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REFINEMENTS, EXTENSIONS AND GENERALIZATIONS
OF THE SECOND KERSHAW’S DOUBLE INEQUALITY

FENG QI, X1A0-AIl L1 AND SHOU-XIN CHEN

(communicated by A. Laforgia)

Abstract. In the paper, the second Kershaw’s double inequality concerning the ratio of two
gamma functions is refined, extended and generalized elegantly.

1. Introduction

It is well known that the classical Euler’s gamma function I'(x) is defined for
x>0 as

() = / e dr. (1)
0
The logarithmic derivative of I'(x), denoted by

w(x) = % (2)

is called the psi or digamma function, and w(x) for i € N are known as the
polygamma or multigamma functions. These functions play central roles in the theory
of special functions and have lots of extensive applications in many branches, for
example, statistics, physics, engineering, and other mathematical sciences.

The generalized logarithmic mean L,(a,b) of order p € R for positive numbers
a and b with a # b is defined in [4, p. 385] by

bp+1 o ap+1 l/p
L — —1,0;
e A
b—a
Ly(a,b) = b —Ing’ p=-1 (3)
1 bb 1/(b—a)
z(&) : p=0
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It is well known that
_»(a,b) = Vab = G(a,b), L_,(a,b)= L(a,b), (4)
b y(ab) (s)

Lo(a,b) =I(a,b) and Ly(a,b)=

are called respectively the geometric mean, the logarithmic mean, the identric or expo-
nential mean and the arithmetic mean. It is also known [4, pp. 386387, Theorem 3]
that the generalized logarithmic mean L,(a, b) of order p is increasingin p for a # b.
Therefore, inequalities

G(a,b) < L(a,b) < I(a,b) < A(a,b) (6)

are valid for ¢ > 0 and b > 0 with a # b. See also [26, 27].
In [13], the following two double inequalities were established for 0 < s < 1 and

x=>1:
s\'"* (x+) 1 )
()C-FE) < (X+ ) X—E—‘r S+Z s (7)
exp[(l—s)u/(x+\/§)]<%<exp [(l—s)u/<x+SJ2rl)]. (8)

They are called the first and the second Kershaw’s double inequality respectively. There
have been a lot of literature, such as [5, 7,9, 10, 11, 12, 14, 19, 20, 21, 22, 23, 30, 32, 34,
35,36, 37, 39, 40, 50] and the references therein, about these two double inequalities and
their history, background, refinements, extensions, generalizations and applications.

n [2, Theorem 2.7], the double inequality (8) was generalized to

v @] - v )]
x—y

- ’u/(n+l>(L—(n+2)(x7y))’ < < _‘w(n+l>(A(x7y)) )

©)

where x and y are positive numbers, n is a positive integer.
In [23], the following generalization, extension and refinement of the second Ker-
shaw’s double inequality (8) were obtained: For 5,7 € R with s # ¢, the function

[(x+s) 1/(s=1) 1 0
C(x+1) eV (L(s,1) (10)

is decreasing in x > — min{s, ¢} . In [23, 40], the function

1/(t—s
F()C + S) /e >eu/(A(s,t;x))
I(x+1)

(11)

is proved to be logarithmically completely monotonic in x > — min{s,7}. Conse-
quently, for s, € R and x > — min{s, t} with s # ¢,

1(s—)
it o [T +9) ) (12)
[(x+1) ’
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where
L(s,t;x) = L(x+s,x+1¢) and A(s,t;x) =A(x+ s,x+ 1) (13)
for s, € R and x > —min{s, 7} with s #¢.
In [41, 42], the right-hand side inequalities in (9) and (12) were refined as follows:
For s,# € R with s # ¢ and x > — min{s, 7}, inequalities

B e
" e -y )
o <Y EY), (9
hold, where
I(s,t;x) = I(x+s,x+ 1) (16)

and n € N. These inequalities (14) and (15) refine, extend and generalize the right-
hand side inequality in the second Kershaw’s double inequality (8).

