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GENERALIZED RIESZ PROJECTIONS AND

TOEPLITZ OPERATORS

TAKAHIKO NAKAZI AND TAKANORI YAMAMOTO

(communicated by L. Pick)

Abstract. Let 1 < p < ∞ . In this paper, for a measurable function v and a weight function
w , the generalized Riesz projection Pv is defined by Pvf = vP(v−1f ), (f ∈ Lp(w)) . If P0 is
the self-adjoint projection from L2(w) onto H2(w) , then P0 = Pα for some outer function α
satisfying w = |α|−2 . In this paper, Pv on Lp(w) is studied. As an application, the invertibility
criterion for the generalized Toeplitz operator Tv

φ and the generalized singular integral operator

φPv +Qv, Qv = I−Pv are investigated using the weighted norm inequality. The operator norm
inequality for the generalized Hankel operator Hv

φ is also presented.

1. Introduction

Let P = span{einθ ; n � 0} , and let Q = span{einθ ; n < 0} . Then P + Q
is the set of all trigonometric polynomials. Let dm(eiθ) = dθ/2π be the normalized
Lebesgue measure on the unit circle T . Let w be a positive function in L1 = L1(dm) .
Let 1 � p < ∞ . Then P + Q is dense in Lp(w) = Lp(wdm) in norm. Let Hp(w)
denote the norm closure in Lp(w) of P , and let Hp

0(w) denote the norm closure in
Lp(w) of Q . We will write Hp(w) = Hp when w = 1 , and then this is a usual Hardy
space. The Riesz projection P from P + Q to P is an operator defined by

(Pf )(eiθ ) =
∑
k�0

ˆf (k)eikθ , (f ∈ P + Q),

where ˆf (k) denotes the k -th Fourier coefficient of f . Hence, the Riesz projection
P is a densely defined operator from Lp(w) to Hp(w) . P may not be extended to a
bounded operator. P can be extended to a bounded operator from Lp(w) onto Hp(w)
if and only if w satisfies the condition:

(Ap) sup
I

(
1

m(I)

∫
I
wdm

) (
1

m(I)

∫
I
w−1/(p−1)dm

)p−1

< ∞
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where the supremum is over all intervals I of T . This is the theorem of Hunt,
Muckenhoupt and Wheeden (cf. [1, p. 39], [4, p. 255], [11, p. 209, p. 450], [12, p. 119])
which is a generalization of the theorem of Helson and Szegő (cf. [4, p. 147], [11,
p. 450], [12, p. 99]). Let v be a measurable function on the unit circle T satisfying
|v| > 0 . In this paper, the generalized Riesz projection Pv is defined by

(Pvf )(eiθ ) = v(eiθ )P(v−1f )(eiθ ) = v(eiθ)
∑
k�0

(v−1f )ˆ(k)eikθ ,

(f ∈ vP + vQ) . Then vP ∩ vQ = {0} , and Pv maps vP + vQ onto vP .
Hence, (Pv)2 = Pv . Let w be an integrable function on T satisfying w > 0 . Let
1 � p < ∞ . If v ∈ Lp(w) , then vP + vQ is dense in Lp(w) . Let 1 < p < ∞ , and
let 1/p + 1/q = 1 .

In Section 2, we will consider the boundedness of the generalized Riesz projection
Pv . It is well known that if p = 2 and v is an outer function such that |v|2 = w , then
Pv becomes a self-adjoint projection which maps L2(w) onto H2(w) (cf. [2], [7]). In
particular, P = P1 is a self-adjoint projection which maps L2 onto H2 . We will prove
that if 1 < p < ∞ and w, v satisfy some conditions, then Pv is a bounded operator on
Lp(w) if and only if |v|pw ∈ (Ap) .

In Section 3, we will consider the adjoint operator for Pv . We will give the form of
(Pv)∗ , and prove that if 1 < p < ∞ and w, v satisfy some conditions, then (Pv)∗ = Pv

on Lp(w) ∩ Lq(w) if and only if |v|2w is a constant function.
In Section 4, we will consider the invertibility of the Toeplitz operator Tv

φ and
singular integral operator φPv + Qv , where Qv = I − Pv . Let 1 < p < ∞ , and let
φ ∈ L∞ . If Pv ∈ B(Lp(w)) , then the operator Tv

φ from ranPv to ranPv is defined by

Tv
φ f = Pv(φf ), (f ∈ ranPv).

If w ∈ (Ap) , then Rochberg [13] established an invertibility criterion for the Toeplitz
operator Tφ on Hp(w) (cf. [1, p. 216]). If p = 2 and w = 1 , then this reduces to a
theorem of Widom and Devinatz (cf. [1, p. 59], [11, p. 316], [12, p. 250]).

In Section 5, we do not assume the boundedness of Pv on Lp(w) . Hence, the
results in Section 5 do not follow from the theorem of Rochberg and Simonenko or
the theorem of Widom and Devinatz (cf. [13], [1, p. 216], [12]). We will consider
the invertibility of the quotient type Toeplitz operator Rv

φ for an outer function v . Let
1 < p < ∞ , and let φ ∈ L∞ . If log |v| ∈ L1 , then an operator Rv

φ is defined as a

bounded operator from Hp(w) to Lp(w)/ v
vH

p
0(w) by

Rv
φ f = φf +

v
v
Hp

0(w), (f ∈ Hp(w)).

If Pv ∈ B(Lp(w)) , then kerPv = v
vH

p
0(w) . Rv

φ is always bounded. When v = 1 ,
Nakazi ([8], [9]) considered the quotient type Toeplitz operator Rφ = R1

φ from Hp(w)

to Lp(w)/Hp
0(w) and proved Lemma 5.1. We use Lemma 5.1 to prove Theorem 5.2.

In Section 6, the operator norm inequality for the generalized Hankel operator Hv
φ

is presented. Let 1 < p < ∞ , and let φ ∈ L∞ . If Pv ∈ B(Lp(w)) , then the Hankel
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operator Hv
φ from ranPv to ranQv is defined by

Hv
φ f = Qv(φf ), (f ∈ ranPv).

If v = w = 1 , then this reduces to a theorem of Nehari (cf. [1, p. 54], [11, p. 181], [12,
p. 181]).

2. Boundedness of Pv

In this section, we discuss the condition such that the generalized Riesz projection
Pv is extended to Lp(w) by continuity to a bounded operator. We will not distinguish
between an operator’s being bounded and being densely defined and extendable by
continuity to a bounded operator. We use Lemmas 1.1 and 1.2 to prove Theorems 2.3
and 2.4.

LEMMA 2.1. Let 1 � p < ∞ . Let w be a positive function in L1 .
(1) If |v| > 0 and v ∈ Lp(w) , then vP + vQ is a dense subspace of Lp(w) .
(2) If logw ∈ L1 and |v| = |k| for some outer function k in Hp(w) , then kP is

dense in Hp(w) .

Proof. (1): Let f ∈ Lp(w) . Then, v−1Lp(w) = Lp(|v|pw) . Hence, v−1f ∈
Lp(|v|pw) . Since P + Q is dense in Lp(|v|pw) , it follows that there exists a sequence
f n ∈ P + Q such that

lim
n→∞

∫
|vf n − f |pwdm = lim

n→∞

∫
|f n − v−1f |p|v|pwdm = 0.

(2): Let g ∈ Hp(w) . Since k is an outer function such that |k| = |v| , it follows
that k−1g ∈ Hp(|v|pw) . Since P is dense in Hp(|v|pw) , it follows that there exists a
sequence gn ∈ P such that

lim
n→∞

∫
|kgn − g|pwdm = lim

n→∞

∫
|gn − k−1g|p|v|pwdm = 0.

