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ON SOME CONVOLUTION NORM INEQUALITIES IN
WEIGHTED Lp(R", p) SPACES AND THEIR APPLICATIONS

DINH THANH DuC AND NGUYEN DU VI NHAN

(communicated by S. Saitoh)

Abstract. In this paper, we give the inequalities in convolutions in weighted L, (R", p) spaces
and their important applications to partial differential equations and integral transforms.

1. Introduction

It is well known, the Young’s inequality
I = gllr < Wfllpligll,  f € Lp(R"), g € Ly(R");

7'71 :p71 +q71 -1 (p7qar > 0)7
is very fundamental. ([10])
In a series of papers, S. Saitoh ([7], [8], [9]) derived new type norm inequalities

in convolutions in some several weighted L, spaces using the theory of reproducing
kernels. Specially S.Saitoh ([6]) obtained convolution norm inequalities in the form

IF el < I llollell, (> 1)

by considering the L, - norms in more naturally determined weighted spaces.
Recently, we ([5]) gave new type of convolution inequality in weighted L,(R?, p)
(p > 1) spaces

1_
|0 Ep) 1% 20| < Wy o) Wy, (1)

holds for F;(&,7) € L,(R?, |p;(&, 7)|dEdT) (j=1,2).
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In this paper, we will introduce the general inequalities in convolutions in weighted
L,(R", p)(p > 1) spaces and their applications.

2. The Main Results

For brevity of presentation we shall use the following notation.
2.1. Notation

By R” we denote the n — dimensional Euclidean space, n € N. This is the set of
all n—tupels of real numbers, X = (x1,...,x,), x € R, j = 1,2,...,n with the linear
operations

X+yY = (X1 +Y1, 0% + V), X,y €R" (22)
Ax = (Axy, ..., Ax,), A €R, xeR", (23)
the scalar product
Xy = x1y1 + -+ + Xoyn, X,y € R, (24)
and the norm
Ix[| = (xx)7 = (o +--- +22)%, x€R" (25)

We shall write x > y instead of x; > y;, j = 1,2,...,n. Anologously one has to
understand X >y, X <Yy, x <Yy. In particular let

1=(1,1,..,1), 2=(2,2,..,2),.. (26)
We shall denote some subsets of R”

R} = {x:xeR" x>0} (27)
Ri(t) = {x:xeR",0<x<t}. (28)

Now let z, o € R". Then we set

%= H z. (29)
j=1
Finally, we shall denote some integrals

nf(x)dx = / /f (X1, ey Xy )dxy - - - doy, (210)

/ /fxl,..., )dxy - - - dxy, (211)

/ f(X)dXi = / /f )Cl, ey X dx1 dx,-_ldxiﬂ s -dxn. (212)
Rr—1

T
= =
~
X
oy
I
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2.2. The Inequalities

In order to show our new type inequalities and their essentials simply, we will state
the inequality as follows :

THEOREM 1.  For two non-vanishing functions p;(Xx)(j = 1,2) belonging to
Li(R",dx) and for p > 1 we have L, weighted convolution inequality

/ e FL (@)1 () P (x = &) pr (x — &) |’
B (fulor (8)] o2 (x — &) @) (213)

< [ IR@PIo @z [ PP Ioa(2)laz

holds for Fj(x) € L,(R", |pj(x)|dx)(j = 1,2). Equality holds for F; if and only if F;
are represented in the form

Fj(x) = Cje™; C; : constant (214)
where o0 = (o, ..., a,) € R" is a constant such that F; € L,(R", |p;|dx)(j = 1,2).

Proof. By Holder’s inequality and Fubini’s theorem, we obtain directly

RIS T SO
n (f]Rn ‘pl (é)‘ |p2 (X — ‘g’)‘ dé)ﬂ—l

< [ Im @ Plor @)1 (&) Pl x - © i
= [ In@rin@a [ @@
Rn o

Equality holds if and only if for a function k(x) in x € R"
Fi(E)F,(x — &) = k(x) a.e.onR",

that is
Fi1(x)F2(y) = k(x+y) a.e.on R" x R".

From this function equation, we have the desired result for the equality problem in
(214). O

In the inequality (213), we can write the following norm

1_
H((F1p1) * (F22))(P1 * p2)? IH,, S MEllg, g ooy 121z, (g, o)), (215)
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REMARK 1. 1. In the inequality (213), in many cases the convolution will be given
in the form

0(€)=1, and Fr(x — &) = G(x— &)

for some Green'’s functions G(x — &) . Then, we have the inequality

/ / F(E)p(E)G(x— &) dE| dx
o ot (216)
< ( . o (5)|d§) /Rn |F(E)P|p(E)|dE /Rn G(E)PdE.
REMARK 1. 2. In general, in (216) we have a generalization
! P
/ / F(E)p ()G (x — &) dE| dx
o (217)

<(/. p<5>|d5)pl [ iF@rip@a | d; G Pax.

Morever, by the Holder’s inequality and Fubini’s theorem and by changing the
variables in integral we obtain the following inequalities

THEOREM 2.  For two non-vanishing functions p;(X)(j = 1,2) belonging to
Li(R",dx), for p>1,q> 1,p~ '+ q~! = 1 and for (x,t) € R"™! x R, we have the
inequality

/ fen F1r ()P (80 P2 (x = £, 1) o2 (x = &, dEdr]|
R (Joen 101 (&, )] |02 (x — &, )| dEdr)"™"

< </R [/R Fl(éJ)p|pl(’§7t)|d€rdt>p (218)
X (/R URI IFz(é,t)|P|p2(57t)dé]th)é7

where Fj(j = 1,2) are such that the right hand side of (218) is finite.

Proof. Put

p
N =

[ FEnm @0 x-E0p x- & dgar

Applying Holder inequality, we obtain

1

N < (/ U F1(& 0P lor()IFa(x = &0 lpa(x — WV

[0l g nlag] ’ dr)p
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< [ IR EOP o (€ Fa(x — E0Plpa(x - E.)ldEdr
R

p—1
([ 1o nlpstx - njazar)
Rﬂ
Therefore, by changing the variables in integrals and Fubini’s theorem we get

| fen Fr(&0)pr (&) Fa(x =&, 1) pa (x — &, 1 dédt]p

M = p—1
o (Jrlor o) 192 (x— £, 1) dEd)

< / IF1(& 0P [o1 (8, D)2 (x = &, 1) |p2(x — &, 1)|dEdrdx
Rﬂ*l R?

:/R {/Rnl [Fi(E, 0 |o1(& Idé/ |Fy(E, 07|02 (E, )|d§} dt

Then, by Holder inequality, we have directly

e (/ U |F1('f7t)|”pl(é,t)ld'irdf
X (/R URI Fz(é’t)p|p2(é>l)d§]th>é

The proof is complete. [

REMARK 2. 1. In the inequality (218), in many cases we consider

(& =1, and Fo(x — &,1) = G(x — &,1)

for some Green'’s functions G(x — &, ). Then, we have the inequality

/Rnfl

/RnF(g’t)p(é’t)G(X* E,1)dEdt| dx

< ([oeoraza) ([ [ reomoena] o)
([ oo a)’

499

(219)

for an L;(R", dx) function p, and for functions F and G with finite integrals in the

right hand side in (219).
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REMARK 2. 2. In general, in (219) we have a generalization

/R,H /abdt/Ran(gvf)P(é’f)G(xé,t)dgp

L

( [af v d&)p_l ( [ F<&r>ﬁp<&¢>d5]pdr>p (220)

IS}

<=

| (/ | G(é,)pdg]qd,)

In the sequel, we shall show several typical examples. We get not only L, integral
estimates for the several integral transform but also the solutions of homogeneous linear

differential equations in the space R" or R™*"! ([1], [2], [3], [4], [10]).

3. Applications

3.1. Laplace Transformation

In the Laplace transform

u(x) = L[Ep](x) = / e E(E)p(E)dE,

n
+

we have the inequality

ax < L T rerpe
[, mooras < ( L. |p<¢>dé> [, FereI

where an L;(R",d&) function p and for function F(&) € L,(R, |p(&)|

3.2. Abel’s Integral Transform

In the Abel’s integral transform

we have the inequality

/ v< [
O (e Io(E1aE)

1
S 1—oap

/ F(E)P|p(E)](d — &) dE (ap < 1),
R’ (d)

®

(321)

(322)

(323)

(324)
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for a function p such that
/ . [P(EE >0 on (@
and for functions F with finite integrals in the right hand side in (324).

3.3. Heat Equation

In the integral transform

1 - P
i) = o [ Fop@en {2t e a9

which gives the solution u(x, ) of the heat equation

u = AAu(x,1) (x,1) € R" xR, (326)
satisfying the condition
u(x,0) = F(x)p(x). (327)
Then, we not only have the inequality
1
u(x,1)Pdx < n— s 328
B v (328)
but also obtain
; 1
/ lu(x,1)|Pdx’ < — - -K,_1, (329)
R P*T (pq)¥ (2ey/m)" =Vt
where
w= ([ o@ia) [ 1F@re@e
R}‘l
and

L

kr= ([ o otaga)” ([ [ ircorioeoue] a)

for pe Li(R"), F € L,(R"; p).

