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MAJORIZATION INEQUALITIES RELATED TO

INCREASING CONVEX FUNCTIONS IN A

SEMIFINITE VON NEUMANN ALGEBRA

TETSUO HARADA

(communicated by T. Ando)

Abstract. Let μs(x) denote the generalized s -number of an operator x . We show a mojorization
inequality

∫ t
0 μs(f (a+b)) ds � ∫ t

0 μs(f (a)+ f (b))ds for every increasing convex function with
f (0) = 0 and positive τ -measurable operators a , b affiliated with a semi-finite von Neumann
algebra A .

1. Introduction

In 1999, Ando and Zhan proved [1]

k∑
j=1

λj(f (a + b)) �
k∑

j=1

λj(f (a) + f (b)) (1 � j � n) (1.1)

for every operator convex function with f (0) = 0 and n × n positive semidefinite
matrices a , b . Here, λ (a) = (λ1(a), · · · , λn(a)) and λ (b) = (λ1(b), · · · , λn(b))
denote the eigenvectors of a and b in decreasing order, respectively. Recently, an
extended result of the above inequality was shown by Kosem [5]. He proved the
inequality (1.1) when f is an increasing convex function with f (0) = 0 by using the
above Ando-Zhan result and an approximation method. In this paper, we prove the
inequality (1.1) in a semi-finite von Neumann algebra. More precisely, let A be a
semi-finite von Neumann algebra with faithful normal semi-finite trace τ and f be an
increasing convex function with f (0) = 0 . We show

∫ t

0
μs(f (a + b)) ds �

∫ t

0
μs(f (a) + f (b)) ds (0 � t � τ(1)) (1.2)

for positive operators a , b in A . Here, we denote by μs(a) the generalized s -number
of an element a in A (see [4]). We first prove the inequality (1.2) for every operator
convex function with f (0) = 0 . Since Ando and Zhan used the n × m matrix trick
to prove the inequality (1.1), we think that we can not apply the same method. So we
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modify the proof related to this trick (Lemma 3.1). Finally, we show the inequality
(1.2) for an increasing convex function f with f (0) = 0 and positive τ -measurable
operators a , b .

2. Notation

Throughout this paper, A denotes a semi-finite von Neumann algebra on a Hilbert
space H with a faithful normal semi-finite trace τ .

A (continuous) non-negative function f (t) on [0,∞) is said to be operator mono-
tone if

0 � a � b ⇒ f (a) � f (b)

for any such matrices a , b of all orders n . This is equivalent to saying that the
above implication is valid in the space of bounded linear operators on an (infinite
dimensional) Hilbert space (see [2]). The following integral representation theorem is
espacislly famous and important; for each non-nagatiove operator monotone f (t) there
are uniquely constants α, β � 0 and a non-negative measure μ(·) on [0,∞) such that

f (t) = α + β t +
∫ ∞

0

st
s + t

dμ(s) (t ∈ [0,∞〉 ).

(See [2], V. 4.) A non-negative function g(t) on [0,∞〉 is said to be operator convex
(resp. operator concave ) if

g[λa + (1 − λ )b] � λg(a) + (1 − λ )g(b) (a, b � 0; 0 � λ � 1)

(resp. reversed inequality holds in the above). It is known (see [2], V. 2) that opera-
tor concavity concides with operator monotonity on [0,∞〉 , and that a non-negative
function g(t) with g(0) = 0 is operator convex if and only if g(t)

t is operatormonotone.
A densely-defined closed operator a affiliatedwith A is said to be τ -measurable if,

for each δ > 0 , there exists a projection e in A such that eH ⊂ D(a) and τ(1−e) < δ
where D(a) denotes the domain of a . Let A denote the set of all τ -measurable
operators affiliated with A , which becomes a complete Hausdorff topological ∗ -algebra
equipped with the measure topology (see [7], [8]). Let |a| =

∫ ∞
0 λ deλ (|a|) be the

spectral decomposition. Then it is easy to check that a is τ -measurable if and only
if τ(1 − eλ (|a|)) < ∞ for λ large enough (cf. [4], [7]). The generalized s-number
μt(a) , t > 0 , of a ∈ A is defined by

μt(a) = inf{s : τ(e(s,∞)(|a|)) � t} (0 < t < ∞).

