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ON CERTAIN MEAN VALUE THEOREMS

TH. M. RASSIAS AND Y. H. KIM

(communicated by J. Pečarić)

Abstract. In this paper we have obtained a symmetric integral mean M(a, b; p(rn,k), q) involving
functions which a generalization of the arithmetic-geometric mean of Gauss. We have also proved
some characterization of the symmetric mean values for the twice continuously differentiable
function p .

1. Introduction

The mean values are related to a continuously differentiable real valued function
and a functional equation. The properties of the mean provide a bridge between the
local and global properties of the functions. Some of the mean values are important
in themselves, and some of them are required for applications in the theory of analytic
inequalities(see references below and some of the references sited therein). We shall
begin with the classical mean values. By classical mean value(or mean) we understand
a special function M : 〈 0,∞〉 2 → 〈 0,∞〉 , which satisfies the condition

min{a, b} � M(a, b) � max{a, b}, a, b > 0.

Of course, a mean has the reflexivity property M(a, a) = a, for a > 0. It is called
symmetric of M(a, b) = M(b, a), for a, b > 0. The simplest and classical means
are defined as follows: the arithmetic mean or average, A(a, b) = (a + b)/2; the
geometric or mean proportional, G(a, b) =

√
ab, and the harmonic mean, H(a, b) =

G2(a, b)/A(a, b). These means have been generalized, refined and extended in several
directions. The root mean square is defined ad N = (G + A)/2, and the power mean
as Mr(a, b) = ((ar + br) /2)1/r for r �= 0 with M0(a, b) = G(a, b).

Further developments led to definitions of other types of means, including; multi-
variable means with (a1, a1, ..., an) replacing (a, b) ; abstracted mean

Mϕ = ϕ−1

(
ϕ(a) + ϕ(b)

2

)
,

which reduce to Mr when ϕ(a) = ar ; weighted means given by (1 − α)a + αb and
a1−αbα , 0 � α � 1; and Lehmer means Lp(a, b) = (ap + bp) /

(
ap−1 + bp−1

)
for
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p > 0, which reduce to the anti-harmonic mean L2(a, b) =
(
a2 + b2

)
/(a + b). Along

with the means Mr there are more extended means of particular interest. Pólya and
Szegö[13] defined the logarithmic mean L by

L = L(a, b) =
a − b

ln a − ln b
(1.1)

for a > 0, b > 0, a �= b and L(a, a) = a. Galvani [5] consider the extended logarithmic
means

Sp(a, b) =
(

bp − ap

p(b − a)

) 1
p−1

, a �= b, p �= 0, 1; (1.2)

and Sp(a, a) = a; which is reduced to S0(a, b) = L(a, b), and the identical mean or
the exponential mean I(a, b);

S1(a, b) = I(a, b) = e−1

(
aa

bb

) 1
a−b

, a �= b; (1.3)

and S1(a, a) = I(a, a) = a. The symmetric mean Qp(a, b) is also defined by

Qp(a, b) =
arbs + asbr

2
, (1.4)

where r = (1 +
√

p)/2, s = (1 −√
2)/2, p � 0. The study of these means has a rich

literature; for details one may see Alzer[2], Carlson[4], Mitrinović at al. [6], Kahlig and
Matkowski [10], Kim and Rassias [12], Qi [14], Stolarsky [16] and Toader [17].

In what follows, we shall refer to another very well known example of mean. Given
two positive numbers a and b, let us define successively the terms

an+1 = A(an, bn), bn+1 = G(an, bn), n � 0,

where a0 = a and b0 = b. It is known (cf. [2]) that the sequences {an} and {bn} are
convergent to a common limit which is denoted by A ·G(a, b). This function A ·G(a, b)
was investigated for the first time by Gauss. Thus, it is called the arithmetic-geometric
mean of Gauss. It is also known (cf. [1]) the following representation formula

A · G(a, b) = [I(a, b)]−1,

where

I(a, b) =
1
2π

∫ 2π

0

dθ√
a2 cos2 θ + b2 sin2 θ

.

