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INTERPOLATION OF COMPACT OPERATORS

IN SPACES OF MEASURABLE FUNCTIONS

EVGENIY PUSTYLNIK

(communicated by B. Opic)

Abstract. It is shown that one-sided interpolation of compactness property is possible by any
method on the class of pseudo-lattices, i.e., spaces of measurable functions, where the operators
PDf = f χD are uniformly bounded. Analogous results are shown for sequence spaces, ordered
quasinormed Abelian groups and even extended to abstract Banach couples, satisfying some
weak approximation hypothesis.

1. Introduction

Interpolation theory of linear operators is intended for obtaining properties of such
operators on intermediate spaces of some scale, when these properties are known at the
endpoint spaces. In fact, the only property of operators, which is really interpolated,
is their boundedness with corresponding estimates of norms (cf. inequalities (3.1) and
(3.2) below). The solution of any other problem consists thereafter in constructing
some operators whose boundedness and estimates of norm imply the needed result. For
example, this is the way for studying spectral properties of operators, convergence of
approximations, Fourier transforms and coefficients, Sobolev embeddings and so on.

The problem of interpolation of compactness property stands in the same line.
Already the first theorem of such a kind from [10] used approximation by special
(averaging) finite rank operators, a priori bounded in all considered spaces; the same
operators were used in many subsequent papers. A more general result was obtained in
[14], where the existence of needed approximatingoperators (the approximationhypoth-
esis) was only postulated, without specifying their nature. The modern investigations,
as a rule, may be divided into two main parts: study of special interpolation methods
on arbitrary spaces or construction of large classes of spaces where interpolation of the
compact operators is possible by any method.

Papers of the first type consider the compact operators in real and complex interpo-
lation, in some orbit methods andmethodswith certainmaximal andminimal properties.
It should be noticed that the problem of interpolation of compactness property by the
real method may be now regarded as solved almost completely (see, e.g., [5], [7] and
their references). Interpolation of compactness by the complex method is still far from
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complete solution; various partial results can be found in [9], [15] and many others.
Other special methods are considered, e.g., in [4], [6], [8].

The classes of spaces suitable for interpolation of compactness by anymethod were
constructed in papers of the second type by applying special approximation hypotheses.
While the paper [14] considered as examples only general Lp spaces, the paper [12]
contains results for arbitrary rearrangement-invariant spaces (in fact, this is the largest
class of spaces with desired properties, presented in the literature till now). The
same spaces appeared many years before in the papers [11] and [16] as interpolation
ones in the couples (Lp, Lq) . The main achievement of the last mentioned papers
is obtaining necessary and sufficient conditions for interpolation of compactness in
considered spaces, which may be used as necessary conditions for the general real
method as well. Just this fact confirms completeness of the results from [5].

In the present paper we propose an essentially larger class of spaces of measurable
functions, which contains arbitrary function and sequence lattices as a partial case.
Moreover, for the case of ordered couple, we can include also quasinormed Abelian
groups studied in [13]. The only required property is the boundedness of the mul-
tiplication operators PDf = f χD , where χD is a characteristic function of arbitrary
measurable set D (in the sequence spaces we consider only D = [n, n + 1, . . .) with
arbitrary natural n ). Such spaces will be called pseudo-lattices. The compactness
of sets in these spaces can be split into two properties that can be verified separately:
compactness in measure and absolute equicontinuity of norms. When interpolating,
the first property is inherited from the largest spaces and the second property results
from interpolation of the corresponding multiplication operators with estimates of their
norms.

Throughout the paper we suppose the reader is familiar with the basics of inter-
polation theory of linear operators; for more details and definitions, we refer to the
monograph [2]. For simplicity, we only give detailed proofs for Banach spaces of func-
tions, indicating in the last section all needed modifications for passing to the spaces of
sequences and Abelian groups. For the same reason, we consider only bounded sets,
since an extension to the general case can be done by standard methods for any σ -
finite measure. At last, we formulate some new approximation hypothesis, generalizing
properties of pseudo-lattices to abstract normed spaces.