Hence, kP is dense in Hp(w) . Lemma 2.1 is proved. �

LEMMA 2.2. Let 1 � p < ∞ . Let w be a positive function in L1 . Suppose
|v| > 0 and v ∈ Lp(w) . Then the following properties are equivalent.

(1) Pv is a bounded operator on Lp(w) .
(2) P|v| is a bounded operator on Lp(w) .
(3) P is a bounded operator on Lp(|v|pw) .

If one of these conditions holds, then

‖Pv‖B(Lp(w)) = ‖P|v|‖B(Lp(w)) = ‖P‖B(Lp(|v|pw)).
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Proof. It is sufficient to prove the equivalence of (1) and (3). By (1), for all
f ∈ P and g ∈ Q ,∫

|f |p|v|pwdm =
∫

|vf |pwdm

� ‖Pv‖p
B(Lp(w))

∫
|vf + vg|pwdm

= ‖Pv‖p
B(Lp(w))

∫
|f + g|p|v|pwdm.

Hence, ‖P‖B(Lp(|v|pw)) � ‖Pv‖B(Lp(w)) < ∞ . This implies (3). Conversely, by (3), for
all f ∈ P and g ∈ Q ,∫

|vf |pwdm =
∫

|f |p|v|pwdm

� ‖P‖p
B(Lp(|v|pw))

∫
|f + g|p|v|pwdm

= ‖P‖p
B(Lp(|v|pw))

∫
|vf + vg|pwdm

ByLemma2.1(1), vP+vQ is dense in Lp(w) . Hence, ‖Pv‖B(Lp(w)) � ‖P‖B(Lp(|v|pw)) <
∞ , and hence (1) follows. Lemma 2.2 is proved. �

Suppose w = |α|−2 for some outer function α . Then P0 = Pα is a self-adjoint
projection from L2(w) onto H2(w) . Let Q0 = I − P0 . If a, b are constant functions,
then ‖aP0 + bQ0‖B(L2(w)) = max(|a|, |b|) (cf. [5, Vol. I, p. 79]). By the similar proof
of Lemma 2.2, if a, b ∈ L∞ , then ‖aP0 + bQ0‖B(L2(w)) = ‖aP + bQ‖B(L2(|α|2w)) =
‖aP + bQ‖B(L2) . Hence,

‖aP0 + bQ0‖B(L2(w)) = ‖aP + bQ‖B(L2)

= inf
k∈H∞

∥∥∥∥∥∥
|a|2 + |b|2

2
+

√
|ab̄ − k|2 +

( |a|2 − |b|2
2

)2
∥∥∥∥∥∥
∞

.

The infimum is attained (cf. [10]).
Let 1 < p < ∞ . There are many measurable functions v and w such that

v, log v, logw �∈ L1 , w ∈ L1 and Pv ∈ B(Lp(w)) . For example, let

v(eiθ) = exp

(
1

2π − θ

)
, (0 � θ < 2π),

and let w = |v|−p . Since p
θ−2π � −p

2π , it follows that 0 < w(eiθ ) = exp
(

p
θ−2π

)
�

exp
(−p

2π
)

< ∞ . Hence, w ∈ L∞ . By Lemma 2.2 and the theorem of Gohberg,
Krupnik, Hollenbeck and Verbitsky (cf. [5, Vol. II, p. 102], [6]),

‖Pv‖B(Lp(w)) = ‖P‖B(Lp) =
1

sin(π/p)
< ∞.
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Then ranPv ⊕kerPv = vHp⊕ vHp
0 = vLp = Lp(w) . If p = 2 , then Pv is a self-adjoint

projection on L2(w) .

THEOREM 2.3. Let w be a positive function in L1 .
(1) If |v| > 0 and v ∈ L1(w) , then Pv is an unbounded operator on L1(w) .
(2) Let 1 < p < ∞ . If |v| > 0 and v ∈ Lp(w) , then Pv ∈ B(Lp(w)) if and only

if |v|pw ∈ (Ap) .

Proof. (1): Suppose Pv ∈ B(L1(w)) . By Lemma 2.2, |v| > 0 , and P ∈
B(L1(|v|w)) . By the theorem of Forelli (cf. [3]), P ∈ B(L1) . This is a contradiction
(cf. [5, Vol. I, p. 78]).

(2): By Lemma 2.2, if Pv ∈ B(Lp(w)) , then P ∈ B(Lp(|v|pw)) . By the theorem
of Hunt, Muckenhoupt and Wheeden (cf. [1], [4], [11], [12]), this implies |v|pw ∈ (Ap) .
The converse is also true. Theorem 2.3 is proved. �

THEOREM 2.4. Let 1 < p < ∞ . Let w be a positive function in L1 . Suppose
|v| > 0 and v ∈ Lp(w) .

(1) If Pv ∈ B(Lp(w)) , then

ranPv = kerQv = vHp(|v|pw) = [vP]Lp(w),

kerPv = ranQv = vHp
0(|v|pw) = [vQ]Lp(w),

where [ · ]Lp(w) denotes the norm closure in Lp(w) .
(2) Suppose logw and log |v| are in L1 . Let k be an outer function such that

|k| = |v| . Let Qv = I − Pv . If Pv ∈ B(Lp(w)) , then

ranPv = ker Qv =
v
k
Hp(w) ⊂ Lp(w),

kerPv = ranQv =
v

k
Hp

0(w) ⊂ Lp(w),

and

Lp(w) = Hp(w) ⊕ k

k
Hp

0(w).

(3) If there is an outer function k such that |k| = |v| and Lp(w) = Hp(w) ⊕
k
k
Hp

0(w) , then Pv ∈ B(Lp(w)) .

Proof. (1): Suppose f ∈ ranPv . Then there is a g ∈ Lp(w) such that f = Pvg .
By Lemma 2.1(1), there is a sequence {tn} in P + Q such that∫

|vtn − g|pwdm → 0,

as n → ∞ . Since Pv ∈ B(Lp(w)) , it follows that∫
|Ptn − v−1f |p|v|pwdm =

∫
|vPtn − f |pwdm

=
∫

|Pv(vtn − g)|pwdm

� ‖Pv‖p
B(Lp(w))

∫
|vtn − g|pwdm.
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Hence, ∫
|Ptn − v−1f |p|v|pwdm → 0,

as n → ∞ . This implies that v−1f ∈ Hp(|v|pw) . Hence, ranPv ⊂ vHp(|v|pw) .
Suppose f ∈ vHp(|v|pw) . Since v−1f ∈ Hp(|v|pw) , there is a sequence {gn} in P
such that ∫

|vgn − f |pwdm =
∫

|gn − v−1f |p|v|pwdm → 0,

as n → ∞ . This implies that f ∈ [vP]Lp(w) . Hence, vHp(|v|pw) ⊂ [vP]Lp(w) .
Therefore,

vP ⊂ ranPv ⊂ vHp(|v|pw) ⊂ [vP]Lp(w).

Since (Pv)2 = Pv , ranPv is a closed subspace of Lp(w) . Similarly

vQ ⊂ ranQv ⊂ vHp
0(|v|pw) ⊂ [vQ]Lp(w),

and ranQv is a closed subspace of Lp(w) . Hence (1) follows.
(2): By Theorem 2.3, if Pv ∈ B(Lp(w)) , then |v|pw ∈ (Ap) . Since k is an outer

function such that |k| = |v| , it follows that

ranPv = PvLp(w) = vP(v−1h−1Lp) = vPLp(|v|pw)

= vHp(|v|pw) =
v
k
kHp(|k|pw) =

v
k
Hp(w),

and

ranQv = QvLp(w) = vQ(v−1h−1Lp) = vQLp(|v|pw)

= vHp
0(|v|pw) =

v
k̄
kHp

0(|k|pw) =
v
k̄
Hp

0(w).

Hence,

Lp(w) = ranPv + ranQv =
k
v
Hp(w) ⊕ k̄

v
Hp

0(w).