The aim of this paper is to generalize, extend and refine the right-hand side
inequalities in (8), (9) and (12). Meanwhile, the left-hand side inequalities in (9)
and (12) and inequalities (14) and (15) are recovered.

The main results of this paper are the following theorems.

THEOREM 1. For real numbers s > 0 and t > 0 with s # t and an integer
i > 0, the inequality

0w < S [ yowans Cowousn  an
holdsif p < —i—1 and g > —i.

THEOREM 2. The inequality

161
Vplsin) [?Exi j))] < VlLy(s0) (18)
X

for s,t € R with s # t and x > — min{s, t} or, equivalently,

WiLp(ab)) {M < o¥Lg(ab) (19)

I'(b)
for a>0and b >0, holdsif p < —1 and q > 0.

:| 1/(a7b)

THEOREM 3. For i > 0 being an integer and s,t € R with s # t and x >
— min{s, t}, the function

1 [ ) - 2 [ w06+l (20)

is increasing in x if either p < —(i+2) or p = —(i + 1) and decreasing in x if
pzl
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REMARK 1. Itis conjectured that the function (20) is decreasing (even completely
monotonic) in x if p > —i and that its negative is decreasing (even completely
monotonic) in x if p < —(i+1).

2. Proofs of theorems

Proof of Theorem 1. Itis apparent that the function f (x) = (— 1)y (x) for i > 0
is strictly increasing, the function g(x) = x” for p # 0 is monotonic in (0, c0), and
the inverse function of g is g~ !(x) = x!'/P_ Straightforward computation gives

g (Iis/ g(u)du> = Ly(s,1), (21)
h(x)2f og ™ (x) = (1) y (x'/P) (22)
and
xl/p—2 . .
K (x) = (—1)’7 [xl/l’u/(tﬂ) (xl/p) —(p— Dyl (xl/p)]
._xl/P_2
= _1)1 p2 [MII/(HZ)(M)_ (p l)w(z+l)( )]
xl/p 2

’u/ﬁl ‘ M’l]/HZ )

where u = x'/?. When p > 1, we have h”(x) < 0. It was proved in [43] that the
function

x|y )| - ey ()]
is completely monotonic in (0, 00) if and only if 0 < @ < i € N and that the function
O£| v (i) | )C| II/ 1+1 )|

is completely monotonic in (0, 00) if and only if o > i+ 1. A function f is called
completely monotonic on an interval [ if f has derivatives of all orders on I and

(1% >0

forall k > 0 on I, see [3, 25, 51]. This means thatif 1 —p < i+ 1 for i > 0 then
h’(x) < 0 and thatif 1 —p > i+ 2 for i > 0 then A”(x) > 0. In conclusion, for
i>0,if p > —ithen h"(x) <0,if p < —i—1 then A”(x) > 0. It was obtained in [6]
(see also [4, p. 274, Lemma 2]) that if g is strictly monotonic, f is strictly increasing
and f o g_l is convex (or concave, respectively) on an interval I, then

o (i [ewa) < (A [rwa) 3

holds (or reverses, respectively) for s,¢ € I. Therefore, when p < —i — 1 for i > 0,
inequality

(L (5,)) < S / () du (24)
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holds for positive numbers s and 7; when p > —i for i > 0, inequality (24) reverses.
The proof of Theorem 1 is complete. [l

Proof of Theorem 2. Taking logarithm on all sides of (18) yields

W(Ly(s, 1:x)) < InClx+s) —Inlx+7) 1 /Sq/(eru) du < y(Ly(s, £;x))

s—1 s—1

which is the same as inequality (17) for the case of i = 0. The proof is complete. [J

Proof of Theorem 3. Easy calculation gives

OLy(s,1:x)  [Ly—i(s,55x)]""
Ox | Ly(s,t3x) '

(25)

Since the generalized logarithmic mean L,(a,b) is strictly increasing in p, hence