2. Compactness in pseudo-lattices of functions

We start with consideration of measurable finite a.e. functions f : Ω → R , where
Ω is an arbitrary given set with positive nonatomic measure μ such that μΩ < ∞ . Let
X be a Banach space of such functions f , which is intermediate in the couple (L0, L∞) ,
where L0 is the space from [13] with the “norm" ‖f ‖L0 = μ { supp f } . In particular,
this means that the topology in X is stronger than that in the space S = L0 + L∞ . The
space S is a quasinormed Abelian group with “1-norm"

‖f ‖S = inf
a>0

(a + μ{t : |f (t)| > a});

the convergence in this “norm" is the usual convergence in measure.
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DEFINITION 2.1. A space X is said to be a pseudo-lattice if ‖f χD‖X � CX‖f ‖X

for any measurable D ⊂ Ω with a constant CX independent of f and D .

A pseudo-lattice is not necessarily a lattice in the standard sense. For instance,
given a non-positive linear operator T : Lp → Lq with p, q > 1 , we can define a space
X as completion of Lp in the norm

‖f ‖X = ‖f ‖L1 + sup
D

‖T(f χD)‖Lq ,

where the supremum is taken over all measurable subsets D ⊂ Ω . In result the space
X with this norm is a pseudo-lattice but not necessarily a lattice.

We can illustrate the last assertion by the following elementary example. Let
Ω = (0, 4), v = χ(0,2] − χ(2,4) and let Tf (t) = u(t)

∫ 4
0 v(s)f (s) ds for some function

u ∈ Lq . Nowwe take f = v and g = χ(0,1]−χ(1,2]+χ(2,3]−χ(3,4) , so that |f (s)| = |g(s)|
for all s ∈ Ω . At the same time, it is easy to calculate that ‖f ‖X = 4 + 4‖u‖Lq , while
‖g‖X = 4 + 2‖u‖Lq .

DEFINITION 2.2. We say that a function f ∈ X has absolutely continuous norm if,
for any ε > 0 , there exists δ = δ(f ) such that ‖f χD‖X < ε whenever μD < δ . If all
functions from X are of such a kind, we say that X itself “has absolutely continuous
norms".

This property is well known for separable Banach function lattices with Lebesgue
measure. In the general case we can use the following statement.

PROPOSITION 2.3. A pseudo-lattice X has absolutely continuous norms if and only
if the space L∞ is dense in X and, for any ε > 0 , there exists δ such that ‖χD‖X < ε
whenever μD < δ (that is, one only needs to check the absolute continuity of the norm
for one function f (t) ≡ 1 ).

Proof. In order to prove the necessity part we consider truncations of functions:
f n(t) = min{|f (t)|, n} sign f (t), n = 1, 2, . . . Since all functions f are finite a.e., the
measure of the set of t where |f (t)| > n tends to 0 as n → ∞ . Due to absolutely
continuous norm of any f ∈ X this implies that ‖f − f n‖X → 0 , i.e., any f is the limit
of a sequence of bounded functions.

On the other hand, let the density of L∞ in X be given, i.e., for any function
f ∈ X and any ε > 0 , there exists a bounded function g such that ‖f − g‖X < ε . Let
now h = c1χΩ1 + . . .+ cmχΩm be a simple function such that ‖g−h‖L∞ < ε . Without
loss of generality, we may suppose that the embedding constant of L∞ into X is no
greater than 1, and thus ‖f − h‖X < 2ε .

Now we observe that the function h has an absolutely continuous norm in X , that
is, for sufficiently small μD ,

‖hχD‖X �
m∑

i=1

|ci| ‖χΩi∩D‖X < ε, (2.1)

since all characteristic functions have absolutely continuous norms by assumption. In
result, using the pseudo-lattice property of X , we get

‖f χD‖X � ‖hχD‖X + ‖(f − h)χD‖X < (1 + 2CX)ε,
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as desired. �
As usual, a set M ⊂ X is said to be compact in measure if any sequence from

M contains a subsequence convergent in measure. The compactness in measure is
equivalent to compactness with respect to convergence a.e. Indeed, any sequence
convergent a.e. converges in measure; any sequence convergent in measure contains a
subsequence convergent a.e. Any set M , which is compact in some X as above, is
compact in measure. The second necessary component of compactness in X is the
AEN property. Moreover, these two components together are not only necessary but
also sufficient for compactness, as proved in the following assertion.

PROPOSITION 2.4. A set M is compact in a pseudo-lattice X with absolutely con-
tinuous norms if and only if it is compact in measure and has absolutely equicontinuous
norms (AEN), that is, for any ε > 0 , there exists common δ such that ‖f χD‖X < ε for
all f ∈ M whenever μD < δ .

Proof. Let a set M be compact in X and let us show that it has AEN property.
For a given ε > 0 , let f 1, . . . , f m be an ε/(2CX) -net of this set and let δ be such that
‖f iχD‖X < ε/2, i = 1, . . . , m for any set D with μD < δ . Now, for arbitrary given
function f ∈ M , we take a function f k from the net such that ‖f −f k‖X < ε/(2CX) , and
then,with the same D as above,we obtain that ‖f χD‖X � ‖f kχD‖X+‖(f −f k)χD‖X < ε .

Conversely, let a set M ⊂ X be compact in measure and have the AEN property
in X . To prove compactness of this set in X it is enough to show that every sequence
{f n} , converging in measure to 0, converges to 0 in X . For any given ε > 0 , we have
δ such that the inequality μD < δ implies ‖f χD‖X < ε/2 for all f ∈ M . At the
same time, the convergence f n → 0 in measure means existence of a number N such
that, for all n > N , the measure of the set Dn = {t : |f n(t)| > ε/2} is less than δ .
Due to the choice of δ this implies that ‖f χDn‖X < ε/2 for all f ∈ M . On the other
hand, |f n(t)| � ε/2 on the remaining set Ω \Dn and thus ‖f nχΩ\Dn‖L∞ � ε/2 . Since
L∞ is normally embedded into X , this means that ‖f n‖X < ε , and we are done. �

REMARK 1. It is easy to see that, in fact, we have used absolute continuity of norm
only for functions from the set M and may not require this property of other f ∈ X .

3. Interpolation theorem

We recall that a rule F , which to any Banach couple �X = (X0, X1) assigns some
intermediate space X = F (�X) , is called an interpolation functor if, for any other
couple �Y = (Y0, Y1) and any linear operator T ∈ L (�Y, �X) , this operator is bounded
from Y = F (�Y) to X (the case �X = �Y is also permitted). Using the closed graph
theorem, one can show existence of a constant C such that

‖T‖Y→X � C max{‖T‖Y0→X0 , ‖T‖Y1→X1) (3.1)

for any T as above. A functor F is called bounded if there exists a universal C ,
suitable for all couples �X, �Y .
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Even for very simple and standard functors and couples, the norm estimate
(3.1) is insufficient for interpolation of compactness property. As shown in [11] for
rearrangement-invariant spaces and in [3] for the cases when one of the couples �X, �Y is
reduced to a single space, the norm ‖T‖Y→X should necessarily tend to zero together
with that norm ‖T‖Yi→Xi , i = 0 or 1, where the compactness of operators is given.
In our main theorem below we also include an analogous condition. Moreover, we do
not specify our proofs for situations when X0 = X1 or Y0 = Y1 , since these cases are
investigated in [3] as fully as possible.

Notice that an analogous extreme situation occurs in the cases when at least one of
the couples �X, �Y is trivial. Recall that a couple �X is called trivial if the space X0 ∩ X1

is closed in both spaces X0 and X1 . As shown in [1] (see also [2, page 133]), any trivial
couple has no interpolation spaces different from the endpoint spaces of the couple, their
sum and intersection, so any interpolation functor reduces to at most four individual
spaces and can be investigated similarly to the cases X0 = X1 or Y0 = Y1 . That is why
the trivial couples also will not be considered below.

