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(communicated by L. Pick)

Abstract. Let 1 < p < oo. In this paper, for a measurable function v and a weight function
w, the generalized Riesz projection PV is defined by P'f = vP(v~'f), (f € L (w)). If Py is
the self-adjoint projection from L?(w) onto H>(w), then Py = P% for some outer function o
satisfying w = |a| =2 . In this paper, P on LP(w) is studied. Asan application, the invertibility
criterion for the generalized Toeplitz operator T:D and the generalized singular integral operator

PP+ QV, QV =1—P" are investigated using the weighted norm inequality. The operator norm

inequality for the generalized Hankel operator Hg is also presented.

1. Introduction

Let & = span{e™®;n > 0}, and let 2 = span{e™®;n < 0}. Then & + 2
is the set of all trigonometric polynomials. Let dm(e’®) = d6/2m be the normalized
Lebesgue measure on the unit circle T. Let w be a positive functionin L! = L!(dm).
Let 1 < p < oo. Then & + 2 isdense in L[ (w) = [”(wdm) in norm. Let HP (w)
denote the norm closure in L7 (w) of &2, and let Hj(w) denote the norm closure in
L7 (w) of 2. We will write H?(w) = H? when w = 1, and then this is a usual Hardy
space. The Riesz projection P from & + 2 to & is an operator defined by

(PF)E) =D _f(k)e", (fe?+2),

k>0

where f (k) denotes the k-th Fourier coefficient of f. Hence, the Riesz projection
P is a densely defined operator from L”(w) to H”(w). P may not be extended to a
bounded operator. P can be extended to a bounded operator from L”(w) onto HP(w)
if and only if w satisfies the condition:

00 (o) o o)
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where the supremum is over all intervals I of T. This is the theorem of Hunt,
Muckenhoupt and Wheeden (cf. [1, p. 39], [4, p. 255], [11, p. 209, p. 450], [12, p. 119])
which is a generalization of the theorem of Helson and Szegé (cf. [4, p. 147], [11,
p. 450], [12, p. 99]). Let v be a measurable function on the unit circle T satisfying
[v| > 0. In this paper, the generalized Riesz projection P is defined by

(P'f)(€%) = v(e)P(r'f)(e%) = v(e®) Y (v7'f )" (k)e",
k=0
(f e vZ +v2). Then vZ Nv2 = {0}, and P’ maps v +v2 onto v&.
Hence, (P")?> = P". Let w be an integrable function on T satisfying w > 0. Let
I1<p<oo.Ifvell(w),then v +v2 isdensein LF(w). Let 1 < p < oo, and
let 1/p+1/g=1.

In Section 2, we will consider the boundedness of the generalized Riesz projection
P'. Ttis well known that if p = 2 and v is an outer function such that |[v|> = w, then
P’ becomes a self-adjoint projection which maps L?(w) onto H?(w) (cf. [2], [7]). In
particular, P = P! is a self-adjoint projection which maps L? onto H?. We will prove
thatif 1 < p < oo and w, v satisfy some conditions, then P” is a bounded operator on
L7 (w) if and only if |v[Pw € (4,).

In Section 3, we will consider the adjoint operator for P”. We will give the form of
(P")*, and prove thatif 1 < p < oo and w, v satisfy some conditions, then (P")* = P¥
on I7(w) N LY(w) if and only if |v[>w is a constant function.

In Section 4, we will consider the invertibility of the Toeplitz operator 7§ and
singular integral operator ¢P” + Q¥, where Q" =1 —P". Let 1 < p < 00, and let
¢ € L. If P" € B(L”(w)), then the operator T, from ranP" to ranP" is defined by

Tyf = P'(¢f), (f €ranP).

If w € (A,), then Rochberg [13] established an invertibility criterion for the Toeplitz
operator Ty, on H?(w) (cf. [1, p.216]). If p =2 and w = 1, then this reduces to a
theorem of Widom and Devinatz (cf. [1, p. 59], [11, p. 316], [12, p. 250]).

In Section 5, we do not assume the boundedness of P' on LP(w). Hence, the
results in Section 5 do not follow from the theorem of Rochberg and Simonenko or
the theorem of Widom and Devinatz (cf. [13], [1, p. 216], [12]). We will consider
the invertibility of the quotient type Toeplitz operator Ry for an outer function v. Let

1 <p<oo,andlet ¢ € L. If log|v| € L', then an operator R} is defined as a
bounded operator from H”(w) to L (w)/LHf(w) by

Rif = of + SHy(w), (f € H'(w)).

If P" € B(L’(w)), then kerP" = YH{(w). Rj is always bounded. When v = 1,
Nakazi ([8], [9]) considered the quotient type Toeplitz operator Ry = Ry from H”(w)

to L (w)/H}(w) and proved Lemma 5.1. We use Lemma 5.1 to prove Theorem 5.2.
In Section 6, the operator norm inequality for the generalized Hankel operator Hy
is presented. Let 1 < p < oo, and let ¢ € L. If P* € B(L(w)), then the Hankel
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operator Hy from ran P’ to ran Q" is defined by

Hyf = Q0'(¢f), (f €ranP).

If v =w = 1, then this reduces to a theorem of Nehari (cf. [1, p. 54], [11, p. 181], [12,
p. 181]).

2. Boundedness of P’

In this section, we discuss the condition such that the generalized Riesz projection
P’ is extended to L”(w) by continuity to a bounded operator. We will not distinguish
between an operator’s being bounded and being densely defined and extendable by
continuity to a bounded operator. We use Lemmas 1.1 and 1.2 to prove Theorems 2.3
and 2.4.

LEMMA 2.1. Let 1 < p < co. Let w be a positive function in L.

(1) If [v| > 0 and v € L (w), then vP + v2 is a dense subspace of L’ (w).

(2) If logw € L' and |v| = |k| for some outer function k in HF(w), then k2 is
dense in H? (w).

Proof. (1): Let f € L(w). Then, v_'I’(w) = L[P(|[v[’w). Hence, v_'f €
LP(Jv[Pw). Since & + 2 is densein L7 (|v|’w), it follows that there exists a sequence
fn € P+ 2 such that

lim /\vfn —fPwdm = lim /lfn — v I P vPwdm = 0.

(2): Let g € H’(w). Since k is an outer function such that |k| = |v|, it follows
that k~'g € HP(|v]Pw). Since & is dense in HP(|v|Pw), it follows that there exists a
sequence g, € & such that

lim / kg, — glPwdm = lim / lgn — kg |v[Pwdm = 0.
Hence, k&7 is dense in H”(w). Lemma 2.1 is proved. [J

LEMMA 2.2. Let 1 < p < co. Let w be a positive function in L'. Suppose
[v| > 0 and v € LP(w). Then the following properties are equivalent.
1) P’ is a bounded operator on LF (w).
2) PV is a bounded operator on LP(w).
3)
of these conditions holds, then

P is a bounded operator on LP(|v|Pw).

R~~~

If on

1P |sr i)y = IIPM |5y = 1Pl Bezr(jvipw))-
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Proof. Tt is sufficient to prove the equivalence of (1) and (3). By (1), for all
fePand ge 2,

/[f|p|v|pwdm = /\vf|pwdm

HPV”I;(U(W))/W —l—vg‘l’wdm

N

1Py [ 1 + g,

Hence, ||P||pwr(jvjpw)) < |P'llBzr(w)) < oo. This implies (3). Conversely, by (3), for
all f € ¥ and g€ 2,

/\vf|pwdm = /V\p|v|pwdm
Py [ 1F + PP

‘|P||I;([p(|v|pw))/“’f + vgl'wdm

N

ByLemma2.1(1), vZ+v2 isdensein L”(w) . Hence,
00, and hence (1) follows. Lemma 2.2 is proved. [

PYllprow)) < 1P lBe(vipw)) <

Suppose w = |a|~2 for some outer function o;. Then Py = P* is a self-adjoint
projection from L*(w) onto H*(w). Let Qo = I — Py . If a, b are constant functions,
then ||aPo + bQol|p(12(w)) = max(|al, |b]) (cf. [S, Vol. I, p. 79]). By the similar proof
of Lemma 2.2, if a,b € L*, then |laPo + bQo|lsr2(w)) = llaP + bOl|pur2(jappw)) =
laP + bQ||p(12) - Hence,

llaPo + bQoll (12 (w)) llaP + bQ||p(r2)

2 pP2 ~ 2 _ pl2\2
= inf Ja” + [bI" + [ |ab — k|* + laf = b
kEH®® 2 2

o0

The infimum is attained (cf. [10]).
Let 1 < p < oo. There are many measurable functions v and w such that
v,logv,logw & L', w € L' and P" € B(L*(w)). For example, let

i0 — g 2
v(e') exp(zn_9>, (0< 6 <2m),
and let w = [v|77. Since 525~ < 3£, it follows that 0 < w(e’) = exp <0f2n) <
exp (72) < oo. Hence, w € L. By Lemma 2.2 and the theorem of Gohberg,
Krupnik, Hollenbeck and Verbitsky (cf. [5, Vol. II, p. 102], [6]),
. 1
1P| arwy) = IIPllar) = =5 < 00

sin(7/p)
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Then ran P’ @ ker P* = vH? vH_g =vl? =I17(w). If p=2,then P’ is a self-adjoint
projection on L?(w).

THEOREM 2.3. Let w be a positive function in L' .

(1) If |v| > 0 and v € L*(w), then P’ is an unbounded operator on L'(w).

(2) Let 1 <p <oo.If|v]| >0 and v € LP(w), then P* € B(L?(w)) if and only
if vfPw € (4p).

Proof. (1): Suppose P’ € B(L'(w)). By Lemma 2.2, |v| > 0, and P €
B(L'(|v|w)). By the theorem of Forelli (cf. [3]), P € B(L'). This is a contradiction
(cf. [5, Vol. 1, p. 78]).

(2): By Lemma2.2,if P" € B(L’(w)), then P € B(L”(|v|[’w)). By the theorem
of Hunt, Muckenhoupt and Wheeden (cf. [1], [4], [11], [12]), this implies |v[Pw € (A,).
The converse is also true. Theorem 2.3 is proved. [

THEOREM 2.4. Let 1 < p < 0o. Let w be a positive function in L'. Suppose
[v| >0 and v € LP(w).
(1) If P" € B(LP(w)), then

ran P" = ker Q" = vH” ([v['w) = [v2]1p(w)»
ker P’ = ran Q" = vH{ (|[v[Pw) = v2]1p(w),
where [ - |1p(y) denotes the norm closure in L (w).

(2) Suppose logw and log|v| are in L'. Let k be an outer function such that
k| = |v|. Let Q" =1— P". If P* € B(L”(w)), then

ranP”" = ker Q' = KHP(W) C P (w),

= =

ker P' =ran Q" = =H} (w) C L*(w),

=~

and

L’ (w) = H (w) @ EH([))(W).

(3) If there is an outer function k such that |k| = |v| and LF(w) = HP(w) &
Hl(w), then P" € B(LP(w)).

kol [kl

Proof. (1): Suppose f € ranP". Then there is a g € L”(w) such that f = P’g.
By Lemma 2.1(1), there is a sequence {z,} in & + 2 such that

/ |vt, — g[Pwdm — 0,

as n — 0o. Since P' € B(LP(w)), it follows that
/ |Pt, — v I PlvfPwdm = / [vPt, — f |Pwdm
/ |P"(vt, — g)[Pwdm

HP”H’;(U(W)) / |vt, — glPwdm.

N
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Hence,
[ 1Pt =7 spwam o,

as n — oo. This implies that v='f € HP(|v|w). Hence, ranP’ C vHP(|v|'w).
Suppose f € vHP(|[v|Pw). Since v=!f € HP(|v|Pw), there is a sequence {g,} in &
such that

ey

as n — oo. This implies that f € [v2];p(,). Hence, vHP(|v[Pw) C [vZP]ip() -
Therefore,
v CranP" C vH' (|v[P'w) C v 2] 1p()-

Since (P")?> = P", ran P is a closed subspace of 1”(w). Similarly
v2 Cran Q" C vH{(|v[Pw) C V2] ()

and ran Q" is a closed subspace of L”(w). Hence (1) follows.
(2): By Theorem 2.3, if P* € B(L”(w)), then |v|’'w € (4,). Since k is an outer
function such that |k| = |v|, it follows that

ranP’ = P'I’(w) = vP(v 'h'LP) = vPLP(|v|'w)
= VH([vfw) = ZKH([k"w) = H (w),

and
ran Q" = Q'IF(w) = vQ(v A1) = vOLF (]v'w)
v v
= VHG(VPw) = TRHG(RPW) = THE().
Hence, ~
. .,k k——
[F(w) =ran P’ + ran Q" = —H?(w) & —Hj(w).
1% 1%
Since |k| = |v]|, it follows that

LP(w) = %L”(w) = HP(w) ® %Hg(w).

(3): Since |v|Pw € L' and LF(w) = HP(w) & {H}(w), it follows that
L(vfPw) =k '1P(w) = &k 'HP(w) ® k= 'Hb(w)
= H(vI'w) & Hy([v[rw).

By the closed graph theorem, this implies that P € B(L?(|v[’w)). Theorem 2.4 is
proved. O

Let | <p<oo.Iff €l’(w)and we L', then fwe L', Let

KP(w) ={f e (W) ; (fw)"(n) =0, (n < 0)},
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and let

Kg(w) ={f €L"(w): (fw)"(n) =0, (n <0)}.
Hence, K”(w) and K} (w) are closed subspaces of L’ (w) satisfying K”(w) = L”(w) N
w'H' . The shift operator maps K”(w) onto K5(w). If p = 2, then we have the
orthogonal decomposition:

L*(w) = H*(w) @ KZ(w).

If w=1, then K”(w) = H”. According to the Riesz representation theorem, for every
bounded linear functional ¢ € HP(w)*, 1 < p < oo, there exists a unique function
g€ K%w), 1/p+1/q =1, suchthat

o) = [ rauan, ¢ < ().
We use Lemmas 2.5 and 2.6 to prove Theorem 2.7.

LEMMA 2.5. Let 1 < p < oo, andlet 1/p+1/q=1. Let h be an outer function
satisfying w = |h|P.

w1 W

(1) ko) =" = e,
2) K9(w) = %H" - %pm(w).

(3) KP(w) = HP(w) if and only if w is a constant function.

Proof. (1): Suppose f € KP(w). Then f € LP(w)Nw~'H'. Then fh € I and
(fw)/(WP~') € HP. Then f € @H”. The converse is also true. Hence, K?(w) =
hpTﬂHp. Since HP(w) = HP(|hP) = h~'HP , it follows that K?(w) = %Hp(w).

(2): Suppose f € K9(w). Then f € Li(w) Nw~'H'. Then fh*~! € L9 and
fw/h € H1. Then f € 2HY. The converse is also true. Hence, K%(w) = LH. Since
H4(w) = HY(|h"|) = h!=PHY, it follows that K9(w) = %H‘?(w).

(3): Suppose KP(w) = HP(w). Since 1 € H’(w), 1 € KP(w). By (1),
1 e hpTﬂHp. Hence, there is an f € HP such that Jiv;l = 1. Since W~ € HY,
fhP~1 is a positive function in H'. Hence, f and h are constant functions. Hence, w
is a constant function. The converse is clear. Lemma 2.5 is proved. [

LEMMA 2.6. Let w,logw, w>=P)/2 ¢ L1,
(1) HP(w) @ K§(w) = IP(w) if and only if HP(w?~P)/2) @ H)(w2-r)/2) =
P (w=r)/2),

(2) Thereis a constant C such that

/[f|pwdm <C [ |f +glPwdm, (f € H(w), g € Kj(w))
if and only if there is a constant C such that

/pr(z—p)/zdm < C/V +g|pw(2_p>/2dm, (f € 2, gc 2).
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Proof. By the closed graph theorem, it is sufficient to prove (1). Since logw € L',
there is an outer function & satisfying w = |h|’. Let p = 2a. Then w = h®h* and
w2=P)/2 = wl=¢ By Lemma 2.5,

i (0 (w) @ KE(w)) = e HY @ heTH

= H'(|n'~°P) @ Hy(In'=p)
HP (') & H(01)
= HP (WD) & HE (WD),

Since [7(w2~P)/2) = [P(w'=9) = [P(|n'~*]P) = h*~'1P = hLP(w), this implies (1).
Lemma 2.6 is proved. [J

THEOREM 2.7. Let w € L'. Suppose w = || =2, for some outer function o.

(1) P* € B(LP(w)) if and only if w2 € (A,). Then ||P*||gurpw)) =
HP”B(U(W(zfm/Z))-

(2) ranP* = HP(w), ker P* = K?(w), ran P* = K”(w), ker P* = HD(w).

(3) If w?P/2 € (A,), then IP(w) = HP(w) ® K} (w), and P* is a bounded
projection from LP (w) onto HP(w) such that

PUf +g)=f, (f € H"(w), g € KG(w)).

(4) P% (resp. I —P%)is a self-adjoint projection from L*(w) onto H*(w) (resp.

2
S

Proof. (1): By Theorem 2.3(2), if P* € B(L?(w)), then |at|’'w € (4,). Hence,
wP)/2 = P2y = |aPw € (A,). The converse is also true.

(2): By Lemma 2.5(1), Hh(w) = %Kg(w). By Theorem 2.4(2), ranP* =
HP(w) and

a—— oo
Similarly, ker P* = H(w) and
anp® = L) = & ko) = k7 (w)
T o alal? o ‘

(3): If w=P)/2 € (A,), then LP(w?=P)/2) = HP(w=P)/2) @ HE (w-r)/2) . By
Lemma 2.6(1), L (w) = HP(w) & K} (w) . Since (P%)? = P*, (3) follows.
(4): Since

fgwdm =0, (f € Hz(w)7 gc Kg(w))7
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it follows that L?(w) = H*(w) @ K3(w) is the orthogonal decomposition. Since

ranP® = H*(w), and ker P* = K2(w), it follows that P* is a self-adjoint projection.
(5): Since

lﬂwm=aueﬁw$e%wx

it follows that L?(w) = K?*(w) & H3(w) is the orthogonal decomposition. Since

ranP% = K?(w), and ker P* = HZ(w), it follows that P% is a self-adjoint projection
from L?(w) onto K*(w). Theorem 2.7 is proved. [

3. Adjoint operators for P"

Let | <p < oo,andlet 1/p+ 1/g = 1. In this section P" is supposed to be a
bounded operator on LP(w). For functions f € L”(w) and g € L(w), let

(f.8) = [ Feum
To each P¥ € B(L?(w)) corresponds a unique (P")* € B(L7(w)) that satisfies
(Pf.8)w=(f,(P)&w (fell(w), gelL!(w).
We use Lemmas 3.1 and 3.2 to prove Theorem 3.3.

LEMMA 3.1. Let 1 <p < oo, andlet 1/p+1/qg=1. Let we L', w > 0, and
let v be a measurable function.

(1) |Pw € (A,) if and only if [v|~Iw!'=7 € (A,).

(2) wP)2 € (A)) ifand only if w?=9/2 € (A,).

Proof. (1): If [v[P'w € (A,), then (Jv[Pw) /¥~ e (4,). Since (p—1)(g—1) =
1, it follows that |[v|~9w'~% € (A,). The converse is also true.

(2): If w?=P)/2 € (A,), then (w?~P)/2)=1/=1 ¢ (A,). Since (p—1)(g—1) =1,
it follows that

(2217) (p—ll) :2(pp—1) 7pi1 :gi(qil)zz%q.

Hence, w(>=9/2 ¢ (Ag) . The converse is also true. Lemma 3.1 is proved. [J

LEMMA 3.2. Let 1 <p < oo, andlet 1/p+1/q=1. Let wc L', w > 0, and
let [v|Pw € (A,). Then (P*)* € B(L1(w)), ((P*)*)* = (P")*, and

(1) (P')"(g) = =—P(Pwg), (g€ LI(w))
(2) If logw, log|v| € L', then
(P")"(g1 + &2) = &1, (g1 € ﬁH"(w), @€ %Hg(w)) ,

where k is an outer function satisfying |k| = [vw|~!.
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Proof. (1): By Theorem 2.3(2), P" € B(L?(w)). Hence, (P")* € B(L1(w)).
If |[v[’'w € (A,), then there is a constant § > O satisfying (|v[’'w)'™® € L! (cf. [4,
p. 262]). Since 1/p+ 1/q = 1, there is a constant r > 1 satisfying

1 1 1

(1408 Tq 7

s ;
/\vgw|rdm < </(|v|"’w)l+5afm)pl (/ g|qwdm> .

Forall f e v# +v2 andall g € Li(w),

Then

(fs P)g)w = (P, g)w= /(Pvf)gwdm

[ o6t gwdn = [ Pty P gwan

= /vflfp(\jgw)dm:/%fP(VgW)wdm

1 _
<f, —P(vwg)>

W .
By Lemma 2.1(1), v + v2 is dense in L”(w).

(2): By Lemma 3.1(1), if [v[Pw € (A,), then |v|79w'~% € (A,). Hence,
|(vw) ™ 9w = |v|=9w'~=9 € L'. By (1) and Theorem 2.4(2),

1 1 ———

ran (P")" = WH‘](W), ker(P")* = mHg(w).
Since ((P")*)? = (P")*,
L9(w) = ran (P')* @ ker(P")" — %H‘I(w) ® ﬁH{{(w).

Lemma 3.2 is proved. [J

By Lemma 3.2, if v = 1 and w satisfies the Muckenhoupt condition (Ap), then
P*f =PVVf (f € L1(w)).

THEOREM 3.3. Let 1 < p < 0o, and let 1/p+ 1/q = 1. Suppose v, w € L',
w >0, [vP'w € (A,) and |v|'w € L'. Thenthe following two properties are equivalent.

(1) (P)rg="Pg, (g€ll(w)NLi(w)).

(2) |v|*w is a constant function.

Proof. Suppose (1) holds. Since v € LP(w) N L1(w), (P")*v = P'v=vPl =v.
By Lemma 3.2, (vw)~'P(¥wv) = v. Hence, P(|v|*w) = |[v|*w. By Lemma 3.1(1),
if [v[Pw € (4,), then there is a constant § > O satisfying (|v|’'w)'™® € L' (cf. [4,
p. 262]). Since 1/p+ 1/q = 1, there is a constant r > 1 satisfying

1 1 1

p(18) q r
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Then

/(|v|2w)rdm = /\v\rwr/”|v|rwr/qdm

- ;
< </(|v|"’w)1+5dm>pl ) (/ vqwdm> " < oo,

Hence, |[v|?w is a positive function satisfying |[v|>w € H", r > 1. This implies (2).
Conversely, suppose (2) holds. By Lemma 3.2, for all g € L7 (w) N L4(w),

1 v [v|?w v_/c 1
P')g=—P P =P (Sg) =vp ~ P'g.
(P")"g = —P(vwg) = o ( 8) =P (8) =vP0vg) g
Theorem 3.3 is proved. [J

By Theorem 3.3, if v =1 and w satisfies the Muckenhoupt condition (Ap) , then
P* =P on I”(w) N L% (w) if and only if w is a constant.

COROLLARY 3.4. Let 1 < p < oo, andlet 1/p+1/q=1. Let a be an outer
function such that w = |a| 2. If w?=P)/2 ¢ (A4,), then P* is a bounded operator on
I?(w), and (P*)* is a bounded operator on L(w) such that

(P*)"(g1+82) = g1, (g1 +82 € HI(w) & Kj(w)).
and
(PYY* =P% on L[P(w)NLi(w).

Proof. By Theorem 2.7, if w>P)/2 € (A}), then P* € B(L”(w)) and H?(w) @
Kh(w) = [P(w). By Lemma 3.1(2), if w®P/2 € (4,), then w?=9/2 € (A,),
and hence H(w) @ K{(w) = L?(w). For all f1 +f>» € H?(w) ® K{(w), and all
g1+& € H‘f(w) (&5) Kg(w) s

(fi+fa, (P) (g1 +82))w =

(PU(f1 +/2), &1 +82) w

(f1, 81 +82)w
(f1, 81) w

= (fi+/f2, &)w

On the other hand, by Theorem 3.3, (P*)* = P*. Corollary 3.4 is proved. 0

4. Invertibility of 7; and ¢P" + Q"

In this section, the invertibility criterion for the generalized Toeplitz operator T
and the generalized singular integral operator ¢P" + Q", Q" = I — P” are investigated
using the weighted norm inequality. By the theorem of Hunt, Muckenhoupt and Whee-
den (cf. [1], [4], [11], [12]), w € (A,) if and only if P is a bounded projection from
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I7(w) onto HP(w). For ¢ € L*°, the Toeplitz operator T, is defined as a bounded
operator from H?(w) to H?(w) by
Tof =P(¢f), (f € H'(w)).

By Theorem 2.3, if [v[’'w € (A,), then P' € B(L”(w)). Since (P")?> = P", ranP”
is a closed subspace of L”(w). For ¢ € L*, the generalized Toeplitz operator Ty is
defined as a bounded operator from ran P* to ran P* by

Tyf = P'(¢f), (f €ranP).
We use Lemma 4.1 to prove Lemma 4.2.

LEMMA 4.1. Let 1 < p < co. Suppose ¢ € L™=, w,logw € L', and |v|Pw €
(Ap). Then the following properties are equivalent.
1) Ty is aleft invertible operator on ran P".

2) Ty is a left invertible operator on HP(|v|'w).

)
) OP+ Q is a left invertible operator on L ([v|Pw).
) OP' + QV is a left invertible operator on LF (w).

(
(
(3
(4
Proof. Let w' = |v|’'w. By Theorem2.3, T}, Ty, 9P+ Q, ¢P'+ Q" are bounded
operators on each spaces. Suppose (1) holds. Then there is an & > 0 such that

/\T;ﬂpwdm > g / If Pwdm, (f € ranP").
Suppose f € HP(w'). Since logw € L!, there is an outer function h satisfying
w = |h[P. Since log|v| € L', there is an outer function k satisfying |k| = |v].
Since w' = |v[P'w, HP(w') = HP(|kh|’) = LHP = k~'HP(w). By Theorem 2.4,
ran P' = yHP(w) = vH”(w') . Hence, there is a g € ranP" such that g = vf . By (1),
there is an & > 0 such that

[irrwan = [ pGor)pispwan

= [1per g
[ 170w
/|T;g\pwdm
81/|g\”wdm
81/[f|”w'dm.
This implies (2). Suppose (2) holds. Then there is an & > 0 such that

/|T¢f Pw'dm > 52/[f|"’w'a’m7 (f e H*'(W)) .

WV
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Suppose f € LP(w'). Let g = (I + Q¢P)f . Since ¢ € L and w' € (4,), it follows
that g € I”(w'), and there isa C; > 0 such that

/ QP wdm = / O(POP + Q)glw/dm

e / (PGP + Q)glPwdm.

By the theorem of Hunt, Muckenhoupt and Wheeden (cf. [1], [4], [11], [12]), if
w € (Ap),then P,Q € B(L?(w')), and there is a C, > 0 such that

82/|Pg|”w'dm < /|T¢Pg\”w’dm

/ |P(POP + Q)g|"w'dm
< C2/|(P¢P+ Q)g|'w'dm.
Since Q =1 — P, it follows that Q € B(L?(w')), and there is a C3 > 0 such that
/ |glPw'dm < Cs / [(POP + Q)g|'w'dm.

Since P,Q € B(L?(w')), it follows that (I + Q¢P)f € LF(w'), and thereisa C4 > 0
such that

/ If Pw'dm = / |(I — QOP)(I + QOP)f [Pw'dm

N

Ci [ 11+ oPy P

N

C3Cy / [(POP + Q)(I + Q¢P)f [Pw'dm
e / (6P + Q)f I'w/dim.

This implies (3). Suppose (3) holds. Then there is an & > 0 such that

[+ orpwanze [pwan, (¢ ero).

Suppose f € LP(w). Then vf € LF(|v[Pw) = LP(w'). Since P’f = vP(v"'f) and
Q'f = vQ(v_If), it follows that

/ (6P" + Q) Pwdm = / V(0P + Q)(v™'f) Pwdm

/|(¢P + Q) (v )P v[Pwdm
53/\v’1f\p|v|”wdm: 83/[f|”wdm.

WV
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This implies (4). Suppose (4) holds. Then there is an & > 0 such that

/ (0P + Q")f [Pwdm > &, / I Pwdm, (f € LP(w)).

By Theorem 2.3, P* € B(L?(w)). Suppose f € ranP". Since Q" =1 — P", it follows
that P'f =f, Q'f =0, and thereis an & > 0 such that

[ 1rsram = [ 1P(of yran

/ (P'6P" + 0")f [Pwdm

/ (OP" + Q") (I — Q"6P")f Pwdm

WV

£ / (L~ Q' 0P")f [Pwm
> & / (I + Q"9P")(I — Q" 0P")f Pwdm
85/[f|pwdm.

This implies (1). Lemma 4.1 is proved. O

We use Lemma 4.2 to prove Theorem 4.3.

LEMMA4.2. Let 1 < p < co. Suppose w,logw € L' and |v[Pw € (A,). Suppose
w = |h|P and |v| = |k| for some outer functions h and k. Let ¢ be a nonzero function
in L*° and let _
kh
V=00
Then the following properties are equivalent.
(1) Ty is aleft invertible operator on ranP".
(2) Ty is aleft invertible operator on HP .

Proof. Suppose (1) holds. By Lemma 4.1,
[16p+upipuan > e [ e pan
> e [IBFPWPwdn, (€ (vPw)).
Hence,
[ 100+ @i birwan > ex [ o bPwdm, (o € #2(Pw), g0 € HY(WPW)).
Hence,

W _P
/ ’¢Ekhf0 +khg0 dm > & / |khf0|p dm, (fo S Hp(|kh‘p), 8o € Hg(‘kmp)) .
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Since khHP(|kh|P) = HP , it follows that

/Wf1+5|pdm>£/[f1\pdm, (fi €H", g1 € HY).

Hence,
/ (WP + Q) Pdm > & / fFlPdm, (f €17).

By Lemma4.1withv=w=1,

/\wa\mm > 84/V|Pdm, (f € HY).

This implies (2). The converse is also true. Lemma 4.2 is proved. [

If P* € B(L’(w)), then Ty is an invertible operator on ranP” if and only if
P"¢P" + QV is an invertible operator on L”(w) if and only if ¢P” + Q" is an invertible
operator on L”(w), since P'¢P" + Q" = TyP' + Q" ,(¢P" + Q")(I — Q"9P") =
P'OP" + Q",and (I — Q"¢P")~' =1+ Q"¢P" (cf. [11, p. 393], [12, Vol. 1, p. 274]).
Hence, we consider only the invertibility of T§. