two
operator means with not affine representing functions, Φ is a unital positive linear map
and α > 0 is a given real constant.

We shall observe the weighted arithmetic mean ∇α and the weighted geometric
mean �α , for α ∈ [0, 1] , defined by

A ∇α B := (1 − α)A + αB and A �α B := A
1
2 (A− 1

2 BA− 1
2 )αA

1
2 ,

respectively. Like the numerical case, the arithmetic-geometric mean inequality holds:

A �α B � A ∇α B for all α ∈ [0, 1] . (1)
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In [4, Corollary 10] it is obtained the following converse inequality of the arithmetic-
geometric mean inequality (1): Let A and B be positive invertible operators satisfying
0 < m1I � A � M1I and 0 < m2I � B � M2I . Then

A ∇α B − A �α B � max{1 − α + αm − mα , 1 − α + αM − Mα}A,

where m = m2
M1

and M = M2
m1

.
Tominaga [9] showed the another converse of (1) for the arithmetic mean and the

geometric one: Let A and B be positive operators on a Hilbert space H satisfying
m � A, B � M for some scalars 0 < m < M . Then (like the numerical case)

A ∇α B − A �α B � hL(m, M) log Mh(1) for all α ∈ [0, 1] ,

where h = M
m , the logarithmic mean is defined for 0 < m � M as L(m, M) =

M−m
log M−log m if M �= m and L(m, m) = m and the Specht ratio is defined for h � 1 as

Mh(1) = (h−1)h
1

h−1

e log h if h > 1 and M1(1) = 1 .
In this paper, as a continuation of papers [5, 6, 4, 7, 8], we shall consider an another

estimate of the difference between the arithmetic mean and the geometric one of positive
invertible operators.

2. Inequalities involving the arithmetic and geometric means

In this section we give several inequalities involving the arithmetic and geometric
means of two positive real numbers.

LEMMA 2.1. Let x, y,α, β be positive numbers and α, β such that α + β = 1 .
If α ∈ (0, 1

2 ] , then

1
2
yβ−α (xα − yα)2 � αx + βy − xαyβ � 1

2
xα−β

(
xβ − yβ

)2
. (2)

If α ∈ [ 1
2 , 1) , then the reverse inequalities in (2) are valid.

For α = 1
2 we have the identity in (2).

Proof. First, we prove the right hand inequality in (2). We start with the known
arithmetic-geometric inequality [2, Chapter II]:

w1a1 + w2a2

W
� W
√

aw1
1 aw2

2 holds for any a1, a2, w1, w2 � 0 and W = w1 + w2,

(3)
with the equality if and only if a1 = a2.

Since 0 < α � 1
2 and α + β = 1 , then β − α � 0 . Putting a1 =

(
x
y

)α−β
,

a2 = x
y , w1 = 1

2β > 0 , w2 = β−α
2β � 0 and W = 1

2β + β−α
2β = 1 in (3) gives:

1
2β

(
x
y

)α−β

+
β − α

2β
· x
y

�
(

x
y

) α−β
2β
(

x
y

) β−α
2β

= 1. (4)
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It follows
1
2
xα−βy2β +

1 − 2α
2

x � βy,

i.e.
1
2
xα−βy2β +

1
2
x � αx + βy.

Substracting xαyβ on both sides gives

1
2
xα−β

(
yβ − xβ

)2
� αx + βy − xαyβ .

This is the right hand inequality in (2).
Next, we prove the right hand reverse inequality in (2). If 1

2 � α < 1 and
α + β = 1 , then we start with the known reverse arithmetic-geometric inequality [2,
Chapter II]:

w1a1 + w2a2

W
� W
√

aw1
1 aw2

2 holds for any a1, a2, w1 � 0, w2 � 0 and W = w1+w2,

(5)

with the equality if and only if a1 = a2. Putting a1 =
(

x
y

)α−β
, a2 = x

y , w1 = 1
2β > 0 ,

w2 = β−α
2β � 0 and W = 1

2β + β−α
2β = 1 in (5), then the reverse inequality in (4)

is valid. The rest of the proof is the same as above. Then we obtain the right hand
inequality in (2).

Finally, we prove the left hand inequality in (2). Since 0 < α � 1
2 and α+β = 1 ,

it is enough to replace α by β and x by y in the right hand reverse inequality in (2)
(or putting a1 =

( y
x

)β−α
, a2 = y

x , w1 = 1
2α > 0 , w2 = α−β

2α � 0 in (5)). In the same
way we obtain the left hand reverse inequality in (2). �

If we replace x by y or α by β in (2) we can observe new inequalities. Then,
for example, we obtain the following lemma.

LEMMA 2.2. Let x, y,α, β be positive numbers and α, β such that α + β = 1 .
Let t0 (resp. t1 ) be the unique solution of the equation αt +β = tα + 1

2 (t
β −1)2 (resp.

β t + α = tβ + 1
2 (t

α − 1)2 ) on (0, 1) for α �= 1
2 .