THEOREM 3.1. Let �X = (X0, X1) be a nontrivial couple of pseudo-lattices such
that X0 has absolutely continuous norms. Let �Y = (Y0, Y1) be an arbitrary nontrivial
Banach couple and let an interpolation functor F possess the property

‖T‖F(�Y)→F(�X) � Φ(‖T‖Y0→X0 , ‖T‖Y1→X1) (3.2)

for all linear operators T : �Y → �X , where the function Φ(α, β) is non-decreasing and
limα→0 Φ(α, β) = 0 for any fixed β . Then if T ∈ L (�Y, �X) is compact as an operator
from Y0 to X0 , it is also compact as an operator from F (�Y) to F (�X) .

Proof. Let X = F (�X) , Y = F (�Y) and let a linear operator T be bounded
from Y1 to X1 and compact from Y0 to X0 . Then it is bounded, acting from Y1 , and
compact, acting from Y0 into one and the same space X0 + X1 . Applying Theorem
3.9 from [3], we obtain that either T is compact, when acting from Y to X0 + X1 , or
Y◦

1 ↪→ Y , where, as usual, Y◦
1 means the closure of Y0 ∩ Y1 in Y1 . Let us show that

the second possibility can only happen if Y◦
1 ↪→ Y0 .

Note, first of all, that the embedding Y◦
1 ↪→ Y0 is equivalent to the embedding

Y◦
1 ↪→ Y◦

0 . The Banach couple Y◦
0 , Y◦

1 is regular and thus the conjugate spaces
(Y◦

0 )∗, (Y◦
1 )∗ also form a Banach couple. Suppose that there exists a constant c such

that
‖g‖(Y◦

0 )∗ � c ‖g‖(Y◦
1 )∗ for all g ∈ (Y◦

0 )∗ ∩ (Y◦
1 )∗. (3.3)

This inequality is possible only in two cases: either (Y◦
0 )∗∩(Y◦

1 )∗ = (Y◦
0 )∗ or the space

(Y◦
0 )∗∩(Y◦

1 )∗ is closed in (Y◦
0 )∗ . In the first case we have that (Y◦

0 )∗ ↪→ (Y◦
1 )∗ , that is,

Y◦
1 ↪→ Y◦

0 andwe are done. In the second case we may use the theoremof Aronszajn and
Gagliardo from [1] (see also [2, page 131]), getting that in the couple (Y◦

0 )∗, (Y◦
1 )∗ there

are no interpolation spaces, lying strictly between (Y◦
0 )∗ ∩ (Y◦

1 )∗ = (Y◦
0 + Y◦

1 )∗ and
(Y◦

0 )∗ . But this conclusion contradicts the properties of functors in real interpolation
that gives infinitely many different interpolation spaces of the couple Y◦

0 , Y◦
1 in which

Y◦
0 ∩ Y◦

1 is dense and which lie between the spaces Y◦
0 and Y◦

0 + Y◦
1 . Passing to the



472 E. PUSTYLNIK

dual functors, we obtain that all these spaces have different conjugate spaces which all
are interpolation in the conjugate couple (Y◦

0 )∗, (Y◦
1 )∗ and lie just in the “forbidden

interval". This contradiction shows that the second case cannot be realized.
Now let us check the possibility of a situation when the inequality (3.3) does not

hold. Such a situation implies existence of linear functionals gn ∈ (Y◦
0 )∗ ∩ (Y◦

1 )∗, n =
1, 2, . . . , such that ‖gn‖(Y◦

1 )∗ = 1 for every n while ‖gn‖(Y◦
0 )∗ → 0 . Moreover, the

Hahn-Banach theorem allows us to extend these functionals (separately) to the whole
Y0 and to the whole Y1 with the same norms. Taking some function f ∈ X0 ∩ X1 , we
define one-dimensional operators Tny = gn(y)f , acting from Yi to Xi, i = 0, 1 , with
the norms

‖Tn‖Y1→X1 = ‖f ‖X1 , ‖Tn‖Y0→X0 = ‖gn‖Y∗
0
‖f ‖X0 → 0.