The proof of this formula is based on the fact that the function f verifies the functional
relation

f (A(a, b), G(a, b)) = f (a, b),

which can be called Gauss’ functional equation.
In [12], these results where generalized as follows. Let us denote by

rn,k(θ) =
(
akn cos2 θ + bkn sin2 θ

) 1
n , (n, k �= 0),
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and

r0,k(θ) = lim
n→0

rn,k(θ) = ak cos2 θbk sin2 θ , (k �= 0).

If p : (0,∞) → R, p(x) = p is a strictly monotonic function and k, n are real numbers,
then

M(a, b; p, rn,k) = (ab)
1−k

2 p−1

(
1
2π

∫ 2π

0
p(rn,k(θ)) dθ

)
(1.5)

defines a symmetric mean value on some bounded interval, that is such mean satisfies
the property 0 < a � M(a, b; p, rn,k) � b for 1 � b/a � T, where T is a finite
real number(see [1]). It is well-known that the arithmetic-geometric mean of Gauss is
obtained for k = 1, n = 2 by p(x) = x−1. The essential step was done in [8] by the
consideration of the definition (1.5) for k = 1, n = 2 with an arbitrary p(x). The case
n = 1 was studied in [9] with k = 1. The general case (for arbitrary n ) with k = 1
was studied in [17] and continued in [19].

In this paper, we obtain some new characterizations of the symmetric mean value
form the right-hand side of (1.5) is replaced by the generalized mean Qp(a, b).

2. Characterizations of a symmetric mean

Let us consider the strictly monotonic function p. Using the function p we define
a function

f (a, b; p, rn,k) =
1
2π

∫ 2π

0
p(rn,k(θ)) dθ, (2.1)

where rn,k(θ) is defined by

rn,k(θ) =
(
akn cos2 θ + bkn sin2 θ

) 1
n , (n, k �= 0),

and

r0,k(θ) = lim
n→0

rn,k(θ) = ak cos2 θbk sin2 θ , (k �= 0).

It is easy to prove that

M(a, b; p(rn,k), q) = [Qq(a, b)](1−k) p−1[f (a, b; p(rn,k))] (2.2)

defines a mean on some bounded interval, where Qq(a, b) is defined by (1.4) as follows

Qq(a, b) =
arbs + asbr

2

for r = (1 +
√

q)/2, s = (1 −√
q)/2, g � 0.

Certain characterizations of the mean M(a, b; p(rn,k), 0) were studied in [12]. In
this section, we obtain some new properties as special cases of the mean value defined
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by (2.2). If we set p(s) = s, p(s) = 1/s, p(s) = 1/ log s, p(s) = 1/s2 in (2.2), by
applying the three definite integral (see the paper [7], [8], [11] or [12])

1
2π

∫ 2π

0

1
ak cos2 θ + bk sin2 θ

dθ =
1

(ab)
k
2

,

1
2π

∫ 2π

0

1

(ak cos2 θ + bk sin2 θ)2 dθ =
1

2(ab)
k
2

ak + bk

(ab)k
,

1
2π

∫ 2π

0
log

(
ak cos2 θ + bk sin2 θ

)
dθ = log

(
a

k
2 + b

k
2

2

)2

,

we obtain the following results:

THEOREM 2.1. Let c1(�= 0), c2 and k(�= 0) be arbitrary real constants and let the
function p be two times differentiable in (0,∞). Then

(i) M(a, b; p(r1,k), q) = Q1−k
q (a, b)[(ak + bk)/2] holds for all positive real num-

bers a, b iff p(s) = c1s + c2.

(ii) M(a, b; p(r1,k), q) = Q1−k
q (a, b)(ab)k/2 holds for all positive real numbers

a, b iff p(s) = c1(1/s) + c2 .