% zlif ps =1. Itis clear that the derivative of the function defined by (20)

equals

QPJ}SJ(X) — (71)i lII(iJrl)(Lp (S, t;x)) aLp (57 t; X) . 1 /t w(i+1)(x N u) du:|

Ox t—s
= [y (stx))]aL(aSt.x)— /’u/zﬂ (x + )| du
2 [y (L (5, 1) x4 ) du

if p§ 1. Combining this with Theorem 1 yields thatif p < 1 and p < —i — 2 the
derivative of (20) is non-negative and that if p > 1 and p > —i — 1 the derivative of
(20) is non-positive. Consequently, when p < —i — 2 the function (20) is increasing,
when p > 1 the function (20) is decreasing in x > — min{s, 7} .

In [1, p. 260, 6.4.10], the following formula is listed: For z # 0,—1,—2,... and
neN,

- 1
M () = (1) E - - 26
v"(z) = (-1)"n £ (z+ k)il (26)
Further considering (25) gives

%%tl(;') B i{ [Lz(ls(s;tg)r_l [Ly(s, t;xl) + K] - tis /ST (x+u1+k)i+2 du}

k=0

= p—1(s,13%) 1" 1 1 _ 1
Z { { (s,1:x) } [Ly(s, ) + K7 Lo (s, l;x+k)}i+2}

B i { o1 (s, tx)rl{ Ly(s,1;x) + k ]”2
[Ly(s,1; %) +k’+2 (s, 1;x) L_i12)(s,;x + k) '

k=
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Inequality (25) implies that the function L,(s, #;x + k) — k is increasing in k for
p < 1. Thus, inequality

L,(s,t;x) < Ly(s,t;x + k) —k < A(s, t;x) (27)
holds for p < 1 and k& > 0. This means that
Ly(s,t;x) +k < L,(s,t;x+ k)

< 28
L_(i+2)(s7 t;x+k) L_(i+2)(s,t;.x+k) ( )
and
{Lp_l(s,t;x)]pl [ Lsnx) +k 2
L,(s,t;x) LL_(iy2) (s, x + k)
S 'Lp_l(s,t;x)_”fli [ L(s,x+k) 17
| Ly(s,t;x) | L L_(is2) (s, x + k) |
_ [Lyoa(s,0]7 7" Lo (s,x+ k)]
| Ly(s,1;x) | | Ly(s,;x+k) |
o [Lilsm0] ™ (Lo (snx+ k)]
“ L Ly(s, %) | (s, x + k) |
_ - p— i+2
:>94me{_LM@m)+> 29)
g L LP(Sat;x) i _Lf(iJrl)(sat;x)
for —i —2 < p < 1, where the following fact is used in the final line above:
0 [Ly(s,:x)]  Ly(s,t5x) 1
dx Ly(s,t;x) | Ly(s,t;x) |[E(p,p+ Lix +s5,x+1)
1
0 30
E(q,q+1;x+s,x+t)]> ’ (0

where E(p, q;a,b) is defined for p,q € R and a,b > 0 by

p b ad 1/(g—p)
N palp —)a— ) £0;
1 b’ —al lp
E(p,0;a,b) = |- ———| | —b)#0;
R pla—b) #
1 Ta 1/(a”=bP)
E(pp’a b) l/p bbp:| ) p(a_b)#o?
E(0,0;a,b) = \ab, a # b,
E(p7q;a7a):a7 a:b'

It is remarked that the monotonicity, Schur-convexity, logarithmic convexity, compari-
son, generalizations, applications and history of the extended mean values E(p, g; a, b)
have been investigated in many articles such as [8, 15, 16, 17, 18, 24, 26, 27, 28, 29, 31,
33, 38, 44, 45, 46, 47, 48, 49, 52, 53, 54] and the references listed in [4, pp. 393-399].
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As a result, the function Q_(;41),(x) is non-negative, and then the function (20) for
p = —(i+ 1) is increasing in x. The proof of Theorem 3 is complete. [J
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