Using the inequality (3.2), we obtain that also

‖Tn‖Y→X = ‖gn‖Y∗‖f ‖X → 0,

which contradicts the embedding Y◦
1 ↪→ Y and thus disproves the considered possibility

for the inequality (3.3).
The proven embedding Y◦

1 ↪→ Y0 admits only two possibilities for the space
Y : either Y = Y1 	↪→ Y0 or Y ↪→ Y0 , where the first relation is incompatible with
the inequality (3.2) for any nontrivial couples. Thus we remain with the embedding
Y ↪→ Y0 which again implies compactness of T as an operator from Y to X0 + X1 .
Denoting by BY the unit ball of Y , we obtain that the set of functions TBY is relatively
compact in X0 + X1 and thus in measure.

For arbitrary D ⊂ Ω , let PD denote the operator of multiplication by χD . Recall
that any such operator is bounded in pseudo-lattices with norm estimates independent
of D . By conditions of the theorem, the set of functions TBY0 is relatively compact in
X0 and by Proposition 2.4 it has AEN property there. This means that ‖PDTy‖X0 → 0
uniformly on BY0 when μD → 0 , i.e., for any given α > 0 , we can find δ such that
‖PDT‖Y0→X0 < α whenever μD < δ . Since on the second endpoint of interpolation
we have ‖PDT‖Y1→X1 < CX1‖T‖Y1→X1 , we obtain that, for all D with sufficiently small
measure,

‖PDT‖Y→X � Φ(α, β), β = CX1‖T‖Y1→X1 .

But Φ(α, β) → 0 when α → 0 . Therefore, for any ε > 0 , there exists α such that
Φ(α, β) < ε . Taking δ suitable for this α , we obtain that ‖PDT‖Y→X < ε for any
set D with μD < δ , that is, the set of functions TBY has absolutely equicontinuous
norms. By Proposition 2.4 this entails the desired compactness of T as an operator
from Y to X . �

REMARK 2. The properties of the function Φ(α, β) are required in Theorem 3.1
only for the considered couples �X, �Y , so that the functor F may be even unbounded on
the whole. Moreover, this theorem can be reformulated for two given triples (X0, X1, X)
and (Y0, Y1, Y) with needed properties even without any mention of functors.

At the first sight, the conditions of our theorem look similar to the approximation
hypothesis from [14] (see also [12]), and it is interesting to compare them. Recall the
components of this hypothesis as they were formulated in [12]:
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For each compact set K ⊂ X0 , there exists a constant C such that, for each ε > 0 ,
there exists an operator P ∈ L (�X, �X) with the norms ‖P‖Xi→Xi � C (i = 0, 1) and
such that

a) P(Xi) ⊂ X0 ∩ X1, i = 0, 1 ;

b) ‖Pf − f ‖X0 < ε for all f ∈ K .

The only possible substitutes for operators P in our constructions are the operators
PD with arbitrary measurable sets D ⊂ Ω , which indeed satisfy the condition b) after
the special choice of D . At the same time, the condition a) could be realized only in
very special spaces, where the singularities of all functions are concentrated on some
set with zero measure. For instance, given a Banach function space E , we may take the
weight spaces Xi = E(ωi), i = 0, 1 with arbitrary monotone decreasing weights ωi .

The situation changes if the spaces X0, X1 are rearrangement-invariant, since in
such spaces the AEN property of an arbitrary set M is equivalent to the AEN property
of the set of non-increasing rearrangements f ∗ for all functions from M . And for
the non-increasing functions, the common set D such that the corresponding operator
PD satisfies the condition a) always exists — one may take D = Ω \ (0, δ) with an
appropriate δ . Recall that the class of rearrangement-invariant spaces was precisely
the largest class of spaces of measurable functions, considered in [12] by the use of the
approximation hypothesis.