(iii) M(a, b; p(r1,k), q) = Q1−k
q (a, b)[(ak/2 + bk/2)/2]2 holds for all positive real

numbers a, b iff p(s) = c1 log s + c2 .

(iv) M(a, b; p(r1,k), q) = Q1−k
q (a, b)[2(ab)3k/2/(ak +bk)]1/2 holds for all positive

real numbers a, b iff p(s) = c1(1/s2) + c2 .

(v) M(a, b; p(r1,k), q) = Q1−k
q (a, b)[3(a2k + b2k) + 2(ab)k/8]1/2 holds for all

positive real numbers a, b iff p(s) = c1s2 + c2 .

Proof. We will show that the technique used in [7, 8, 9] for specific means works
as well in the more general case stated here. We will prove (i). First, suppose that

M(a, b; p(r1,k), q) = Q1−k
q (a, b)

(
ak + bk

2

)
for all positive numbers a and b. By the definition of M(a, b; p(r1,k), q), we obtain

1
2π

∫ 2π

0
p(r1,k(θ)) dθ = p

(
ak + bk

2

)
(2.3)

for all positive real numbers a and b. Setting f (a, b; p(r1,k)) = (1/2π)
∫ 2π

0 p(r1,k(θ)) dθ
and applying (2.3) yields

f (a, b; p(r1,k)) = p

(
ak + bk

2

)
(2.4)

for all positive real numbers a and b. Let c be an arbitrarily fixed positive real number.
Operating on both sides (2.4) with ∂2/∂a2 and setting a = b = c, in the resulting
equality yields

f aa(c, c; p(r1,k)) =
1
4
k2c2k−2p′′

(
ck
)

+
1
2
k(k − 1)ck−2p′

(
ck
)
. (2.5)
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The function f defined by (2.1) has the following partial derivative:

f aa(c, c; p(rn,k)) =
3
8
k2c2k−2p′′

(
ck
)

+
1
8

(
kn + 3k2 − 4k

)
ck−2p′

(
ck
)
. (2.6)

Combining (2.5) and (2.6), we obtain

p′′(ck) = 0. (2.7)

Since c was and arbitrarily real number, we can replace ck by a positive real variable
s in the equality (2.7). Hence we have

p′′(s) = 0. (2.8)

Solving the differential equation (2.8) yields p(s) = c1s + c2 in R+ , where c1, c2 are
real constants with c1 �= 0.

Second we shall prove the “if” part. By using r1,k(θ) =
(
ak cos2 θ + bk sin2 θ

)
,

p−1 = (s − c2)/c1 and
∫ 2π

0 cos2 θ dθ =
∫ 2π

0 sin2 θ dθ = π, we obtain

p−1

(
1
2π

∫ 2π

0
p(r1,k(θ)) dθ

)
= p−1

(
1
2π

∫ 2π

0
(c1r1,k(θ) + c2) dθ

)

= p−1

(
1
2π

c1
(
akπ + bkπ

)
+ c2

)

=
ak + bk

2

for all positive real numbers a and b. Hence, we get

M(a, b; p(r1,k), q) = Q1−k
q (a, b)

(
ak + bk

2

)
.

The proofs of (ii), (iii), (iv) and (v) follow by an argument very similar to the one
described in the proof of (i) with certain minor changes. �

By a reasoning similar to the Theorem 2.1 we can also prove the following asser-
tions.

THEOREM 2.2. Let c1(�= 0), c2 and k(�= 0) be arbitrary real constants and let the
function p be two times differentiable in (0,∞). Then

(i) M(a, b; p(r−1,k), q) = Q1−k
q (a, b)(ab)k/2 holds for all positive real numbers

a, b iff p(s) = c1s + c2.

(ii) M(a, b; p(r−1,k), q) = Q1−k
q (a, b)[2akbk/(ak +bk)] holds for all positive real

numbers a, b iff p(s) = c1(1/s) + c2 .