Since |k| = |v| , it follows that

Lp(w) =
k
v
Lp(w) = Hp(w) ⊕ k

k̄
Hp

0(w).

(3): Since |v|pw ∈ L1 and Lp(w) = Hp(w) ⊕ k
k̄
Hp

0(w) , it follows that

Lp(|v|pw) = k−1Lp(w) = k−1Hp(w) ⊕ k−1Hp
0(w)

= Hp(|v|pw) ⊕ Hp
0(|v|pw).

By the closed graph theorem, this implies that P ∈ B(Lp(|v|pw)) . Theorem 2.4 is
proved. �

Let 1 � p < ∞ . If f ∈ Lp(w) and w ∈ L1 , then f w ∈ L1 . Let

Kp(w) = {f ∈ Lp(w) ; (f w)ˆ(n) = 0, (n < 0)},
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and let
Kp

0(w) = {f ∈ Lp(w) ; (f w)ˆ(n) = 0, (n � 0)}.
Hence, Kp(w) and Kp

0(w) are closed subspaces of Lp(w) satisfying Kp(w) = Lp(w)∩
w−1H1 . The shift operator maps Kp(w) onto Kp

0(w) . If p = 2 , then we have the
orthogonal decomposition:

L2(w) = H2(w) ⊕ K2
0(w).

If w = 1 , then Kp(w) = Hp . According to the Riesz representation theorem, for every
bounded linear functional φ ∈ Hp(w)∗, 1 < p < ∞ , there exists a unique function
g ∈ Kq(w), 1/p + 1/q = 1 , such that

φ(f ) =
∫

f ḡwdm, (f ∈ Hp(w)).

We use Lemmas 2.5 and 2.6 to prove Theorem 2.7.

LEMMA 2.5. Let 1 � p < ∞ , and let 1/p+ 1/q = 1 . Let h be an outer function
satisfying w = |h|p .

(1) Kp(w) =
hp−1

w
Hp =

hp

w
Hp(w).

(2) Kq(w) =
h
w

Hq =
hp

w
Hq(w).

(3) Kp(w) = Hp(w) if and only if w is a constant function.

Proof. (1): Suppose f ∈ Kp(w) . Then f ∈ Lp(w)∩w−1H1 . Then f h ∈ Lp and

(f w)/(hp−1) ∈ Hp . Then f ∈ hp−1

w Hp . The converse is also true. Hence, Kp(w) =
hp−1

w Hp . Since Hp(w) = Hp(|h|p) = h−1Hp , it follows that Kp(w) = hp

w Hp(w) .
(2): Suppose f ∈ Kq(w) . Then f ∈ Lq(w) ∩ w−1H1 . Then f hp−1 ∈ Lq and

f w/h ∈ Hq . Then f ∈ h
wHq . The converse is also true. Hence, Kq(w) = h

wHq . Since

Hq(w) = Hq(|hp|) = h1−pHq , it follows that Kq(w) = hp

w Hq(w) .
(3): Suppose Kp(w) = Hp(w) . Since 1 ∈ Hp(w) , 1 ∈ Kp(w) . By (1),

1 ∈ hp−1

w Hp . Hence, there is an f ∈ Hp such that f hp−1

w = 1 . Since hp−1 ∈ Hq ,
f hp−1 is a positive function in H1 . Hence, f and h are constant functions. Hence, w
is a constant function. The converse is clear. Lemma 2.5 is proved. �

LEMMA 2.6. Let w, logw, w(2−p)/2 ∈ L1 .
(1) Hp(w) ⊕ Kp

0(w) = Lp(w) if and only if Hp(w(2−p)/2) ⊕ Hp
0(w(2−p)/2) =

Lp(w(2−p)/2) .
(2) There is a constant C such that∫

|f |pwdm � C
∫

|f + g|pwdm, (f ∈ Hp(w), g ∈ Kp
0 (w))

if and only if there is a constant C such that∫
|f |pw(2−p)/2dm � C

∫
|f + g|pw(2−p)/2dm, (f ∈ P, g ∈ Q).



514 TAKAHIKO NAKAZI AND TAKANORI YAMAMOTO

Proof. By the closed graph theorem, it is sufficient to prove (1). Since logw ∈ L1 ,
there is an outer function h satisfying w = |h|p . Let p = 2a . Then w = haha and
w(2−p)/2 = w1−a . By Lemma 2.5,

ha
(
Hp(w) ⊕ Kp

0(w)
)

= ha−1Hp ⊕ ha−1Hp
0

= Hp(|h1−a|p) ⊕ Hp
0(|h1−a|p)

= Hp(w1−a) ⊕ Hp
0(w1−a)

= Hp(w(2−p)/2) ⊕ Hp
0(w(2−p)/2).

Since Lp(w(2−p)/2) = Lp(w1−a) = Lp(|h1−a|p) = ha−1Lp = haLp(w) , this implies (1).
Lemma 2.6 is proved. �

THEOREM 2.7. Let w ∈ L1 . Suppose w = |α|−2 , for some outer function α .
(1) Pα ∈ B(Lp(w)) if and only if w(2−p)/2 ∈ (Ap) . Then ‖Pα‖B(Lp(w)) =

‖P‖B(Lp(w(2−p)/2)) .

(2) ranPα = Hp(w) , kerPα = Kp
0(w) , ranPᾱ = Kp(w) , kerPᾱ = Hp

0(w) .

(3) If w(2−p)/2 ∈ (Ap) , then Lp(w) = Hp(w) ⊕ Kp
0(w) , and Pα is a bounded

projection from Lp(w) onto Hp(w) such that

Pα(f + g) = f , (f ∈ Hp(w), g ∈ Kp
0(w)).

(4) Pα (resp. I −Pα ) is a self-adjoint projection from L2(w) onto H2(w) (resp.
K2

0(w) ).
(5) Pᾱ (resp. I −Pᾱ ) is a self-adjoint projection from L2(w) onto K2(w) (resp.

H2
0(w) ).

Proof. (1): By Theorem 2.3(2), if Pα ∈ B(Lp(w)) , then |α|pw ∈ (Ap) . Hence,
w(2−p)/2 = w−p/2w = |α|pw ∈ (Ap) . The converse is also true.

(2): By Lemma 2.5(1), Hp
0(w) = α2

|α|2 K
p
0(w) . By Theorem 2.4(2), ranPα =

Hp(w) and

kerPα =
α
ᾱ

Hp
0(w) =

α
ᾱ
|α|2
α2

Kp
0(w) = Kp

0(w).

Similarly, ker Pᾱ = Hp
0(w) and

ranPᾱ =
ᾱ
α

Hp(w) =
ᾱ
α

α2

|α|2 Kp(w) = Kp(w).

(3): If w(2−p)/2 ∈ (Ap) , then Lp(w(2−p)/2) = Hp(w(2−p)/2) ⊕ Hp
0(w(2−p)/2) . By

Lemma 2.6(1), Lp(w) = Hp(w) ⊕ Kp
0(w) . Since (Pα)2 = Pα , (3) follows.

(4): Since ∫
f ḡwdm = 0, (f ∈ H2(w), g ∈ K2

0 (w)),
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it follows that L2(w) = H2(w) ⊕ K2
0(w) is the orthogonal decomposition. Since

ranPα = H2(w) , and kerPα = K2
0(w) , it follows that Pα is a self-adjoint projection.

(5): Since ∫
f ḡwdm = 0, (f ∈ K2(w), g ∈ H2

0(w)),

it follows that L2(w) = K2(w) ⊕ H2
0(w) is the orthogonal decomposition. Since

ranPᾱ = K2(w) , and kerPᾱ = H2
0(w) , it follows that Pᾱ is a self-adjoint projection

from L2(w) onto K2(w) . Theorem 2.7 is proved. �

3. Adjoint operators for Pv

Let 1 < p < ∞ , and let 1/p + 1/q = 1 . In this section Pv is supposed to be a
bounded operator on Lp(w) . For functions f ∈ Lp(w) and g ∈ Lq(w) , let

〈 f , g〉 w =
∫

f ḡwdm.