4. Abelian groups, sequence spaces and other generalizations

It is easy to see that the proof of Theorem 3.1 is based only on Proposition
2.4 independently of a particular form of the measure μ and of the topology in the
considered spaces. This gives a possibility to extend this theorem to other kinds of
spaces, where an appropriate analog of Proposition 2.4 can be proved. For example, we
may consider quasinormed Abelian groups instead of Banach spaces.

Interpolation of bounded homomorphisms acting in Abelian groups of measurable
functions was defined and studied in [13]. These spaces are intermediate in the same
couple (L0, L∞) . Their topology can be described, using a special kind of quasinorm
which is not homogeneous, i.e., a constant factor cannot be taken out of this quasinorm.
Extending our definitions and proofs to Abelian groups, we should be only careful with
constant factors and the triangle inequality.

From this point of view, we find immediately that both Definitions 2.1 and 2.2
may be applied to Abelian groups with no changes. This is not true for Proposition 2.3
where we cannot consider now the function f (t) ≡ 1 alone and should require that all
constant functions have absolutely continuous quasinorms. Thereafter, in the proof, we
can replace the inequality (2.1) by

‖hχD‖X � C
m∑

i=1

‖ciχΩi∩D‖X < ε

and finish as before. At last, the formulation and the proof of Proposition 2.4 can be
accepted without any changes.



474 E. PUSTYLNIK

Passing to Theorem 3.1, we observe that the unit balls of spaces are now not
sufficient representatives for stating properties of operators and should be replaced by
arbitrary bounded sets. It is easy to ascertain that this fact has no influence on the
given proof. More serious is the use of Theorem 3.9 from [3], presented there only in
a context of Banach spaces. It seems very likely that this theorem could be extended
to the abstract Abelian groups, but in the existent situation we may not use it. This
obstacle can be avoided if we consider only ordered couples �Y , so that Y ⊂ Y0 . Thus
any bounded set B ⊂ Y will be bounded in the space Y0 too and the set TB will be
relatively compact in X0 + X1 as desired.

Let now X be a Banach space of sequences a = {a(n)} with a topology stronger
than the componentwise one (this means that limk→∞ ‖ak − a‖X = 0 implies ak(n) →
a(n) for any fixed n ). We say that X is a pseudo-lattice if ‖aχ[n,∞)‖X � CX‖a‖X for
any natural n with a constant CX independent of a and n . As a consequence of this
definition, we obtain immediately that any such X contains standard basic sequences
em = {em(n)} = {δmn} with any m = 1, 2, . . . such that a(m) 	= 0 at least for one
a ∈ X . We say that X has absolutely continuous norms if, for any ε and each sequence
a ∈ X , there exists N = N(a) such that ‖aχ[n,∞)‖X < ε whenever n > N . Let us
show that after such definitions of the needed concepts one obtains a complete analog
of Proposition 2.4 for the sequence spaces.

PROPOSITION 4.1. A set of sequences M is compact in a pseudo-lattice X with ab-
solutely continuous norms if and only if it is compact with respect to the componentwise
convergence and has absolutely equicontinuous norms (AEN), that is, for any ε > 0 ,
there exists a common N such that ‖aχ[n,∞)‖X < ε for all a ∈ M whenever n > N .

Proof. Let a set of sequences M be compact in X ; we show that it has the AEN
property. For a given ε > 0 , let a1, . . . , am be an ε/(2CX) -net of this set and let N
be such that ‖aiχ[n,∞)‖X < ε/2, i = 1, . . . , m , for any n > N . Now, for arbitrary
given element a ∈ X , we take a corresponding element ak from the net such that
‖a − ak‖X < ε/(2CX) , and then, with the same N as above, we obtain for any n > N
that ‖aχ[n,∞)‖X � ‖akχ[n,∞)‖X + ‖(a − ak)χ[n,∞)‖X < ε .