(iii) M(a, b; p(r−1,k), q) = Q1−k
q (a, b)[4(ab)k/(ak/2+bk/2)2] holds for all positive

real numbers a, b iff p(s) = c1 log s + c2 .

(iv) M(a, b; p(r−1,k), q) = Q1−k
q (a, b)[8(ab)2k/(3(a2k + b2k) + 2(ab)k]1/2 holds

for all positive real numbers a, b iff p(s) = c1(1/s2) + c2 .
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(v) M(a, b; p(r−1,k), q) = Q1−k
q (a, b)[(ab)k/2(ak+bk)/2]1/2 holds for all positive

real numbers a, b iff p(s) = c1s2 + c2 .

Proof. We will prove (iii). First, suppose that

M(a, b; p(r−1,k), q) = Q1−k
q (a, b)

⎡
⎢⎣ 4(ab)k(

a
k
2 + b

k
2

)2

⎤
⎥⎦

for all positive numbers a and b. By the definition of M(a, b; p(r1,k), q), we obtain

1
2π

∫ 2π

0
p(r−1,k(θ)) dθ = p

⎛
⎜⎝ 4akbk(

a
k
2 + b

k
2

)2

⎞
⎟⎠ (2.9)

for all positive real numbers a and b. Setting f (a, b; p(r−1,k)) = (1/2π)
∫ 2π

0 p(r−1,k(θ)) dθ
and applying (2.9) yields

f (a, b; p(r−1,k)) = p

⎛
⎜⎝ 4akbk(

a
k
2 + b

k
2

)2

⎞
⎟⎠ (2.10)

for all positive real numbers a and b. Let c be an arbitrarily fixed positive real number.
Operating on both sides (2.10) with ∂2/∂a2 and setting a = b = c, in the resulting
equality yields

f aa(c, c; p(r−1,k)) =
1
4
k2c2k−2p′′

(
ck
)

+
1
8
k(k − 4)ck−2p′

(
ck
)
. (2.11)

The function f defined by (2.1) has the following partial derivative (2.6). Combining
(2.6) and (2.11), we obtain

ckp′′
(
ck
)

+ p′
(
ck
)

= 0.

Since c was and arbitrarily real number, we can replace ck by a positive real variable
s in the above equality. Hence we have

sp′′(s) + p′(s) = 0.

with solution p(s) = c1 log s + c2 in R+ , where c1, c2 are real constants with c1 �= 0.

To establish the other direction, by using r−1,k(θ) =
(
ak cos2 θ + bk sin2 θ

)−1
,
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p−1(s) = exp((s − c2)/c1), after some standard calculations, one obtain

p−1

(
1
2π

∫ 2π

0
p(r−1,k(θ)) dθ

)
= p−1

(
1
2π

∫ 2π

0
(c1 log(r1,k(θ)) + c2) dθ

)

= p−1

⎛
⎜⎝c1 log

⎛
⎜⎝ 4akbk(

a
k
2 + b

k
2

)2

⎞
⎟⎠+ c2

⎞
⎟⎠

=
4akbk(

a
k
2 + b

k
2

)2

for all positive real numbers a and b. Hence, we get

M(a, b; p(r1,k), q) = Q1−k
q (a, b)

⎡
⎢⎣ 4(ab)k(

a
k
2 + b

k
2

)2

⎤
⎥⎦ .

The proofs of (i), (ii), (iv) and (v) follow by an argument very similar to the one
described in the proof of (iii) with some suitable changes. �

As it is shown in Theorem 2.1 and Theorem 2.2, the means M(a, b; p(rn,k), q) can
represent some known means for a special choice of p and n. In the following, we
shall determine the functions p for which M(a, b; p(rr,k), q) is the symmetric mean
Qq(a, b), where n(�= 0), k(�= 0) and q(� 0) are arbitrary real numbers. We shall
prove the following theorems.

THEOREM 2.3. If for some twice continuously differentiable function p the mean
M(a, b; p(rn,k), q) reduces to the symmetric mean Qq(a, b), then

p(s) = αs2q/k−n + β , (2.12)

where α and β are arbitrary real numbers.

Proof. Using function (2.1) and mean (2.2), we have

M(a, b; p(rn,k), q) = Qq(a, b)

if and only if

f (a, b; p(rn,k)) = p

{(
arbs + asbr

2

)k
}

for r = (1 +
√

q)/2, s = (1 − √
q)/2, q � 0. Applying ∂2/∂a2 to both sides of the

above equality, we get

f (a, b; p(rn,k)) = p′′(C1)
∂

∂a
C1

∂

∂b
C1 + p′(C1)

∂2

∂a∂b
C1,
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where C1 = [arbs + asbr)/2]k. setting a = b = c, in the resulting equality yields

f ab(c, c; p(rn,k)) =
1
4
k2c2k−2p′′

(
ck
)

+
1
4

(
k2 − k − 4krs

)
ck−2p′

(
ck
)
. (2.13)

The function f defined by (2.1) has the following partial derivative:

f ab(c, c; p(rn,k)) =
1
8
k2c2k−2p′′

(
ck
)

+
1
8
(1 − n)k2ck−2p′

(
ck
)
. (2.14)

Combining (2.13) and (2.14), we have

ckp′′
(
ck
)

+
( −2q

k + n + 1

)
p′
(
ck
)

= 0. (2.15)

Since ck was and arbitrarily real number, we can replace ck by a positive real variable
s in the equality (2.15). Hence we get

sp′′(s) +
( −2q

k + n + 1

)
p′(s) = 0.

with solution (2.12). �
In some case the condition given in Theorem2.3 is also sufficient. We can formulate

the following result for arbitrary n.

THEOREM2.4. Themean M(a, b; p(rn,k), q) reduces to the symmetricmean Qq(a, b),
for some arbitrary n if

p(s) = αs2q/k−n + β ,α, β ∈ R

and when takes the value q = 0.

Proof. It is enough to set p(s) = s2q/k−n. Let q = 0, as p(s) = s−n, we have

M(a, b; (rn,k)−n, 0) = (ab)
1−k

2

(
1
2π

∫ 2π

0

dθ
akn cos2 θ + bkn sin2 θ

)− 1
n

= (ab)
1−k

2

(
1√

aknbkn

)− 1
n

=
√

ab = Q0(a, b).

�

3. Some further characterizations

In this section, using the function (2.1) we can consider some further characteri-
zations of the mean M(a, b; p(rn,k), q) for p(s) = sq and p(s) = log s.
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THEOREM 3.1. Let p(s) = sq, and let q, q−1 and q−2 be different from 0, then

q
[
Qk−1

q (a, b)M (a, b; (r1,k)q, q)
]q

=
(

q − 1
2

)(
ak + bk

) [
Qk−1

q (a, b)M(a, b; (r1,k)q−1, q)
]q−1

− (q − 1)akbk
[
Qk−1

q (a, b)M
(
a, b; (r1,k)q−2, q

)]q−2
.

(3.1)

Proof. Applying the definition of the function f (a, b; (r1,k)q) , we get

f (a, b; (r1,k)q) =
2
π

∫ π/2

0

(
ak cos2 θ + bk sin2 θ

)q
dθ

=
2
π

(
ak + bk

2

)q ∫ π/2

0

(
1 +

ak − bk

ak + bk
cos 2θ

)q

dθ.

=
2
π

(
ak + bk

2

)q

Jq.

If we denote Jq =
∫ 2/π

0 (1 + h cos 2θ)qdθ and h =
(
ak − bk

)
/
(
ak + bk

)
., We look

for a recurrence for Jq. We have

Jq =
∫ 2/π

0
(1 + h cos 2θ)(1 + h cos 2θ)q−1dθ

= Jq−1 +
∫ 2/π

0
(h cos 2θ)(1 + h cos 2θ)q−1dθ

= Jq−1 + h2(q − 1)
∫ 2/π

0

(
sin2 2θ

)
(1 + h cos 2θ)q−2dθ

= Jq−1 + h2(q − 1)Jq−2 − (q − 1)
∫ 2/π

0

(
h2 cos2 2θ

)
(1 + h cos 2θ)q−2dθ

= Jq−1 + h2(q − 1)Jq−2 − (q − 1)(Jq − 2Jq−1 + Jq−2).

Thus
qJq = (2q − 1)Jq−1 + (q − 1)(h2 − 1)Jq−2, (3.3)

where q, q − 1, and q − 2 take values different from 0. From the equalities (3.2) and
(3.3) one derives

qf (a, b; (r1,k)q)

=
2
π

(
ak + bk

2

)q [
(2q − 1)Jq−1 + (q − 1)

(
h2 − 1

)
Jq−2

]
(3.4)

= (2q − 1)
(

ak + bk

2

)
f
(
a, b; (r1,k)q−1

)− (q − 1)(ab)kf
(
a, b; (r1,k)q−2

)
.

The relations (3.4) gives the recurrence relation (3.1). �
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COROLLARY 3.2. Let p(s) = sq, and let n, q, q−1 and q−2 take values different
from 0, then

q
[
Qk−1

q (a, b)M(a, b; (rn,k)nq, q)
]nq

=
(

q − 1
2

)(
ank + bnk

) [
Qk−1

q (a, b)M
(
a, b; (rn,k)n(q−1), q

)]n(q−1)

− (q − 1)ankbnk
[
Qk−1

q (a, b)M
(
a, b; (rn,k)n(q−2), q

)]n(q−2)
. (3.5)

Proof. Using the definition of the function f (a, b; (rn,k)q) , one obtains

f (a, b; (rn,k)q) =
2
π

∫ π/2

0

(
ank cos2 θ + bnk sin2 θ

) q
n dθ

= f
(
a, b; (rn,k)

q
n

)
. (3.6)

From the equality (3.6), we derive the functional relation

f (an, bn; (r1,k)q) = f (a, b; (rn,k)qn) . (3.7)

In relation (3.4), replacing a and b by an and bn, respectively. one gets the recurrence
relation

qf (an, bn; (r1,k)q) =
(

q − 1
2

)(
ank + bnk

)
f
(
an, bn; (r1,k)q−1

)
(3.8)

− (q − 1)(ab)nkf
(
an, bn; (r1,k)n(q−2)

)
.

From (3.7) and (3.8), we obtain the following recurrence relation

qf (an, bn; (rn,k)nq) =
(

q − 1
2

)(
ank + bnk

)
f
(
an, bn; (rn,k)n(q−1)

)
− (q − 1)(ab)nkf

(
an, bn; (rn,k)n(q−2)

)
,

which is the same recurrence relation as (3.5). �
THEOREM 3.3. Let n = 0 and s �= 0, then the following equalities hold true:

(i) M(a, b; log(r0,k), q) = (ab)
k
2 [Qq(a, b)]1−k

.

(ii) Mq (a, b; (r0,k)s, q) = (ab)
k
2 [Qq(a, b)]1−k

[ ∞∑
i=0

(
ks
4

log
a
b

)2i 1
(i!)2

]1/s

.

Proof. By the definition of r0,k(θ), one has

M(a, b; log(r0,k), q) = [Qq(a, b)]1−k exp

(
2
π

∫ 2π

0
log

(
ak cos2 θbk sin2 θ

)
dθ

)

= [Qq(a, b)]1−k exp

(
2
π

∫ 2π

0

(
k log a cos2 θ + k log b sin2 θ

)
dθ

)

= (ab)
k
2 [Qq(a, b)]1−k
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The proof of (ii) follows by an argument similar to the one given in Section 5 in [19]
with some suitable changes. �
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