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MAJORIZATION INEQUALITIES RELATED TO
INCREASING CONVEX FUNCTIONS IN A
SEMIFINITE VON NEUMANN ALGEBRA

TETSUO HARADA

(communicated by T. Ando)

Abstract. Let ug(x) denote the generalized s -number of an operator x. We show a mojorization
inequality fot us(f (a+b))ds > f(; Us(f (a)+f (b)) ds for every increasing convex function with

f(0) = 0 and positive 7-measurable operators a, b affiliated with a semi-finite von Neumann
algebra .

1. Introduction

In 1999, Ando and Zhan proved [1]

k
> A(f(a+ D)) >le(f(a) +£ () (1<j<n) (1.1)

j=1 Jj=1

for every operator convex function with f(0) = 0 and n x n positive semidefinite
matrices a, b. Here, A(a) = (Ai(a), -, (a)) and A(D) = (A(b),- -+, (D))
denote the eigenvectors of @ and b in decreasing order, respectively. Recently, an
extended result of the above inequality was shown by Kosem [5]. He proved the
inequality (1.1) when f is an increasing convex function with f(0) = 0 by using the
above Ando-Zhan result and an approximation method. In this paper, we prove the
inequality (1.1) in a semi-finite von Neumann algebra. More precisely, let 20 be a
semi-finite von Neumann algebra with faithful normal semi-finite trace 7 and f be an
increasing convex function with £ (0) = 0. We show

/Otus(f(aer))dD/Otus(f(a)+f(b))ds O<i<a1)  (12)

for positive operators a, b in 2. Here, we denote by (a) the generalized s-number
of an element a in 2 (see [4]). We first prove the inequality (1.2) for every operator
convex function with f(0) = 0. Since Ando and Zhan used the n x m matrix trick
to prove the inequality (1.1), we think that we can not apply the same method. So we
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modify the proof related to this trick (Lemma 3.1). Finally, we show the inequality
(1.2) for an increasing convex function f with f(0) = 0 and positive 7-measurable
operators a, b.

2. Notation

Throughout this paper, 2 denotes a semi-finite von Neumann algebra on a Hilbert
space $) with a faithful normal semi-finite trace 7.

A (continuous) non-negative function f () on [0, co) is said to be operator mono-
tone if

0<a<b =f(a)<f(b)

for any such matrices a, b of all orders n. This is equivalent to saying that the
above implication is valid in the space of bounded linear operators on an (infinite
dimensional) Hilbert space (see [2]). The following integral representation theorem is
espacislly famous and important; for each non-nagatiove operator monotone f (¢) there
are uniquely constants a, 8 > 0 and a non-negative measure u(-) on [0,00) such that

1) =a+/3t+/owss—+ttdu(s) (1 € [0,00)).

(See [2], V. 4.) A non-negative function g(¢) on [0,00) is said to be operator convex
(resp. operator concave ) if

glrha+ (1 —A)b) <Agla)+ (1 —A)gb) (a,b>0,0<A<1)

(resp. reversed inequality holds in the above). It is known (see [2], V. 2) that opera-
tor concavity concides with operator monotonity on [0, c0) , and that a non-negative

function g(r) with g(0) = 0 is operator convex if and only if g(t—t> is operator monotone.

A densely-defined closed operator a affiliated with 2 is said to be 7-measurable if,
foreach § > 0, there exists a projection e in 2 suchthat e$) C D(a) and 7(1—¢) < 6
where D(a) denotes the domain of a. Let A denote the set of all 7-measurable
operators affiliated with 2, which becomes a complete Hausdorff topological  -algebra
equipped with the measure topology (see [7], [8]). Let |a| = [;° A de;(|a]) be the
spectral decomposition. Then it is easy to check that a is 7-measurable if and only
if (1 —ex(la])) < oo for A large enough (cf. [4], [7]). The generalized s-number

w(a), t >0, o0f a € is defined by
i (a) = inf{s: 7(e(o0)(la]) <t} (0 <1< 00).

The above definition corresponds to the decreasing rearrangement of the eigenval-
ues of |a| (see [4]).
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3. Main theorem

For the proof of the main theorem the following Lemma is crucial. The analogous
inequality can be found in [3].

LEMMA 3.1.  For a positive operator ¢ in 2 let q and g, be projections
commuting with ¢ such that e (¢) < q1 < ejog(c) and e(; ) (c) < q2 < €[00)
where eg(c) denotes the spectral projection for ¢ corresponding to a Borel set B in
[0,00) . Then

llheqill2 - < [lchqill2, (3.1)
|lheqa|l2 = lchqa||2 (32)

for every self-adjoint operator h in . Here, ||x||2 denotes the L? -norm of an element
x. (ie. ||x|], = 7(x*x)2.)
Proof. Notice that qic*q; < s°q1 and gi-*qi- > 5* ql , since ¢fo 4 (c)c?ep(c) <
526[073} (c) and e[ o (c)cze[svoo] (c) = sze[svoo}( ). Here, q1 = 1—g;. We compute
llheqill3 = [1(q1 + g1 Yheq |3

= |lgiheqr + qi-heai |3

= t((q1chqy + qichqi ) (@iheq) + i heg))

= t(|qiheqi * + |g1-hean])

= |lgiheqil3 + llgi-hea |13

< lgrheqi|3 + 5*llai hau[3

because

llgiheaill; = llgichar |13
= 7(qi heqr - qichgt)
= (511 h-cqic- h611 )
< S 1(qq hg, - 6]1h61 )
(since cqic = q1c*q1 < 5*q1)
= *|lgi han |13

In a similar way we have

llchar|[5 = |lqihell3
= |lgihe(q1 + a1 )13
= [|q1hcqr + qiheqi|[3
= ©((q1chq1 + g1 chq1)(q1heq) + qiheqy))
= (lgiheq [* + |qiheqi )
= [lqiheqi|; + llg1heqi |3
> |lgiheqr|5 + 8°||gi-hai 3.
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These two inequalities yield the first inequality of the assertion. Similary for the
second inequality, we get the conclusion. (|

LEMMA 3.2.  For positive operators a, b in 2 and a projection q commuting
with a + b such that ey (a+b) < q < e[ (a+b)

t(glala+1)""+b(b+1)"")g) >t (g9a+b)a+b+1)""q).

Proof. We set ¢ = (a+ b+ 1)7% . Since
(a+b)(a+b+ 1) =c(a+ b)c = cac+ cb,

it suffices to prove that
t(ga(a +1)7'q) > t(geacq).
Notice here that e[, o) (a +b) = eg__j(c) and e(; o0y (a+b) = e _1_ (c).

’ s+1

Applying Lemma 3.1 to a? in place of h we have

t(geacq) = ||a*cqll3
< lleatqll3

2a%q)

< T(qa%(a—i- 1)_1a%q)

(sincec® = (a+b+ 1) <(a+1)71)

= t(qa(a +1)"'q).

= T(qa%c

O

In next proposition, we prove the main result for operator monotone and operator
convex functions.

PROPOSITION 3.1. Let a, b be positive operators in . Then:
(1) For a non-negative operator monotone function f (t) on [0, 00)

t

[ u@+sonas> [ ugia+oas
0 0

(2) For every non-negative increasing function g(t) on [0,00) with g(0) =0
and g(o0) = oo, whose inverse function is operator monotone

[ st +snas < [ istaro)as
0 0

Proof. There exists a positive measure (s) on [0,00) such that

r=atpre [T Edu) a0,
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So, for any positive operator a € 20 and any projection e € 2 we have

T(f (a)e) = 1(ae) + T(Bae) + /000 t(sa(a + s)"'e) du(s).

Applying Lemma 3.2 for a projection p commuting with a+b suchthat e, ) (a+
b) <p<eyy(@atb) (0<y <oo) wehave

t(p(sa(a+ )~ +sb(b +5)"p) = t(p(s(a+b)(a+b+s)""p).

Therefore we get

o((f (@) +f(b))p) = ©(f (a+ b)p).
If 2 has no minimal projection, then there is a projection p; € 2 commuting with
a + b such that

€ w(a+b),00) ((1 + b) SPrs €u(a+b),00) (a + b)’ and T([);) =1

Since f 1is increasing, we have

e(u(f (atb)),00) (f (@ + D)) < pr < efr(ath)),0) (f (@ + b))

So, we have
t
(et bp) = [ wlrtasp)ds
0
(see p202, [9]). Especially we set p = p,. We get

/Ous(f(a) +f (b)) ds = ©((f(a) + £ (b))p:) (Lemma 4.1, [4])

> 7(f (a+b)p:)

:/0 Us(f (@ + b)) ds.

Next we prove the second assertion. From the above inequality we get
t t
[t v = [l sl@) + 67 6 s
t
> [ s~ sta) + 5(6)) d

Since g(#) is a non-decreasing convex function, by the majorization principle (see [6])
this implies

[ tstaronas> [ tsta) + 500 as
0 0
0

REMARK 3.1. In the above proof, we assume that 2 has no minimal projection.
But this assumption is not restrictive, since we can always embed 2 into A ® L(O[‘(’) 1]:dr)
without changing the generalized s-number. (See p. 286, [4].)
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Finally, we show the main result for every increasing convex function with f (0) =
0 and positive T-measurable operators.

THEOREM 3.1. Let f be a non-negative convex function on [0, 00) with f (0) = 0.
Then

t t
| naroyass [ug@renas
for positive elements a, b in 2.

Proof. By Proposition 3.1 we can prove

[n@renasz [ug@-rre)a (3:3)
0 0

for positive operators a, b in 2. Here exactly the same argument as in [5] works so
that details are left to the reader.

We then extend (3.3) to (not necessarily bounded) T-measurable operators a, b.
Weset a, = [ Adey and b, = [ Ade; . Now, a, < a, b, <banda, /a, b, /'b
in measure. By a simple argument we see f (a,) /" f(a), f(b,) /' f(b) in measure.
By Theorem 3.5, [4] we get

[ @ roas < [ (a4 00)as

0

n—oo

< liminf/ot Us(f (an) +f (bn)) ds

n—oo

t
< liminf/ us(f (an + by)) ds.
0

Since a, + b, < a+ b and f is non-decreasing, we have

/r,us(f(an +b,))ds < /tus(f(a + b)) ds.
0 0

Combining the above estimates, we obtain (3.3) for positive 7-measurable operators.
]
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