Conversely, let a set M ⊂ X be compact with respect to the componentwise
convergence and have the AEN-property in X . To show compactness of M in X it is
enough to show that any sequence (of sequences) {ak} with components convergent
to 0 tends to 0 in the norm of X . Given ε > 0 , define the corresponding n such that
‖akχ[n+1,∞)‖X < ε/2 for all k . Fixing this n , since all norms in final dimensional
spaces are equivalent, there exists a number k0 such that, for all k > k0 , one has
‖akχ[1,n]‖X < ε/2 . Consequently,

‖ak‖X � ‖akχ[1,n]‖X + ‖akχ[n+1,∞)‖X < ε for all k > k0 ,

as desired. �
We leave it to the reader to verify that, with Proposition 4.1 instead of 2.2, the

proof of Theorem 3.1 can be repeated for sequence spaces almost word by word.

Let us attempt now to formulate some new approximation hypothesiswhich extends
the cases considered above to abstract normed spaces (of course, some requirements of
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this hypothesis should be weaker than those from [14] so as to correspond to pseudo-
lattices). Let X0, X1 form a couple of such spaces and, for arbitrary relatively compact
set K ⊂ X0 + X1 and α > 0 , let PK,α denote the set of all linear operators P ∈
L (�X, �X) such that ‖Px − x‖X0 < α for all x ∈ K ∩ X0 (the set PK,α is never empty,
since it contains, at least, the identity operator I ). We say that the couple �X satisfies
the weak approximation hypothesis if, for each relatively compact set K and for any
sequence xn ∈ K convergent in X0 +X1 , there exists a constant b such that, for any α ,
there exist an operator P ∈ PK,α and a number N such that ‖P(xn − xm)‖X0∩X1 < α
for all m, n > N while ‖P‖X1→X1 � b .

By Propositions 2.3, 2.4 and 4.1, it is easy to ascertain that in pseudo-lattices
having absolutely continuous norms the operators P = I − PD with appropriate sets D
satisfy all requirements of the weak approximation hypothesis. Let us show that this
hypothesis entails interpolation of compactness in the abstract case as well.

THEOREM 4.2. Let a Banach couple �X = (X0, X1) satisfy the weak approximation
hypothesis and let T ∈ L (�Y, �X) for some Banach couple �Y = (Y0, Y1) . If T is
compact as an operator from Y0 to X0 and if an interpolation functor F satisfies
conditions of Theorem 3.1, then T is compact as an operator from Y = F (�Y) to
X = F (�X) .

Proof. Exactly as in Theorem 3.1, we can show that T is compact as an operator
from Y to X0 + X1 , so that the weak approximation hypothesis may be applied to the
set K = TBY ∪ TBY0 . Any sequence of elements from TBY contains a subsequence
{Txn} convergent in X0 + X1 , hence it is enough to show that Txn is convergent in X
as well. Taking arbitrary α > 0 , we obtain an operator P ∈ PK,α and an integer N
such that

‖P(Txn − Txm)‖X � C‖P(Txn − Txm)‖X0∩X1 < Cα for all m, n > N,

where C is the embedding constant of X0 ∩ X1 into X . At the same time, we obtain
that the inequality ‖Px− x‖X0 < α holds for all x ∈ TBY0 ⊂ K ∩X0 , which means that
‖(P − I)T‖Y0→X0 < α . The operator (P − I)T is also bounded from Y1 to X1 where
its norm can be estimated by some β independent of α . Applying (3.2), we get that
‖(P − I)T‖Y→X � Φ(α, β) . In result,

‖Txn − Txm‖X � ‖P(Txn − Txm)‖X + ‖(P − I)T(xn − xm)‖X < Cα + 2Φ(α, β),

and the last term can be made less than any given ε by a suitable choice of α . �

REMARK 3. Theorem 4.2 is more general than Theorem 3.1 and may be applied to
abstract Banach spaces. Unfortunately, at the moment, the author is not able to give any
interesting example of such an application and only conjectures that spaces like BMO
or spaces of functions with prescribed properties of Fourier coefficients should satisfy
the needed conditions.
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