The above definition corresponds to the decreasing rearrangement of the eigenval-
ues of |a| (see [4]).
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3. Main theorem

For the proof of the main theorem the following Lemma is crucial. The analogous
inequality can be found in [3].

LEMMA 3.1. For a positive operator c in A let q1 and q2 be projections
commuting with c such that e[0,s〉 (c) � q1 � e[0,s](c) and e〈 s,∞〉 (c) � q2 � e[s,∞〉
where eB(c) denotes the spectral projection for c corresponding to a Borel set B in
[0,∞〉 . Then

||hcq1||2 � ||chq1||2, (3.1)
||hcq2||2 � ||chq2||2 (3.2)

for every self-adjoint operator h in A . Here, ||x||2 denotes the L2 -norm of an element
x . (i.e. ||x||2 = τ(x∗x) 1

2 .)

Proof. Notice that q1c2q1 � s2q1 and q⊥1 c2q⊥1 � s2q⊥1 , since e[0,s](c)c2e[0,s](c) �
s2e[0,s](c) and e[s,∞](c)c2e[s,∞](c) � s2e[s,∞](c) . Here, q⊥1 = 1 − q1 . We compute

||hcq1||22 = ||(q1 + q⊥1 )hcq1||22
= ||q1hcq1 + q⊥1 hcq1||22
= τ((q1chq1 + q1chq⊥1 )(q1hcq1 + q⊥1 hcq1))

= τ(|q1hcq1|2 + |q⊥1 hcq1|2)
= ||q1hcq1||22 + ||q⊥1 hcq1||22
� ||q1hcq1||22 + s2||q⊥1 hq1||22

because

||q⊥1 hcq1||22 = ||q1chq⊥1 ||22
= τ(q⊥1 hcq1 · q1chq⊥1 )

= τ(q⊥1 h · cq1c · hq⊥1 )

� s2τ(q⊥1 hq1 · q1hq⊥1 )

(since cq1c = q1c
2q1 � s2q1)

= s2||q⊥1 hq1||22.
In a similar way we have

||chq1||22 = ||q1hc||22
= ||q1hc(q1 + q⊥1 )||22
= ||q1hcq1 + q1hcq⊥1 ||22
= τ((q1chq1 + q⊥1 chq1)(q1hcq1 + q1hcq⊥1 ))

= τ(|q1hcq1|2 + |q1hcq⊥1 |2)
= ||q1hcq1||22 + ||q1hcq⊥1 ||22
� ||q1hcq1||22 + s2||q⊥1 hq1||22.
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These two inequalities yield the first inequality of the assertion. Similary for the
second inequality, we get the conclusion. �

LEMMA 3.2. For positive operators a , b in A and a projection q commuting
with a + b such that e〈 s,∞〉 (a + b) � q � e[s,∞〉 (a + b)

τ
(
q(a(a + 1)−1 + b(b + 1)−1)q

)
� τ

(
q(a + b)(a + b + 1)−1q

)
.

Proof. We set c = (a + b + 1)−
1
2 . Since

(a + b)(a + b + 1)−1 = c(a + b)c = cac + cbc,

it suffices to prove that
τ(qa(a + 1)−1q) � τ(qcacq).

Notice here that e[s,∞〉 (a + b) = e[0, 1√
s+1

](c) and e〈 s,∞〉 (a + b) = e[0, 1√
s+1

〉 (c) .

Applying Lemma 3.1 to a
1
2 in place of h we have

τ(qcacq) = ||a 1
2 cq||22

� ||ca 1
2 q||22

= τ(qa
1
2 c2a

1
2 q)

� τ(qa
1
2 (a + 1)−1a

1
2 q)

(since c2 = (a + b + 1)−1 � (a + 1)−1)

= τ(qa(a + 1)−1q).

�
In next proposition, we prove the main result for operator monotone and operator

convex functions.

PROPOSITION 3.1. Let a , b be positive operators in A . Then:
(1) For a non-negative operator monotone function f (t) on [0,∞〉

∫ t

0
μs(f (a) + f (b)) ds �

∫ t

0
μs(f (a + b)) ds.