To each Pv ∈ B(Lp(w)) corresponds a unique (Pv)∗ ∈ B(Lq(w)) that satisfies

〈Pvf , g〉 w = 〈 f , (Pv)∗g〉 w, (f ∈ Lp(w), g ∈ Lq(w)).

We use Lemmas 3.1 and 3.2 to prove Theorem 3.3.

LEMMA 3.1. Let 1 < p < ∞ , and let 1/p + 1/q = 1 . Let w ∈ L1 , w > 0 , and
let v be a measurable function.

(1) |v|pw ∈ (Ap) if and only if |v|−qw1−q ∈ (Aq) .
(2) w(2−p)/2 ∈ (Ap) if and only if w(2−q)/2 ∈ (Aq) .

Proof. (1): If |v|pw ∈ (Ap) , then (|v|pw)−1/(p−1) ∈ (Aq) . Since (p−1)(q−1) =
1 , it follows that |v|−qw1−q ∈ (Aq) . The converse is also true.

(2): If w(2−p)/2 ∈ (Ap) , then (w(2−p)/2)−1/(p−1) ∈ (Aq) . Since (p−1)(q−1) = 1 ,
it follows that(

2 − p
2

) ( −1
p − 1

)
=

p
2(p − 1)

− 1
p − 1

=
q
2
− (q − 1) =

2 − q
2

.

Hence, w(2−q)/2 ∈ (Aq) . The converse is also true. Lemma 3.1 is proved. �

LEMMA 3.2. Let 1 < p < ∞ , and let 1/p + 1/q = 1 . Let w ∈ L1 , w > 0 , and
let |v|pw ∈ (Ap) . Then (Pv)∗ ∈ B(Lq(w)) , ((Pv)∗)2 = (Pv)∗ , and

(1) (Pv)∗(g) =
1
vw

P(vwg), (g ∈ Lq(w)).

(2) If logw, log |v| ∈ L1 , then

(Pv)∗(g1 + g2) = g1,

(
g1 ∈ 1

kv̄w
Hq(w), g2 ∈ 1

kvw
Hq

0(w)
)

,

where k is an outer function satisfying |k| = |vw|−1 .
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Proof. (1): By Theorem 2.3(2), Pv ∈ B(Lp(w)) . Hence, (Pv)∗ ∈ B(Lq(w)) .
If |v|pw ∈ (Ap) , then there is a constant δ > 0 satisfying (|v|pw)1+δ ∈ L1 (cf. [4,
p. 262]). Since 1/p + 1/q = 1 , there is a constant r > 1 satisfying

1
p(1 + δ)

+
1
q

=
1
r
.

Then ∫
|vgw|rdm �

(∫
(|v|pw)1+δdm

) r
p(1+δ )

(∫
|g|qwdm

) r
q

.

For all f ∈ vP + vQ and all g ∈ Lq(w) ,

〈 f , (Pv)∗g〉 w = 〈Pvf , g〉 w =
∫

(Pvf )ḡwdm

=
∫

vP(v−1f )ḡwdm =
∫

P(v−1f )P (v̄gw)dm

=
∫

v−1f P (v̄gw)dm =
∫

1
vw

f P (v̄gw)wdm

=
〈

f ,
1
v̄w

P (v̄wg)
〉

w

.

By Lemma 2.1(1), vP + vQ is dense in Lp(w) .
(2): By Lemma 3.1(1), if |v|pw ∈ (Ap) , then |v|−qw1−q ∈ (Aq) . Hence,

|(vw)−1|qw = |v|−qw1−q ∈ L1 . By (1) and Theorem 2.4(2),

ran (Pv)∗ =
1

kv̄w
Hq(w), ker(Pv)∗ =

1

kvw
Hq

0(w).

Since ((Pv)∗)2 = (Pv)∗ ,

Lq(w) = ran (Pv)∗ ⊕ ker(Pv)∗ =
1

kv̄w
Hq(w) ⊕ 1

kvw
Hq

0(w).

Lemma 3.2 is proved. �
By Lemma 3.2, if v = 1 and w satisfies the Muckenhoupt condition (Ap) , then

P∗f = P1/wf , (f ∈ Lq(w)) .

THEOREM 3.3. Let 1 < p < ∞ , and let 1/p + 1/q = 1 . Suppose v, w ∈ L1 ,
w > 0 , |v|pw ∈ (Ap) and |v|qw ∈ L1 . Then the following two properties are equivalent.

(1) (Pv)∗g = Pvg, (g ∈ Lp(w) ∩ Lq(w)) .
(2) |v|2w is a constant function.

Proof. Suppose (1) holds. Since v ∈ Lp(w) ∩ Lq(w) , (Pv)∗v = Pvv = vP1 = v .
By Lemma 3.2, (v̄w)−1P(v̄wv) = v . Hence, P(|v|2w) = |v|2w . By Lemma 3.1(1),
if |v|pw ∈ (Ap) , then there is a constant δ > 0 satisfying (|v|pw)1+δ ∈ L1 (cf. [4,
p. 262]). Since 1/p + 1/q = 1 , there is a constant r > 1 satisfying

1
p(1 + δ)

+
1
q

=
1
r
.
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Then ∫
(|v|2w)rdm =

∫
|v|rwr/p|v|rwr/qdm

�
(∫

(|v|pw)1+δdm

) r
p(1+δ )

(∫
|v|qwdm

) r
q

< ∞.

Hence, |v|2w is a positive function satisfying |v|2w ∈ Hr , r > 1 . This implies (2).
Conversely, suppose (2) holds. By Lemma 3.2, for all g ∈ Lp(w) ∩ Lq(w) ,

(Pv)∗g =
1
v̄w

P(v̄wg) =
v

|v|2wP

( |v|2w
v

g

)
=

v
c
P

(c
v
g
)

= vP(v−1g) = Pvg.

Theorem 3.3 is proved. �

By Theorem 3.3, if v = 1 and w satisfies the Muckenhoupt condition (Ap) , then
P∗ = P on Lp(w) ∩ Lq(w) if and only if w is a constant.

COROLLARY 3.4. Let 1 < p < ∞ , and let 1/p + 1/q = 1 . Let α be an outer
function such that w = |α|−2 . If w(2−p)/2 ∈ (Ap) , then Pα is a bounded operator on
Lp(w) , and (Pα)∗ is a bounded operator on Lq(w) such that

(Pα)∗(g1 + g2) = g1, (g1 + g2 ∈ Hq(w) ⊕ Kq
0(w)).

and
(Pα)∗ = Pα , on Lp(w) ∩ Lq(w).

Proof. By Theorem 2.7, if w(2−p)/2 ∈ (Ap) , then Pα ∈ B(Lp(w)) and Hp(w) ⊕
Kp

0(w) = Lp(w) . By Lemma 3.1(2), if w(2−p)/2 ∈ (Ap) , then w(2−q)/2 ∈ (Aq) ,

and hence Hq(w) ⊕ Kq
0(w) = Lq(w) . For all f 1 + f 2 ∈ Hp(w) ⊕ Kp

0(w) , and all

g1 + g2 ∈ Hq(w) ⊕ Kq
0 (w) ,

〈 f 1 + f 2, (Pα)∗(g1 + g2)〉 w = 〈Pα(f 1 + f 2), g1 + g2〉 w

= 〈 f 1, g1 + g2〉 w

= 〈 f 1, g1〉 w

= 〈 f 1 + f 2, g1〉 w.