3.4. Laplace Equation( Poisson Integrals)

We consider the Dirichlet problem for the Laplace Equation in a half-space of
R"*+! j.e. the determination of the bounded solution of

Apu(x,1) =0, (x,7) € R" x Ry (330)
with the boundary condition

u(x,0) = F(x)p(x), x€R" (331)
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we have the solution of the Dirichlet problem (330), (331) in the form

u(x, 1) = 2 / F(y)p(y) _dy, (332)
R (

P+ x—yP)*

1 1
o, = n+lr(n+ )
2n2 2

Then, we not only have the inequality

2\ 1 £ 1 n+1 i
4 _- - _ _ _
lu(x,1)Pdx < (wn+l) =Y I |B (z,p 3 2)1" (333)

i=1

n+
W41

where

R

but also obtain

, 2\ 1 =1 on+1
t)Pdx' < —— | IB{ =, _ -
/Rnfl ‘M(X7 )‘ X <(Un+1) t”(l771>+ﬁ 11211 (2 P 2 2)

(334)
1 (1 np+qp+1)—1
B N Kn— )
’ (2’ 2 !
where
p—1
n=([ w@ia) [ Irere@E
R" R"
and
p—1 p 5
K= ([ o@niaza)) ([ [ rcoricou] a)
R R Rn—1
for p € Li(R"), F € L,(R"; p).
In the conjugate Poisson integral transform
2 Xi — Vi
vi(x, 1) = F(y)o(y) ———————3=4dy, (335)
W41 n (tz + |X _ y|2) 2
then we have
2\ 1 o1 on+l
[ mtorax< () o T8 (5075 - 5)
n n(p—1) 2 2 2
R Wpy1 ) 1 i (336)

where

w=([ @) [ 1r@rie@e
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Moreover we also get

. 2\ 1 "=/ o+l
xpax < (— ) ——[[B (55— -+
/}R’H vi(x, £)[Pdx (w;m) n(p—1)+,%g <2P > 2>

(337)
X Bi (pq;— ! 7p) K, 1,
where
p—1 p 5
K= ([ o@ntaza)) ([ |[ v a)
Here p € Li(R"), F € L,(R"; p).
3.5. Biharmonic equation
3.5.1. Example 1
The solution of the biharmonic equation
A2 u(x, ) =0, (x,1) ER" xRy, AL, =A1(Ant1) (338)
with the boundary conditions
u(x,0) = F(x)p(x), wu(x,0)=0, (339)
is given by
ux 1) = 2 DE / FWe®) 4 (340)
Onet e (24 x - y)"T

Then, we have the following inequalities:

|u(x,t)|de<(2(n ) — HB( ”*3 %)1 (341)

W41

Rn

2+ DY 1 Yy /1 n+3 i
t Pd ' < n B ~ — A
/R,H Julx, )} dx < Wyt 1 ) fp=1)+3 11 2 p 2 2

i=

1 1)—1
x B4 (2 pn+q(3g+ ) >Knl7

~([o@rae) [ 1reripeaz

kr= ([ o oraga)” ([ [ ircorioeoue] a)

for pe Li(R"), F € L,(R"; p).

(342)

where

and
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3.5.2. Example 2
The solution of the biharmonic equation
Avu(x,1) =0, (x,7) ER" xRy, Ajyy = Ap1(Anir) (343)

with the boundary conditions

u(x,0) =0, u(x,0)=F(x)p(x), (344)
is given by
R (345)
’ Wp+1 Jre (ﬂ + |X _ y|2)nTJrl '

Then, we not only have the inequality

n

2\ 1 1 n+1 i
P _ _ _ - _ _
/n u(x,1)[Pdx < (wn+l> i I,ll B (Z,p 5 2)1" (346)

but also obtain

: 2\ 1 1 n+1 i
HPdx' < - I |B -, S
/Rnfl |u(x’ )| X (wn+1> t"(p71)+,7717 1 (2 p 2 2)

i=

o (LD

(347)

where
w=([ @) [ 1F@rp@e

and

1

kr= ([ o oraga)” ([ [ ircorioeoue] a)

for p € Li(R"), F € L,(R"; p).
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