(2) For every non-negative increasing function g(t) on [0,∞〉 with g(0) = 0
and g(∞) = ∞ , whose inverse function is operator monotone

∫ t

0
μs(g(a) + g(b)) ds �

∫ t

0
μs(g(a + b)) ds.

Proof. There exists a positive measure μ(s) on [0,∞〉 such that

f (t) = α + β t +
∫ ∞

0

st
s + t

dμ(s) (t ∈ [0,∞〉 ).



MAJORIZATIONS RELATED TO INCREASING CONVEX FUNCTIONS 453

So, for any positive operator a ∈ A and any projection e ∈ A we have

τ(f (a)e) = τ(αe) + τ(βae) +
∫ ∞

0
τ(sa(a + s)−1e) dμ(s).

ApplyingLemma3.2 for a projection p commutingwith a+b such that e〈 γ ,∞〉 (a+
b) � p � e[γ ,∞〉 (a + b) (0 � γ � ∞) we have

τ(p(sa(a + s)−1 + sb(b + s)−1)p) � τ(p(s(a + b)(a + b + s)−1)p).

Therefore we get
τ((f (a) + f (b))p) � τ(f (a + b)p).

If A has no minimal projection, then there is a projection pt ∈ A commuting with
a + b such that

e〈 μt(a+b),∞〉 (a + b) � pt � e[μt(a+b),∞〉 (a + b), and τ(pt) = t.

Since f is increasing, we have

e〈 μt(f (a+b)),∞〉 (f (a + b)) � pt � e[μt(f (a+b)),∞〉 (f (a + b)).

So, we have

τ(f (a + b)pt) =
∫ t

0
μs(f (a + b)) ds

(see p202, [9]). Especially we set p = pt . We get
∫ t

0
μs(f (a) + f (b)) ds � τ((f (a) + f (b))pt) (Lemma 4.1, [4])

� τ(f (a + b)pt)

=
∫ t

0
μs(f (a + b)) ds.

Next we prove the second assertion. From the above inequality we get
∫ t

0
μs(a + b)ds =

∫ t

0
μs(g−1(g(a)) + g−1(g(b))) ds

�
∫ t

0
μs(g−1(g(a) + g(b))) ds.

Since g(t) is a non-decreasing convex function, by the majorization principle (see [6])
this implies ∫ t

0
μs(g(a + b))ds �

∫ t

0
μs(g(a) + g(b)) ds.

�

REMARK 3.1. In the above proof, we assume that A has no minimal projection.
But this assumption is not restrictive, since we can always embed A into A ⊗ L∞

([0,1];dt)
without changing the generalized s -number. (See p. 286, [4].)
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Finally, we show the main result for every increasing convex function with f (0) =
0 and positive τ -measurable operators.

THEOREM 3.1. Let f be a non-negative convex function on [0,∞〉 with f (0) = 0 .
Then ∫ t

0
μs(f (a + b)) ds �

∫ t

0
μs(f (a) + f (b)) ds

for positive elements a , b in A .

Proof. By Proposition 3.1 we can prove
∫ t

0
μs(f (a + b)) ds �

∫ t

0
μs(f (a) + f (b)) ds (3.3)

for positive operators a , b in A . Here exactly the same argument as in [5] works so
that details are left to the reader.

We then extend (3.3) to (not necessarily bounded) τ -measurable operators a , b .
We set an =

∫ n
0 λdeλ and bn =

∫ n
0 λdeλ . Now, an � a , bn � b and an ↗ a , bn ↗ b

in measure. By a simple argument we see f (an) ↗ f (a) , f (bn) ↗ f (b) in measure.
By Theorem 3.5, [4] we get

∫ t

0
μs(f (a) + f (b)) ds �

∫ t

0
lim inf
n→∞ μs(f (an) + f (bn)) ds

� lim inf
n→∞

∫ t

0
μs(f (an) + f (bn)) ds

� lim inf
n→∞

∫ t

0
μs(f (an + bn)) ds.

Since an + bn � a + b and f is non-decreasing, we have
∫ t

0
μs(f (an + bn)) ds �

∫ t

0
μs(f (a + b)) ds.

Combining the above estimates, we obtain (3.3) for positive τ -measurable operators.
�
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