On the other hand, by Theorem 3.3, (Pα)∗ = Pα . Corollary 3.4 is proved. �

4. Invertibility of Tv
φ and φPv + Qv

In this section, the invertibility criterion for the generalized Toeplitz operator Tv
φ

and the generalized singular integral operator φPv + Qv, Qv = I − Pv are investigated
using the weighted norm inequality. By the theorem of Hunt, Muckenhoupt and Whee-
den (cf. [1], [4], [11], [12]), w ∈ (Ap) if and only if P is a bounded projection from
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Lp(w) onto Hp(w) . For φ ∈ L∞ , the Toeplitz operator Tφ is defined as a bounded
operator from Hp(w) to Hp(w) by

Tφ f = P(φf ), (f ∈ Hp(w)).

By Theorem 2.3, if |v|pw ∈ (Ap) , then Pv ∈ B(Lp(w)) . Since (Pv)2 = Pv , ranPv

is a closed subspace of Lp(w) . For φ ∈ L∞ , the generalized Toeplitz operator Tv
φ is

defined as a bounded operator from ran Pv to ranPv by

Tv
φ f = Pv(φf ), (f ∈ ranPv).

We use Lemma 4.1 to prove Lemma 4.2.

LEMMA 4.1. Let 1 < p < ∞ . Suppose φ ∈ L∞ , w, logw ∈ L1 , and |v|pw ∈
(Ap) . Then the following properties are equivalent.

(1) Tv
φ is a left invertible operator on ranPv .

(2) Tφ is a left invertible operator on Hp(|v|pw) .
(3) φP + Q is a left invertible operator on Lp(|v|pw) .
(4) φPv + Qv is a left invertible operator on Lp(w) .

Proof. Let w′ = |v|pw . By Theorem 2.3, Tv
φ , Tφ , φP+Q, φPv +Qv are bounded

operators on each spaces. Suppose (1) holds. Then there is an ε1 > 0 such that∫
|Tv

φ f |pwdm � ε1

∫
|f |pwdm, (f ∈ ranPv) .

Suppose f ∈ Hp(w′) . Since logw ∈ L1 , there is an outer function h satisfying
w = |h|p . Since log |v| ∈ L1 , there is an outer function k satisfying |k| = |v| .
Since w′ = |v|pw , Hp(w′) = Hp(|kh|p) = 1

khHp = k−1Hp(w) . By Theorem 2.4,
ranPv = v

kH
p(w) = vHp(w′) . Hence, there is a g ∈ ranPv such that g = vf . By (1),

there is an ε1 > 0 such that∫
|Tφ f |pw′dm =

∫
|P(φf )|p|v|pwdm

=
∫

|vP(φv−1g)|pwdm

=
∫

|Pv(φg)|pwdm

=
∫

|Tv
φg|pwdm

� ε1

∫
|g|pwdm

= ε1

∫
|f |pw′dm.

This implies (2). Suppose (2) holds. Then there is an ε2 > 0 such that∫
|Tφ f |pw′dm � ε2

∫
|f |pw′dm,

(
f ∈ Hp(w′)

)
.
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Suppose f ∈ Lp(w′) . Let g = (I + QφP)f . Since φ ∈ L∞ and w′ ∈ (Ap) , it follows
that g ∈ Lp(w′) , and there is a C1 > 0 such that∫

|Qg|pw′dm =
∫

|Q(PφP + Q)g|pw′dm

� C1

∫
|(PφP + Q)g|pw′dm.

By the theorem of Hunt, Muckenhoupt and Wheeden (cf. [1], [4], [11], [12]), if
w′ ∈ (Ap) , then P, Q ∈ B(Lp(w′)) , and there is a C2 > 0 such that

ε2

∫
|Pg|pw′dm �

∫
|TφPg|pw′dm

=
∫

|P(PφP + Q)g|pw′dm

� C2

∫
|(PφP + Q)g|pw′dm.

Since Q = I − P , it follows that Q ∈ B(Lp(w′)) , and there is a C3 > 0 such that∫
|g|pw′dm � C3

∫
|(PφP + Q)g|pw′dm.

Since P, Q ∈ B(Lp(w′)) , it follows that (I + QφP)f ∈ Lp(w′) , and there is a C4 > 0
such that ∫

|f |pw′dm =
∫

|(I − QφP)(I + QφP)f |pw′dm

� C4

∫
|(I + QφP)f |pw′dm

� C3C4

∫
|(PφP + Q)(I + QφP)f |pw′dm

= C3C4

∫
|(φP + Q)f |pw′dm.

This implies (3). Suppose (3) holds. Then there is an ε3 > 0 such that∫
|(φP + Q)f |pw′dm � ε3

∫
|f |pw′dm,

(
f ∈ Lp(w′)

)
.

Suppose f ∈ Lp(w) . Then vf ∈ Lp(|v|pw) = Lp(w′) . Since Pvf = vP(v−1f ) and
Qvf = vQ(v−1f ) , it follows that∫

|(φPv + Qv)f |pwdm =
∫

|v(φP + Q)(v−1f )|pwdm

=
∫

|(φP + Q)(v−1f )|p|v|pwdm

� ε3

∫
|v−1f |p|v|pwdm = ε3

∫
|f |pwdm.
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This implies (4). Suppose (4) holds. Then there is an ε4 > 0 such that∫
|(φPv + Qv)f |pwdm � ε4

∫
|f |pwdm, (f ∈ Lp(w)) .

By Theorem 2.3, Pv ∈ B(Lp(w)) . Suppose f ∈ ranPv . Since Qv = I − Pv , it follows
that Pvf = f , Qvf = 0 , and there is an ε5 > 0 such that∫

|Tv
φ f |pwdm =

∫
|Pv(φf )|pwdm

=
∫

|(PvφPv + Qv)f |pwdm

=
∫

|(φPv + Qv)(I − QvφPv)f |pwdm

� ε4

∫
|(I − QvφPv)f |pwdm

� ε5

∫
|(I + QvφPv)(I − QvφPv)f |pwdm

= ε5

∫
|f |pwdm.

This implies (1). Lemma 4.1 is proved. �
We use Lemma 4.2 to prove Theorem 4.3.

LEMMA 4.2. Let 1 < p < ∞ . Suppose w, log w ∈ L1 and |v|pw ∈ (Ap) . Suppose
w = |h|p and |v| = |k| for some outer functions h and k . Let φ be a nonzero function
in L∞ and let

ψ = φ
kh
kh

.

Then the following properties are equivalent.
(1) Tv

φ is a left invertible operator on ranPv .
(2) Tψ is a left invertible operator on Hp .

Proof. Suppose (1) holds. By Lemma 4.1,∫
|(φP + Q)f |p|v|pwdm � ε1

∫
|f |p|v|pwdm

� ε2

∫
|Pf |p|v|pwdm, (f ∈ Lp(|v|pw)) .

Hence,∫
|φf 0 + g0|p|v|pwdm � ε2

∫
|f 0|p|v|pwdm,

(
f 0 ∈ Hp(|v|pw), g0 ∈ Hp

0(|v|pw)
)
.

Hence,∫ ∣∣∣∣φ kh
kh

khf 0 + khg0

∣∣∣∣
p

dm � ε2

∫
|khf 0|p dm,

(
f 0 ∈ Hp(|kh|p), g0 ∈ Hp

0(|kh|p)
)
.
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Since khHp(|kh|p) = Hp , it follows that∫
|ψ f 1 + g1|pdm � ε

∫
|f 1|pdm,

(
f 1 ∈ Hp, g1 ∈ Hp

0

)
.

Hence, ∫
|(ψP + Q)f |pdm � ε3

∫
|f |pdm, (f ∈ Lp) .

By Lemma 4.1 with v = w = 1 ,∫
|Tψ f |pdm � ε4

∫
|f |pdm, (f ∈ Hp) .