If α ∈ (0, 1
2 ) , then

αx + βy − xαyβ � 1
2
yα−β

(
xβ − yβ

)2
in the case 0 <

x
y

� t0, (6)

αx + βy − xαyβ � 1
2
yα−β

(
xβ − yβ

)2
in the case t0 � x

y
. (7)

If α ∈ ( 1
2 , 1) , then the reverse inequality in (6) and (7) are valid given same conditions.

If α ∈ ( 1
2 , 1) , then

αx + βy − xαyβ � 1
2
xβ−α (xα − yα)2 in the case 0 <

y
x

� t1, (8)

αx + βy − xαyβ � 1
2
xβ−α (xα − yα)2 in the case t1 � y

x
. (9)
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If α ∈ (0, 1
2 ) , then the reverse inequality in (8) and (9) are valid given same conditions.

For α = 1
2 we have the identity in (6), (7), (8) and (9).

Proof. Let α ∈ (0, 1
2 ) hold. Then for every β ∈ ( 1

2 , 1) , we put a function f β (t)
derived from the inequality (6) or (7) as follows:

f β (t) :=
(
β − 1

2

)
+ (1 − β)t − t1−β + tβ − 1

2
t2β , t ∈ (0,∞). (10)

We consider the sign of this function. We have

f ′
β (t) =

(
1 − β − β t2β−1

)(
1 − t−β

)
,

f ′′
β (t) =

β
tβ+2

[
(β − 1)

(
t2β − t

)
+ (1 − 2β)t3β

]
.

We have the stationary points for t = 1 and t = β−α
√
α/β . (Obviously β−α

√
α/β =

2β−1
√

1
β − 1 < 1 for every 0 < β < 1 ). Since β ∈ ( 1

2 , 1) , then f ′′
β (1) < 0 ,

f ′′
β ( β−α

√
α/β) > 0 , i.e. f β(1) is a local maximum, f β ( β−α

√
α/β) is a local minimum.

Then there is the unique solution t0 of the equation f β(t) = 0 on (0, 1) for α �= 1
2 .

Since f β(0) = β − 1
2 � 0 , f β(t0) = 0 , f β( β−α

√
α/β) � 0 and f β(1) = 0 , it follows

that f β � 0 on [t0,∞) and f β � 0 on (0, t0] .
Replacing t by x

y in (10) and next multiplying by y > 0 on both sides, we obtain
that

αx + βy − xαyβ � 1
2
yα−β

(
xβ − yβ

)2

holds in the case x
y ∈ [t0,∞) and the reverse inequality holds in the case x

y ∈ (0, t0] .
Then we have the desired inequalities (6) and (7).

Similarly, using (10) in the case α ∈ ( 1
2 , 1) , we obtain that f β � 0 on [t0,∞)

and f β � 0 on (0, t0] . Then we have the reverse inequality in (6) (resp. (7)) in the
case 0 < x

y � t0 (resp. t0 � x
y ).

Now, in the case α ∈ ( 1
2 , 1) , the inequalities (8) and (9) follow from (6) and (7),

respectively, if we replace α by β , x by y and t0 by t1 . If α ∈ (0, 1
2 ) , we have in

the same way that the reverse inequality in (8) (resp. (9)) holds in the case 0 < y
x � t1

(resp. t1 � y
x ) �

Now, we can compare bounds given in Lemma 2.1 and Lemma 2.2. Then we
obtain the following lemma. This statement is obvious. We omit the proof.

LEMMA 2.3. Let x, y,α, β be positive numbers and α, β such that α + β = 1 .
Let t0 (resp. t1 ) be the unique solution of the equation αt +β = tα + 1

2 (t
β −1)2 (resp.

β t + α = tβ + 1
2 (t

α − 1)2 ) on (0, 1) for α �= 1
2 .

If α ∈ (0, 1
2 ) , then

1
2
xβ−α (xα − yα)2 � 1

2
yβ−α (xα − yα)2 � αx + βy − xαyβ (11)

� 1
2
yα−β

(
xβ − yβ

)2
� 1

2
xα−β

(
xβ − yβ

)2
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holds in the case t0 � x
y < 1 and

1
2
yβ−α (xα − yα)2 � 1

2
xβ−α (xα − yα)2 � αx + βy − xαyβ (12)

� 1
2
xα−β

(
xβ − yβ

)2
� 1

2
yα−β

(
xβ − yβ

)2

holds in the case t1 � y
x < 1 . Otherwise, the inequality (2) holds.

If α ∈ ( 1
2 , 1) , then the reverse inequalities in (11) and (12) are valid given same

conditions.
For α = 1

2 we have identities in (11) and (12).

REMARK 2.4. We can obtain similar results if we replace 1
2yα−β (xβ − yβ

)2
by

1
2yβ−α (

xβ − yβ
)2

in (6) - (7) and 1
2xβ−α (xα − yα)2 by 1

2xα−β (xα − yα)2 in (8) -
(9).

If we replace the factor 1
2 by 1

2
β
α or α by β in Lemma 2.1 and Lemma 2.2 we

can observe new inequalities. Then, for example, we obtain the following lemma.

LEMMA 2.5. Let x, y,α, β be positive numbers and α, β such that α + β = 1 .
Suppose that either of the following conditions holds
(i) x < y and α ∈ (0, 1

2 ] , (ii) y < x and α ∈ [ 1
2 , 1) ,

(iii) x < y and α ∈ [ 1
2 , 1) , (iv) y < x and α ∈ (0, 1

2 ] .
Then

1
2
β
α

xβ−α (xα − yα)2 � αx + βy − xαyβ � 1
2
β
α

yβ−α (xα − yα)2
, (13)

1
2
α
β

yα−β
(
xβ − yβ

)2
� αx + βy − xαyβ � 1

2
α
β

xα−β
(
xβ − yβ

)2
(14)

hold in the cases (i) and (ii) and the reverse inequalities in (13) and (14) hold in the
cases (iii) and (iv).

For α = 1
2 we have identities in (13) and (14).

Proof. First, we prove the right inequality in (13), i.e. that

αx + βy − xαyβ � 1
2
β
α

yβ−α (xα − yα)2 (15)

holds in the cases (i) and (ii) and the reverse inequality in (15) holds in the cases (iii)
and (iv).

For every α, β ∈ (0, 1) , α + β = 1 , we put a function fα,β (t) deriver from the
inequality (15) as follows:

fα,β (t) := −1
2
β
α

t2α +
β − α
α

tα + αt +
1
2
β
α

(α − β), t ∈ (0,∞). (16)

We have fα,β (1) = 0 , f ′
α,β (t) = −β t2α−1 + (β − α)tα−1 + α , f ′

α,β (1) = 0 and

f ′′
α,β(t) = β(α − β)tα−2 (1 − tα) . (17)
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Let be 0 < t < 1 . Observe f ′′
α,β (t) � 0 if α � β and f ′′

α,β(t) � 0 if α � β . It

follows that fα,β (t) � 0 if α � 1
2 and fα,β(t) � 0 if α � 1

2 .
Replacing t by x

y in (16) and next multiplying by y > 0 on both sides, we obtain
that

αx + βy − xαyβ − 1
2
β
α

yβ−α (xα − yα)2 � 0 (18)

holds if x < y and α � 1
2 and the reverse inequality in (18) holds if x < y and α � 1

2 .
Hence we have the desired inequality (15) in the case (i) and the reverse inequality in
(15) in the case (iii).

Let be t > 1 in (17). Then f ′′
α,β(t) � 0 if α � β and f ′′

α,β(t) � 0 if β � α . It

follows that fα,β (t) � 0 if α � 1
2 and fα,β(t) � 0 if α � 1

2 .
Replacing t by x

y in (16) and next multiplying by y > 0 on both sides, we have
the desired inequality (15) in the case (ii) and the reverse inequality in (15) in the case
(iv).

Next, we prove the left inequality in (13), i.e. that

1
2
β
α

xβ−α (xα − yα)2 � αx + βy − xαyβ (19)

holds in the cases (i) and (ii) and the reverse inequality in (19) holds in the cases (iii)
and (iv). We put a function fα,β (t) derived from the inequality (19) as follows:

fα,β(t) := −1
2
β
α

t2α +
β
α

tα − tβ + β t +
(
α − 1

2
β
α

)
, t ∈ (0,∞). (20)

We have fα,β (1) = 0 , f ′
α,β (t) = −β t2α−1 + β tα−1 − β tβ−1 + β , f ′

α,β (1) = 0 and

f ′′
α,β(t) =

β
tα+1

(1 − tα)
[
(1 − 2β)t2α + (1 − β)tα + 1 − β

]
. (21)

It is obvious that (1 − 2β)t2α + (1 − β)tα + 1 − β > 0 if α � 1
2 and (1 − 2β)t2α +

(1 − β)tα + 1 − β < 0 if α � 1
2 .

Let be 0 < t < 1 . Then f ′′
α,β(t) � 0 if α � 1

2 and f ′′
α,β(t) � 0 if α � 1

2 . It

follows fα,β (t) � 0 if α � 1
2 and fα,β(t) � 0 if α � 1

2 .
Replacing t by y

x in (20) and next multiplying by x > 0 on both sides, we obtain
the inequality (19) in the case (ii) and the reverse inequality in (19) in the case (iv).

Similarly, putting t > 1 in (21), we obtain the inequality (19) in the case (i) and
the reverse inequality in (19) in the case (iii).

Next, replacing x by y and α by β in (13) in the case (i) (resp. (ii)), we obtain
(14) in the case (ii) (resp. (i)). Similarly, using the reverse inequalities in (13) we
obtain the reverse inequalities in (14). �

Next, in the following lemma we compare bounds given in Lemma 2.5.

LEMMA 2.6. Let x, y,α, β be positive numbers and α, β such that α + β = 1 .
Suppose that either of the following conditions holds
(i) x < y and α ∈ (0, 1

2 ] , (ii) y < x and α ∈ [ 1
2 , 1) ,
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(iii) x < y and α ∈ [ 1
2 , 1) , (iv) y < x and α ∈ (0, 1

2 ] .
Then

λ1 � αx + βy − xαyβ � λ2, (22)

where

λ1 =

⎧⎪⎪⎨
⎪⎪⎩

1
2
α
β

yα−β
(
xβ − yβ

)2
,

1
2
β
α

xβ−α (xα − yα)2
,

λ2 =

⎧⎪⎪⎨
⎪⎪⎩

1
2
β
α

yβ−α (xα − yα)2
, if (i),

1
2
α
β

xα−β
(
xβ − yβ

)2
, if (ii).

In the case (iii) (resp. (iv)) the reverse inequality in (22) is halid with the same bound
as in the case (i) (resp. (ii)).

For α = 1
2 we have the identity in (22).

Proof. Using Lemma 2.5 we obtain:

max

{
1
2
α
β

yα−β
(
xβ − yβ

)2
,
1
2
β
α

xβ−α (xα − yα)2
}

(23)

� αx + βy − xαyβ � min

{
1
2
β
α

yβ−α (xα − yα)2
,
1
2
α
β

xα−β
(
xβ − yβ

)2
}

in the cases (i) and (ii);

max

{
1
2
α
β

xα−β
(
xβ − yβ

)2
,
1
2
β
α

yβ−α (xα − yα)2
}

(24)

� αx + βy − xαyβ � min

{
1
2
β
α

xβ−α (xα − yα)2
,
1
2
α
β

yα−β
(
xβ − yβ

)2
}

in the cases (iii) and (iv).
First, we shall prove that

λ2 = min

{
1
2
β
α

yβ−α (xα − yα)2
,
1
2
α
β

xα−β
(
xβ − yβ

)2
}

=
1
2
β
α

yβ−α (xα − yα)2

in the cases (i), i.e. that

1
2
β
α

yβ−α (xα − yα)2 � 1
2
α
β

xα−β
(
xβ − yβ

)2
if (i). (25)

For every α, β ∈ (0, 1) , α � β we consider the sign of a function

fα,β(t) =
t
α
2 − t−

α
2

α
− t

β
2 − t−

β
2

β
, t ∈ (0, 1).

Since limt→0+ fα,β (t) = ∞ , f (1) = 0 and f ′
α,β(t) = (tα/2−tβ/2)(t1/2−1)

2t3/2 � 0 , it follows

that fα,β (t) � 0 , i.e. 0 � tα/2−t−α/2

α � tβ/2−t−β/2

β . Then we have
(

tα/2−t−α/2

α

)2
�(

tβ/2−t−β/2

β

)2
.
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Replacing t by x
y in the last inequality and next multiplying by 1

2αβxαyβ > 0 on
both sides, we obtain (25).

Next,multiplying by xβ−αyα−β on both sides (25), we obtain that 1
2
α
β yα−β (xβ−yβ

)2
� 1

2
β
α xβ−α (xα − yα)2 , i.e. λ1 = 1

2
α
β yα−β (xβ − yβ

)2
in the case (i).

Now, replacing α by β and x by y in (25), we obtain we obtain that λ2 =
1
2
α
β xα−β (xβ − yβ

)2 � 1
2
β
α yβ−α (xα − yα)2 in the case (ii). In the same way we obtain

λ1 in the cases (ii). Finally, the reverse inequalities are evident. �
Now, we obtain the following lemma comparing bounds given in Lemma 2.3 and

Lemma 2.6.

LEMMA 2.7. Let x, y,α, β be positive numbers and α, β such that α + β = 1 .
Let t0 be the unique solution of the equation

√
β(tα − 1) =

√
α(tβ − 1) on (0, 1) for

α �= 1
2 .
If α ∈ (0, 1

2 ) , then

αx + βy − xαyβ � 1
2
β
α

yβ−α (xα − yα)2 in the case x < y ; (26)

αx + βy − xαyβ �

⎧⎪⎪⎨
⎪⎪⎩

1
2
yβ−α (xα − yα)2 in the case 0 < x

y � t0 ,

1
2
α
β

yα−β
(
xβ − yβ

)2
in the case t0 � x

y < 1 .

(27)

In the case y < x the reverse inequality in (26) is valid. In the case 0 < y
x � t0

(resp. t0 � y
x < 1 ) the reverse inequality in the first inequality (resp. the second

inequality) in (27) is valid.
If α ∈ ( 1

2 , 1) , then

αx + βy − xαyβ � 1
2
α
β

xα−β
(
xβ − yβ

)2
in the case y < x ; (28)

αx + βy − xαyβ �

⎧⎪⎪⎨
⎪⎪⎩

1
2
xα−β

(
xβ − yβ

)2
in the case 0 < y

x � t0 ,

1
2
β
α

xβ−α (xα − yα)2 in the case t0 � y
x < 1 .

(29)

In the case x < y the reverse inequality in (28) is valid. In the case 0 < x
y � t0

(resp. t0 � x
y < 1 ) the reverse inequality in the first inequality (resp. the second

inequality) in (29) is valid.
For α = 1

2 we have identities in (26), (27), (28) and (29).

Proof. In this proof we use the same cases (i)–(iv) as in Lemma 2.6. Using results
given in Lemma 2.3 and Lemma 2.6, we have to decide

(a) min

{
1
2
β
α

yβ−α (xα − yα)2
,
1
2
xα−β

(
xβ − yβ

)2
}

and

max

{
1
2
α
β

yα−β
(
xβ − yβ

)2
,
1
2
yβ−α (xα − yα)2

}
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in the case (i);

(b) min

{
1
2
α
β

xα−β
(
xβ − yβ

)2
,
1
2
yβ−α (xα − yα)2

}
and

max

{
1
2
β
α

xβ−α (xα − yα)2
,
1
2
xα−β

(
xβ − yβ

)2
}

in the case (ii).
In the case (iii) (resp. (iv)) we can replace max by min in (a) (resp. (b)).
Let (i) hold. Since α

β � 1 it follows

1
2
β
α

yβ−α (xα − yα)2 � 1
2
α
β

xα−β
(
xβ − yβ

)2
� 1

2
xα−β

(
xβ − yβ

)2
.

Then we have min
{

1
2
β
α yβ−α (xα − yα)2 , 1

2xα−β (xβ − yβ
)2}

= 1
2
β
α yβ−α (xα − yα)2

and (26) is valid.
Next, for every α, β ∈ (0, 1) , α � β , we consider the sign of a function

fα,β(t) =
tα − 1√

α
− tβ − 1√

β
, t ∈ [0, 1].

We have f ′
α,β (t) =

√
αtα−1−√β tβ−1 , limt→0+ f ′

α,β (t) = ∞ , f ′
α,β(1) =

√
α−√β �

0 and f ′
α,β(t) = 0 for t = t1 = 2(1−2α)

√
α

1−α ∈ (0, 1) . Then f (t1) > 0 is the

maximum value since f ′′
α,β (t1) = tβ−2

1

√
β(α − β) < 0 . Then there is the unique

solution t0 of the equation fα,β(t) = 0 (i.e.
√
β(tα − 1) =

√
α(tβ − 1) ) on (0, 1) .

Since fα,β (0) =
√
α−

√
β

√
α
√

β
� 0 , f (t0) = 0 , f (t1) � 0 and f (1) = 0 , it follows that

fα,β(t) � 0 for t ∈ [0, t0] and fα,β (t) � 0 for t ∈ [t0, 1] . Then tα−1√
α � tβ−1√

β
� 0 if

t ∈ [0, t0] and 0 � tα−1√
α � tβ−1√

β
if t ∈ [t0, 1] . It follows

(
tα − 1√

α

)2

�
(

tβ − 1√
β

)2

if t ∈ [0, t0]

and the reverse inequality if t ∈ [t0, 1] .
Replacing t by x

y in the above inequality and next multiplying by 1
2αy >

0 on both sides, we obtain that max
{

1
2
α
β yα−β (xβ − yβ

)2
, 1

2yβ−α (xα − yα)2
}

=
1
2yβ−α (xα − yα)2 if t ∈ [0, t0] and max

{
1
2
α
β yα−β (xβ − yβ

)2
, 1

2yβ−α (xα − yα)2
}

=
1
2
α
β yα−β (xβ − yβ

)2
if t ∈ [t0, 1] . Then (27) is valid.

Next, in the case (ii) it is enough to replace α by β and x by y in (26) and (27).
Finally, the reverse inequalities are evident. �
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REMARK 2.8. i) If we replace α by 1
p , β by 1

q , x by up (u > 0 ), y by wp > 0

(w > 0 ), in Lemma 2.1 and denote P(u, v) = up

p + vq

q − uv , Φ(t) = tp−1 , we obtain
that

1
2
wp−2 (u − w)2 < P(u,Φ(w)) <

1
2
u2−p (Φ(u) −Φ(w))2 (30)

holds if 1
p < 1

2 and up �= w(p−1)q , i.e. p > 2 and u �= w and the reverse inequalities
in (30) are valid if p < 2 and u �= w .

The right hand inequality in (30) is just [1, Inequality (2.11)]. Moreover, in
Lemma 2.1 we give one proof more of [1, Inequality (2.11)].

Notice that P(u, v) is the differencebetween the arithmeticmean and the geometric
one of up and vq . Thenwe have directly that P(u, v) � 0 given in [1, Inequality (2.10)].

ii) Using Lemma 2.6 and doing equal substitute as in i), we obtain that

1
2(p − 1)

w2−p (Φ(u) −Φ(w))2
< P(u,Φ(w)) <

p − 1
2

wp−2 (u − w)2 (31)

holds if p > 2 and 0 < u < w ,

p − 1
2

up−2 (u − w)2 < P(u,Φ(w)) <
1

2(p − 1)
u2−p (Φ(u) −Φ(w))2 (32)

holds if 1 < p < 2 and u > w > 0 .
If 1 < p < 2 and 0 < u < w (resp. p > 2 and u > w > 0 ) the reverse

inequalities in (31) (resp. (32)) are valid.
If we select the right hand inequality in (32) and the left hand reverse inequality in

(32), we have that

P(u,Φ(w)) <
1

2(p − 1)
u2−p (Φ(u) −Φ(w))2 (33)

holds if 1 < p < 2 and the reverse inequality in (33) holds if p > 2 , where u > w > 0 .

Now, we define P(u, v) = |u|p
p + |v|q

q − uv , Φ(t) = |t|p−2t for all u, v ∈ R . Then
Φ(−t) = −Φ(t) , P(u, v) = P(−u,−v) in the case uv > 0 . Using (33) we can obtain
that

P(u,Φ(w)) <
1

2(p − 1)
|u|2−p (Φ(u) −Φ(w))2 (34)

holds if 1 < p < 2 and the reverse inequality holds if p > 2 , where u, w such that
|u| > |w| , uw > 0 . Then (34) and its reverse are just [1, Inequality (2.12)].

iii) We obtained new bounds for P(u,Φ(w)) , which are not given in [1, Inequality
(2.11)] and [1, Inequality (2.12)].

Let 1 < p < 2 , uw > 0 and t0 be the unique solution of the equation√
p − 1( p√t − 1) = ( p−1√tp − 1) on (0, 1) . Using Lemma 2.7 we obtain

P(u,Φ(w)) �

⎧⎪⎪⎨
⎪⎪⎩

1
2
|u|2−p (Φ(u) −Φ(w))2 , if 0 <

|w|
|u| � p√t0 ,

p − 1
2

|u|p−2 (u − w)2
, if p√t0 � |w|

|u| < 1 .

(35)
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If 0 < |u|
|w| � p

√
t0 , then the reverse inequality in the first inequality in (35) is valid. If

p
√

t0 � |u|
|w| < 1 then the reverse inequality in the second inequality in (35) is valid.

Similarly, let p > 2 . Then

P(u,Φ(w)) �

⎧⎪⎪⎨
⎪⎪⎩

p − 1
2

|w|2−p (u − w)2
, if 0 <

|u|
|w| � p

√
t0 ,

1
2
wp−2 (Φ(u) −Φ(w))2 , if p√t0 � |u|

|w| < 1 .

(36)

If 0 < |w|
|u| � p

√
t0 , then the reverse inequality in the first inequality in (36) is valid. If

p
√

t0 � |w|
|u| < 1 then the reverse inequality in the second inequality in (36) is valid.

REMARK 2.9. We can compare our results with the one given in [9].
i) We remark that our results from Lemma 2.1 are better than the results from [9,

Theorem 2.3] for some α , x and y , but not all.
ii) We can not compare the results from Lemma 2.6 and [9, Theorem 2.3], since

their hypotheses are not the same.

3. Inequalities involving the arithmetic and geometric operator means

In this section we give several inequalities involving the arithmetic and geometric
means of two positive invertible operators using results obtained in Section 2. In the next
result we observe the generalized geometric mean defined for every positive invertible
operators A and B as follows:

A �α B := A
1
2 (A− 1

2 BA− 1
2 )αA

1
2 , α ∈ R.

For α ∈ (−∞, 0)∪ (1,∞) , it cannot be Kubo-Ando mean and is often denoted by �α .
In the next proofs we shall use the known property of monotonity for operator

functions: If X is bounded selfadjoint operator on a Hilbert space H with a spectra
Sp(X) , then

f (t) � g(t) (t ∈ Sp(X)) =⇒ f (X) � g(X). (♣ )

Using Lemma 2.1 we obtain the following theorem.

THEOREM 3.1. Let A and B be positive invertible operators on a Hilbert space
H . If α ∈ (0, 1

2 ] , then

1
2
(A �2α B + A) � A ∇α B � 1

2
(A �2α−1 B + B). (37)

If α ∈ [ 1
2 , 1) , then the reverse inequalities in (37) are valid.

For α = 1
2 we have the identity in (37).
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Proof. We only prove the case α ∈ (0, 1
2 ] . Putting y = 1 in Lemma 2.1 for this

α , we have the following inequality:

1
2

(xα − 1)2 � αx + β − xα � 1
2
xα−β

(
xβ − 1

)2
,

i.e.
1
2

(
x2α + 1

)
� αx + (1 − α) � 1

2

(
x2α−1 + x

)
.

Using (♣) we can replace x by A− 1
2 BA− 1

2 in the above inequalities. Then we have

1
2

(
(A− 1

2 BA− 1
2 )2α + 1H

)
� αA− 1

2 BA− 1
2 + (1 − α)1H

� 1
2

(
(A− 1

2 BA− 1
2 )2α−1 + A− 1

2 BA− 1
2

)
.

It follows
1
2

(
A

1
2 (A− 1

2 BA− 1
2 )2αA

1
2 + A

)
� αB + (1 − α)A � 1

2

(
A

1
2 (A− 1

2 BA− 1
2 )2α−1A

1
2 + B

)
.

From here the desired inequalities follow (37). �
Using Lemma 2.3 we obtain better results than the one from Theorem 3.1 given

some conditions.

THEOREM 3.2. Let A and B be positive invertible operators on aHilbert space H .
Let t0 (resp. t1 ) be the unique solution of the equation αt+1−α = tα + 1

2 (t
1−α −1)2

(resp. (1 − α)t + α = t1−α + 1
2 (t

α − 1)2 ) on (0, 1) for α ∈ (0, 1) , α �= 1
2 .

Let α ∈ (0, 1
2 ) . If t0 A � B < A , then

1
2
(A �2α B − 2A �α B + A) � A ∇α B − A �α B

� 1
2
(A �2−2α B − 2A �1−α B + A); (38)

if A < B � 1
t1

A , then

1
2
(A �1−2α B − 2A �1−α B + B) � A ∇α B − A �α B

� 1
2
(A �2α−1 B − 2A �α B + B). (39)

In the case α ∈ ( 1
2 , 1) the reverse inequalities in (38) and (39) are valid given

same conditions.
For α = 1

2 we have identities in (38) and (39).

Proof. We only prove the case α ∈ (0, 1
2 ) .

(a) Putting y = 1 in Lemma 2.3 for α ∈ (0, 1
2 ) , we have:

1
2

(
x2α − 2xα + 1

)
� αx + (1 − α) − xα � 1

2

(
x2−2α − 2x1−α + 1

)
, if x ∈ [t0, 1),

1
2

(
x − 2x1−α + x1−2α) � αx + (1 − α) − xα � 1

2

(
x − 2xα + x2α−1

)
, if x ∈ (1, 1/t1].
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Using (♣) wecan replace x by A− 1
2 BA− 1

2 . Weobtain the following: if Sp(A− 1
2 BA− 1

2 ) ⊆
[t0, 1] , then

1
2

(
(A− 1

2 BA− 1
2 )2α − 2(A− 1

2 BA− 1
2 )α + 1H

)
� αA− 1

2 BA− 1
2 + (1 − α)1H − (A− 1

2 BA− 1
2 )α

� 1
2

(
(A− 1

2 BA− 1
2 )2−2α − 2(A− 1

2 BA− 1
2 )1−α + 1H

)
;

but if Sp(A− 1
2 BA− 1

2 ) ⊆ (1, 1/t1] , then

1
2

(
A− 1

2 BA− 1
2 − 2(A− 1

2 BA− 1
2 )1−α + (A− 1

2 BA− 1
2 )1−2α

)
� αA− 1

2 BA− 1
2 + (1 − α)1H − (A− 1

2 BA− 1
2 )α

� 1
2

(
A− 1

2 BA− 1
2 − 2(A− 1

2 BA− 1
2 )α + (A− 1

2 BA− 1
2 )2α−1

)
.

Consequently, if Sp(A− 1
2 BA− 1

2 ) ⊆ [t0, 1] , then

1
2

(
A

1
2 (A− 1

2 BA− 1
2 )2αA

1
2 − 2A

1
2 (A− 1

2 BA− 1
2 )αA

1
2 + A

)
� αB + (1 − α)A − A

1
2 (A− 1

2 BA− 1
2 )αA

1
2 (40)

� 1
2

(
A

1
2 (A− 1

2 BA− 1
2 )2−2αA

1
2 − 2A

1
2 (A− 1

2 BA− 1
2 )1−αA

1
2 + A

)
;

but if Sp(A− 1
2 BA− 1

2 ) ⊆ [1, 1/t1] , then

1
2

(
B − 2A

1
2 (A− 1

2 BA− 1
2 )1−αA

1
2 + A

1
2 (A− 1

2 BA− 1
2 )1−2αA

1
2

)
� αB + (1 − α)A − A

1
2 (A− 1

2 BA− 1
2 )αA

1
2 (41)

� 1
2

(
B − 2A

1
2 (A− 1

2 BA− 1
2 )αA

1
2 + A

1
2 (A− 1

2 BA− 1
2 )2α−1A

1
2

)
.

(b) Now, if t0 A � B < A , then t0 1H � A− 1
2 BA− 1

2 < 1H . It follows,
Sp(A− 1

2 BA− 1
2 ) ⊆ [t0, 1] . Then (40) holds, i.e. if t0 A � B < A , then

1
2
(A �2α B − 2A �α B + A) � A ∇α B − A �α B � 1

2
(A �2−2α B − 2A �1−α B + A).

This is the desired inequality (38).
Similarly, if A < B � 1

t1
A , then Sp(A− 1

2 BA− 1
2 ) ⊆ [1, 1

t1
] . Then (41) holds and

we have the desired inequality (39). �

REMARK 3.3. We can obtain similar results as in Theorem 3.2 if we observe
inequalities as in Remark 2.4.
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Using Lemma 2.5 we have the following theorem.

THEOREM 3.4. Let A and B be positive invertible operators on a Hilbert space
H . Suppose that either of the following conditions holds

(I) B < A and α ∈ (0, 1
2 ] , (II) A < B and α ∈ [ 1

2 , 1) ,
(III) B < A and α ∈ [ 1

2 , 1) , (IV) A < B and α ∈ (0, 1
2 ] .

Then

1 − α
2α

(A �1−2α B − 2A �1−α B + B) � A ∇α B − A �α B (42)

� 1 − α
2α

(A �2α B − 2A �α B + A),

α
2(1 − α)

(A �2−2α B − 2A �1−α B + A) � A ∇α B − A �α B (43)

� α
2(1 − α)

(A �2α−1 B − 2A �α B + B)

hold in the cases (I) and (II) and the reverse inequalities in (42) and (43) hold in the
cases (III) and (IV).

For α = 1
2 we have identities in (42) and (43).

Proof. The proof is quite similar to the proof of Theorem 3.2. We give the quick
proof.

Putting y = 1 in Lemma 2.5, we obtain that

1
2
β
α
(
x1−2α − 2x1−α + x

)
� αx + (1 − α) − xα � 1

2
β
α
(
x2α − 2xα + 1

)
,

1
2
α
β
(
x2−2α − 2x1−α + 1

)
� αx + (1 − α) − xα � 1

2
α
β
(
x2α−1 − 2xα + x

)
hold in the cases (i) x � 1 , α ∈ (0, 1

2 ] and (ii) 1 � x , α ∈ [ 1
2 , 1) and that their reverse

inequalities hold in the cases (iii) x � 1 , α ∈ [ 1
2 , 1) and (iv) 1 � x , α ∈ (0, 1

2 ] . It
follows:

1
2
β
α

(A �1−2α B − 2A �1−α B + B) � A ∇α B − A �α B

� 1
2
β
α

(A �2α B − 2A �α B + A),

1
2
α
β

(A �2−2α B − 2A �1−α B + A) � A ∇α B − A �α B

� 1
2
α
β

(A �2α−1 B − 2A �α B + B)

hold in the cases (I 1 ) Sp(A− 1
2 BA− 1

2 ) ⊂ (0, 1] , α ∈ (0, 1
2 ] and (II 1 ) Sp(A− 1

2 BA− 1
2 ) ⊂

[1,∞) , α ∈ [ 1
2 , 1) and that their reverse inequalities hold in the cases (III 1 )

Sp(A− 1
2 BA− 1

2 ) ⊂ (0, 1] , α ∈ [ 1
2 , 1) and (IV 1 ) Sp(A− 1

2 BA− 1
2 ) ⊂ [1,∞) , α ∈ (0, 1

2 ] .
Now, if B < A , then A− 1

2 BA− 1
2 < 1H and it follows Sp(A− 1

2 BA− 1
2 ) ⊂ (0, 1] .

But, if A < B , then Sp(A− 1
2 BA− 1

2 ) ⊂ [1,∞) . Then (I) implies (I 1 ), (II) implies
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(II 1 ), (III) implies (III 1 ) and (IV) implies (IV 1 ). It follows the desired inequalities
(42) and (43) in the cases (I) and (II) and their reverse inequalities in the cases (III)
and (IV). �

Finally, using Lemma 2.7 we obtain the following theorem where we compare
bounds given in Theorem 3.1 and Theorem 3.4.

THEOREM 3.5. Let A and B be positive invertible operators on a Hilbert space
H . Let t0 be the unique solution of the equation

√
1 − α(tα − 1) =

√
α(t1−α − 1) on

(0, 1) for α ∈ (0, 1) , α �= 1
2 .

Let α ∈ (0, 1
2 ) hold. Then

A ∇α B−A �α B � 1−α
2α

(A �2α B−2A �α B+A), if B < A , (44)

A ∇α B−A �α B � 1
2
(A �2α B−2A �α B+A), if B � t0A , (45)

A ∇α B−A �α B � α
2(1−α)

(A �2−2α B−2A �1−α B+A), if t0A � B < A . (46)

If A < B the reverse inequality in (44) is valid. If A � t0B the reverse inequality in
(45) is valid, but if t0B � A < B the reverse inequality in (46) is valid.

Let α ∈ ( 1
2 , 1) hold. Then

A ∇α B−A �α B � α
2(1−α)

(A �2α−1 B−2A �α B+B), if A < B , (47)

A ∇α B−A �α B � 1
2
(A �2α−1 B−2A �α B+B), if A � t0B , (48)

A ∇α B−A �α B � 1−α
2α

(A �1−2α B−2A �1−α B+B), if t0B � A < B . (49)

If B < A the reverse inequality in (47) is valid. If B � t0A the reverse inequality in
(48) is valid, but if t0A � B < A the reverse inequality in (49) is valid.

For α = 1
2 we have the identity in all the above inequalities.

Proof. Putting y = 1 in Lemma 2.7, we obtain the following:
Let α ∈ (0, 1

2 ) hold. Then

αx + β − xα � 1
2
β
α
(
x2α − 2xα + 1

)
, if x < 1 , (50)

αx + β − xα � 1
2

(
x2α − 2xα + 1

)
, if x � t0 , (51)

αx + β − xα � 1
2
α
β
(
x2−2α − 2x1−α + 1

)
, if t0 � x < 1 . (52)

If 1 < x , then the reverse inequality in (50) is valid. If x � 1
t0

, then the reverse

inequality in (51) is valid, but if 1 < x � 1
t0

, then the reverse inequality in (52) is valid.
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Let α ∈ ( 1
2 , 1) hold. Then

αx + β − xα � 1
2
α
β
(
x2α−1 − 2xα + x

)
, if 1 < x , (53)

αx + β − xα � 1
2

(
x2α−1 − 2xα + x

)
, if x � 1

t0
, (54)

αx + β − xα � 1
2
β
α
(
x1−2α − 2x1−α + x

)
, if 1 < x � 1

t0
. (55)

If x < 1 , then the reverse inequality in (53) is valid. If x � t0 , then the reverse
inequality in (54) is valid, but if t0 � x < 1 , then the reverse inequality in (55) is valid.

The remainder of the proof is the same as the proof of Theorem 3.2. We omit the
details. �
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