This implies (2). The converse is also true. Lemma 4.2 is proved. �

If Pv ∈ B(Lp(w)) , then Tv
φ is an invertible operator on ranPv if and only if

PvφPv + Qv is an invertible operator on Lp(w) if and only if φPv + Qv is an invertible
operator on Lp(w) , since PvφPv + Qv = Tv

φP
v + Qv , (φPv + Qv)(I − QvφPv) =

PvφPv + Qv , and (I − QvφPv)−1 = I + QvφPv (cf. [11, p. 393], [12, Vol. 1, p. 274]).
Hence, we consider only the invertibility of Tv

φ . Corollary 4.4 is the theorem of
Rochberg and Simonenko (cf. [13], [1, p. 216], [12]). Their proof did not use the
theorem of Widom and Devinatz. We use the theorem of Widom and Devinatz to prove
Theorem 4.3.

THEOREM 4.3. Let 1 < p < ∞ . Suppose w, logw ∈ L1 and |v|pw ∈ (Ap) . Let
φ be a nonzero function in L∞ . Then the following properties are equivalent.

(1) Tv
φ is an invertible operator on ranPv .

(2) φ = γ exp(U − iṼ) , where γ is a constant with |γ | = 1 , U is a bounded
real function, V is a real function in L1 and |v|pw exp(pV/2) ∈ (Ap) . ( Ṽ denote the
harmonic conjugate function of V .)

Proof. Suppose (1) holds. Since logw ∈ L1 , there is an outer function h
satisfying w = |h|p . Since log |v| ∈ L1 , there is an outer function k satisfying
|k| = |v| . By Theorem 2.4, ranPv = v

kH
p(w) = vHp(|v|pw) and Lp(w) = Hp(w) ⊕

k
k̄H

p
0(w) = ranPv ⊕ v

k̄H
p
0(w) . Since 1 ∈ Hp(|v|pw) , v ∈ vHp(|v|pw) = ranPv . Since

Tv
φ is invertible, there is an f ∈ ranPv such that Tv

φ f = v . Hence, Pv(φf ) = v . Hence,
φf − v = Qv(φf ) . Hence, there is a g ∈ ranQv such that φf = v + g . Let

ψ = φ
kh
kh

.

Then ψ f kh = φf kh = (v + g)kh . Since f ∈ ranPv = v
kH

p(w) , it follows that
f k
v ∈ Hp(w) = h−1Hp . Hence, f kh

v ∈ Hp . Since g ∈ ranQv = v
k̄
Hp

0(w) = v
kh

Hp
0 , it

follows that gkh
v ∈ Hp

0 . Let F0 = f kh
v . Then F0 ∈ Hp , and

ψF0 − kh =
gkh
v

∈ Hp
0 .
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Let c be the 0th Fourier coefficient of kh . Since kh is an outer function, c �= 0 . Then
ψF0 − c̄ ∈ Hp

0 . Hence, TψF0 = c̄ . Hence, 1 ∈ ranTψ . Hence, there is an F ∈ Hp

such that ψF − 1 ∈ Hp
0 . Hence, ψzF − z ∈ Hp . Hence, Tψ (zF) − z is a constant.

Since 1 ∈ ranTψ , this implies that z ∈ ranTψ . Suppose 1, z, ..., zn ∈ ranTψ and there

are constants c1, c2, ..., cn such that ψznF − zn − (c1zn−1 + c2zn−2 + ... + cn) ∈ Hp
0 .

Then
ψzn+1F − zn+1 − (c1z

n + c2z
n−1 + ... + cnz) ∈ Hp.

Let cn+1 be the 0th Fourier coefficient of this function. Then

ψzn+1F − zn+1 − (c1z
n + c2z

n−1 + ... + cnz + cn+1) ∈ Hp
0 .

Hence,
Tψ (zn+1F) − zn+1 − (c1z

n + c2z
n−1 + ... + cnz + cn+1) = 0.

Since 1, z, ..., zn ∈ ranTψ , it follows that zn+1 ∈ ranTψ . Hence, 1, z, z2, ... ∈ ranTψ .
Hence, ranTψ is dense in Hp (cf. [9]). By Lemma 4.2, Tψ is left invertible. Hence,
Tψ is an invertible operator on Hp . By the theorem of Widom and Devinatz (cf. [1],
[11], [12]), ψ = γ1 exp(U− iṼ0) , where γ1 is a constant with |γ1| = 1 , U is a bounded
real function, V0 is a real function in L1 and exp(pV0/2) ∈ (Ap) . Hence,

φ
kh
kh

= ψ = γ1 exp(U − iṼ0).

There are constants γ2 and γ3 with |γ2| = |γ3| = 1 such that

hp = γ2 exp (logw + i(logw)̃ ) ,

k = γ3 exp (log |v| + i(log |v|)̃ ) .

Hence, there is a constant γ4 with |γ4| = 1 such that

φ = γ1
(kh)2

|kh|2 exp(U − iṼ0) = γ4 exp
(
U − i(V0 − log |v|2 − logw2/p)̃

)
.

Let V = V0 − log |v|2 − logw2/p . Then φ = γ4 exp(U − iṼ) and |v|pw = exp(p(V0 −
V)/2) . Hence, |v|pw exp(pV/2) = exp(pV0/2) ∈ (Ap) . This implies (2).

Conversely, suppose (2) holds. By the similar calculation, (2) implies that ψ =
γ1 exp(U − iṼ0) , where γ1 is a constant with |γ1| = 1 , U is a bounded real function,
V0 is a real function in L1 and exp(pV0/2) ∈ (Ap) . By the theorem of Widom and
Devinatz (cf. [1], [11], [12]), Tψ is an invertible operator on Hp . By Lemma4.2, Tv

φ is a
left invertible operator on ranPv . It is sufficient to prove that ranTv

φ is dense in ranPv .

Let n be a nonnegative integer. Then there is an F ∈ Hp such that TψF = P(znkh) .

Since P(ψF − znkh) = 0 , it follows that ψF − znkh = φ kh
khF − znkh ∈ Hp

0 . Hence,
φ k̄F
kh − znk̄ ∈ Hp

0(w) . By Theorem 2.4, φvF
kh − znv ∈ v

k̄
Hp

0(w) = kerPv . Let G = vF
kh .

Then G ∈ v
kH

p(w) = ranPv . Since φG − znv ∈ kerPv , it follows that Tv
φG =

Pv(φg) = Pv(znv) = znv . Hence, znv ∈ ranTv
φ , (n = 0, 1, 2...) . Let g ∈ ranPv . Then

v−1g ∈ k−1Hp(w) = Hp(|v|pw) . Hence, there is a sequence of analytic polynomials f n
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such that ‖f n − v−1g‖Lp(|v|pw) → 0, (n → ∞) . Hence, ‖vf n − g‖Lp(w) → 0 . Therefore
ranTv

φ is dense in ranPv . This implies (1). Theorem 4.3 is proved. �
By Theorem 4.3, Tv

φ is invertible on ranPv if and only if Tφ is invertible on
Hp(|v|pw) . Hence, it is proved that the condition "Tψ is an invertible operator on Hp "
is also equivalent in the theorem.

COROLLARY 4.4. Let 1 < p < ∞ . Suppose w ∈ (Ap) . Let φ be a nonzero
function in L∞ . Then the following properties are equivalent.

(1) Tφ is an invertible operator on Hp(w) .
(2) φ = γ exp(U− iṼ) , where γ is a constant with |γ | = 1 , U is a bounded real

function, V is a real function in L1 and w exp(pV/2) ∈ (Ap) .

Proof. Let v = k = 1 . By Theorem 2.4, ranP = ranPv = v
kH

p(w) = Hp(w) .
Theorem 4.3 proves Corollary 4.4. �

COROLLARY 4.5. Let 1 < p < ∞ , and let 1/p + 1/q = 1 . Let α be an outer
function such that w = |α|−2 . If w(2−p)/2 ∈ (Ap) , then Pα is a bounded projection
from Lp(w) onto Hp(w) such that (Pα)∗ = Pα , on Lp(w) ∩ Lq(w) . Then the
following properties are equivalent.

(1) Tα
φ is an invertible operator on Hp(w) .

(2) φ = γ exp(U − iṼ) , where γ is a constant with |γ | = 1 , U is a bounded
real function, V is a real function in L1 and w(2−p)/2 exp(pV/2) ∈ (Ap) .

Proof. By Corollary 3.4, Pα is a bounded projection from Lp(w) onto Hp(w)
such that (Pα)∗ = Pα . In the proof of Theorem 4.3, let v = k = α . Then

ψ = φ
kh
kh

.

By Theorem 4.3, Tα
φ is invertible on Hp(w) if and only if φ = γ exp(U − iṼ) , where

γ is a constant with |γ | = 1 , U is a bounded real function, V is a real function in L1

and w(2−p)/2 exp(pV/2) = |v|pw exp(pV/2) ∈ (Ap) . Corollary 4.5 is proved. �

COROLLARY 4.6. Let φ be a nonzero function in L∞ . Let w ∈ L1 . Suppose
w = |α|−2 for some outer function α . Then Pα is a self-adjoint projection from
L2(w) onto H2(w) . Then the following properties are equivalent.

(1) Tα
φ is an invertible operator on H2(w) .

(2) Tφ is an invertible operator on H2 .
(3) φ = γ exp(U − iṼ) , where γ is a constant with |γ | = 1 , U is a bounded

real function, V is a real function in L1 and eV ∈ (A2) .

Proof. By Theorem 4.3, Tv
φ is invertible on ranPv if and only if Tφ is invertible

on Hp(|v|pw) . Hence (1) is equivalent to (2). By Theorem 2.7, Pα is a self-adjoint
projection from L2(w) onto H2(w) . Since p = 2 , it follows that w(2−p)/2 exp(pV/2) =
eV ∈ (Ap) . By Corollary 4.5, (1) is equivalent to (3). Corollary 4.6 is proved. �

By the theorem of Widom (cf. [1, p. 68], [12, p. 260]), the spectrum of Tα
φ ∈

B(H2(w)) is connected.
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5. Invertibility of Rv
φ

In this section, we assume that v is an outer function. We do not assume that
Pv ∈ B(Lp(w)) . Hence, the results in this section do not follow from the theorem of
Rochberg and Simonenko or the theorem of Widom and Devinatz (cf. [13], [1, p. 216],
[12]). Let 1 < p < ∞ . Let w, logw ∈ L1 . Let φ ∈ L∞ . The operator Rv

φ is defined

as a bounded operator from Hp(w) to Lp(w)/ v
vH

p
0(w) by

Rv
φ f = φf +

v
v
Hp

0(w), (f ∈ Hp(w)).

If Pv ∈ B(Lp(w)) , then kerPv = v
vH

p
0(w) . If w = |α|−2 for some outer function α ,

then Rα
φ is a bounded operator from Hp(w) to Lp(w)/Kp

0 (w) such that

Rα
φ f = φf + Kp

0(w), (f ∈ Hp(w)).

If Pv ∈ B(Lp(w)) , then Tv
φ is an invertible operator on ranPv if and only if Rv

φ is

an invertible operator from Hp(w) onto Lp(w)/ v
vH

p
0(w) . Theorem 4.3 for an outer

function v follows from Theorem 5.2. Theorem 5.2 with Pv ∈ B(Lp(w)) follows from
Theorem 4.3. We use Lemma 5.1 to prove Theorem 5.2. Nakazi [9] considered the case
when v = 1 , and proved Lemma 5.1. We use Lemma 5.1 to prove Theorem 5.2.

LEMMA 5.1. Let 1 < p < ∞ . Suppose w = |h|p for some outer function h ∈ Hp ,
φ ∈ L∞ and v is an outer function. Then the following conditions are equivalent.

(1) R1
φ is an invertible operator from Hp(w) onto Lp(w)/Hp

0(w) .

(2) φ = k0(h0/h0)(h/h) , where k0 is an invertible function in H∞ and h0 is an
outer function in Hp with |h0|p ∈ (Ap) .

(3) φ = γ exp(U − iṼ) , where γ is a constant with |γ | = 1 , U is a bounded
real function, V is a real function in L1 and w exp(pV/2) ∈ (Ap).

THEOREM 5.2. Let 1 < p < ∞ . Suppose w = |h|p for some outer function
h ∈ Hp , φ ∈ L∞ and v is an outer function. Let

ψ = φ
v
v
.

Then the following conditions are equivalent.

(1) Rv
φ is an invertible operator from Hp(w) onto Lp(w)/ v

vH
p
0(w) .

(2) φ = γ exp(U − iṼ) , where γ is a constant with |γ | = 1 , U is a bounded
real function, V is a real function in L1 and |v|pw exp(pV/2) ∈ (Ap) .

Proof. If Rv
φ is left invertible, then for any f ∈ Hp(w) and g ∈ Hp

0(w) ,

∫ ∣∣∣∣φ k̄
k
f + g

∣∣∣∣
p

wdm =
∫ ∣∣∣φf +

v
v
g
∣∣∣p wdm � ε

∫
|f |pwdm,
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where ε is a positive constant. This implies that R1
φ k̄/k is left invertible. The converse

is also true. Hence, Rv
φ is left invertible if and only if R1

φ k̄/k is left invertible. Since

(
Lp(w)/

v
v̄
Hp

0(w)
)∗

=
v
v̄
Kq(w), (Hp(w))∗ = Lq(w)/Kq

0 (w),

it follows that (Rv
φ)

∗ is a bounded operator from v
v̄K

q(w) to Lq(w)/Kq
0 (w) . For all

F ∈ Kq(w) and all g ∈ Hp(w) ,〈
(Rv

φ)
∗
(v

v̄
F
)

, g
〉

=
〈v

v̄
F, Rv

φg
〉

=
∫

v
v̄
Fφgwdm

=
〈
φ̄

v
v̄
F + Kq

0(w), g
〉

.

Hence,

(Rv
φ)

∗
(

v
v
F

)
= φ̄

v
v̄
F + Kq

0(w), (F ∈ Kq(w)).

If Rv
φ is a right invertible operator from Hp(w) to Lp(w)/ v

vH
p
0(w) , then (Rv

φ )
∗ is a left

invertible operator from v
v̄K

q(w) to Lq(w)/Kq
0(w) . Hence,∫ ∣∣∣φ̄ v

v̄
F + G

∣∣∣q wdm � ε
∫

|F|qwdm, (F ∈ Kq(w), G ∈ Kq
0(w)).

Hence (R1
φ v̄/v)

∗ is a left invertible operator from Kq(w) to Lq(w)/Kq
0 (w) . Hence,

R1
φ v̄/v is a right invertible operator from Hp(w) to Lp(w)/Hp

0(w) . The converse is also

true. Hence, Rv
φ is right invertible if and only if R1

φ v̄/v is right invertible. Hence, Rv
φ

is invertible if and only if R1
φ v̄/v is invertible. By Lemma 5.1, R1

φ v̄/v is invertible if and
only if

φ
|v|2
v2

= φ
v̄
v

= γ0 exp(U − iṼ0),

where γ0 is a constant with |γ | = 1 , U is a bounded real function, V0 is a real function
in L1 and w exp(pV/2) ∈ (Ap) . Since v is an outer function,

v2 = γ1 exp(log |v|2 + i(log |v|2 )̃ ).

Hence,
φ = γ2 exp

(
U − i(V0 − log |v|2)̃ )

.

Let V = V0 − log |v|2 . Then φ = γ2 exp(U − iṼ) , and

|v|pw exp(pV/2) = w
(|v|2eV

)p/2
= w exp(pV0/2) ∈ (Ap).

Theorem 5.2 is proved. �
By Theorem 4.3 and Theorem 5.2, if Pv ∈ B(Lp(w)) and v is an outer function,

then Tv
φ is invertible if and only if Rv

φ is invertible.
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6. Norms of Hankel Operators Hv
φ

In this section, the operator norm inequality for the generalizedHankel operator Hv
φ

is presented. Let Qv = I−Pv . By Theorem 2.3, if Qv ∈ B(Lp(w)) , then |v|pw ∈ (Ap) .
For φ ∈ L∞ , the generalized Hankel operator Hv

φ is defined as a bounded operator
from ran Pv to kerPv by

Hv
φ f = Qv(φf ), (f ∈ ranPv).

If w ∈ (Ap) , Q = I−P , and φ ∈ L∞ , then the original Hankel operator Hφ is defined
as a bounded operator from Hp(w) to Hp(w) by

Hφ f = Q(φf ), (f ∈ Hp(w)).

We use Lemma 6.1 to prove Theorem 6.2.

LEMMA 6.1. Let 1 < p < ∞ , and let 1/p + 1/q = 1 . Suppose w ∈ L1, w >
0, logw ∈ L1 . For a function k , the following two properties are equivalent.

(1) k ∈ H1
0 , and ‖k‖1 � 1 .

(2) There are f ∈ Hp(w) and g ∈ Kq
0(w) such that ‖f ‖p,w = ‖g‖q,w � 1 , and

k = f gw .

Proof. Suppose (1) holds. By the factorization theorem, there exists an inner
function j and an outer function k0 ∈ H1 such that k = zjk0 . Let h ∈ Hp be an outer
function such that w = |h|p . If f = h−1jk1/p

0 , then f ∈ Hp(w) . By Lemma 2.5, if

g = w−1hzk1/q
0 , then

g ∈ hp

w
h1−pHq

0 =
hp

w
Hq

0(w) = Kq
0(w),

‖f ‖p,w = ‖g‖q,w = ‖k‖1 � 1 , and k = f gw . This implies (2). Conversely, suppose
(2) holds. Since Kq

0(w) = hp

w Hq
0(w) , it follows from (1) that gw ∈ hpHq

0 . Hence,
f gw ∈ hpHp(w)Hq

0(w) = hpH1
0(w) = H1

0 . By the Hölder inequality, ‖k‖1 = ‖f gw‖1 �
‖f ‖p,w‖g‖p,w . This implies (1). Lemma 6.1 is proved. �

THEOREM 6.2. Let 1 < p < ∞ . Suppose φ ∈ L∞ , and w is a positive function
such that w, logw ∈ L1 . Let log |v| ∈ L1 . If |v|pw ∈ (Ap) , then the following
inequality holds.

‖Hφ‖B(L2) � ‖Hv
φ‖B(Lp(w)) � ‖Qv‖B(Lp(w))‖Hφ‖B(L2).

Proof. By Theorem 2.3, if |v|pw ∈ (Ap) , then Pv ∈ B(Lp(w)) . We shall prove
the first inequality. Let k be an outer function such that |v| = |k| . Hence,

‖Hv
φ‖B(Lp(w)) = sup

f ∈ran Pv,‖f ‖p,w�1
‖Hv

φ f ‖p,w

� sup
f ∈ran Pv,‖f ‖p,w�1,g∈Kq

0 (w),‖g‖q,w�1

∣∣∣∣
∫

(Hv
φ f )

k
v
gwdm

∣∣∣∣
= sup

f ,g

∣∣∣∣
∫

Qv(φf )
k
v
gwdm

∣∣∣∣ .
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By Theorem 2.4, ranPv = v
kH

p(w) . Hence, Pv(φf ) k
v ∈ Hp(w) . By Lemma 2.5,

if g ∈ Kq
0(w) , then g ∈ hp

w Hq
0(w) . Hence, gw ∈ hpHq

0(w) . Hence, Pv(φf ) k
v gw ∈

hpH1
0(w) = H1

0 . Hence,

‖Hv
φ‖B(Lp(w)) � sup

f ,g

∣∣∣∣
∫

φ
k
v
f gwdm

∣∣∣∣ .

Let F = k
v f . Since ranPv = v

kH
p(w) , it follows that f ∈ ranPv if and only if

F ∈ Hp(w) , and ‖f ‖p,w = ‖F‖p,w . Hence,

‖Hv
φ‖B(Lp(w)) � sup

F∈Hp(w),‖F‖p,w�1,g∈Kq
0 (w),‖g‖q,w�1

∣∣∣∣
∫

φFgdm

∣∣∣∣ .
By Lemma 6.1 and the theorem of Nehari (cf. [1], [11], [12]),

‖Hv
φ‖B(Lp(w)) � sup

k∈H1
0 ,‖k‖1�1

∣∣∣∣
∫

φkdm

∣∣∣∣ = dist(φ, H∞).

Next we shall prove the second inequality. If f ∈ ranPv and G ∈ H∞ , then Gf ∈
ranPv = v

kH
p(w) . Hence, v−1Gf ∈ k−1Hp(w) = Hp(|v|pw) . Since |v|pw ∈ (Ap) ,

it follows that Pv(Gf ) = vP(v−1Gf ) = vv−1Gf = Gf . Hence, Qv(Gf ) = (I −
Pv)(Gf ) = 0 . Hence,

‖Hv
φ‖B(Lp(w)) = sup

f ∈ran Pv,‖f ‖p,w�1
‖Hv

φ f ‖p,w

= sup
f ∈ran Pv,‖f ‖p,w�1

‖Qv(φf )‖p,w

= sup
f ∈ran Pv,‖f ‖p,w�1

‖Qv((φ − G)f )‖p,w

� ‖Qv‖B(Lp(w))‖φ − G‖∞.

Hence,

‖Hv
φ‖B(Lp(w)) � ‖Qv‖B(Lp(w)) inf

G∈H∞ ‖φ − G‖∞ = ‖Qv‖B(Lp(w))dist(φ, H∞).

Hence,
dist(φ, H∞) � ‖Hv

φ‖B(Lp(w)) � ‖Qv‖B(Lp(w))dist(φ, H∞).

If v = w = 1 , then the equalities hold, and hence we have the Nehari theorem:
‖Hφ‖B(L2) = ‖H1

φ‖B(L2) = dist(φ, H∞) . Theorem 6.2 is proved. �

COROLLARY 6.3. Let 1 < p < ∞ . Suppose φ ∈ L∞ , and w is a positive function
such that w, logw ∈ L1 .

(1) If w = |v|−p for some function v , then Hv
φ is a bounded operator from ranPv

to kerPv satisfying

‖Hφ‖B(L2) � ‖Hv
φ‖B(Lp(w)) � 1

sin(π/p)
‖Hφ‖B(L2).
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(2) If w = |α|−2 for some outer function α , then Hα
φ is a bounded operator

from H2(w) to K2
0(w) satisfying

‖Hα
φ ‖B(L2(w)) = ‖Hφ‖B(L2).

Proof. It is sufficient to prove (1). By Lemma 2.2, if |v|pw is a constant, then
‖Pv‖B(Lp(w)) = ‖P‖B(Lp) . By the similar proof, it follows that ‖Qv‖B(Lp(w)) = ‖Q‖B(Lp) .
It is known that ‖P‖B(Lp) = ‖Q‖B(Lp) (cf. [5, Vol. I, p. 79]). By the theoremof Gohberg,
Krupnik, Hollenbeck and Verbitsky (cf. [5], [6]), ‖P‖B(Lp) = 1

sin(π/p) . By Theorem 6.2,
Corollary 6.3 is proved. �
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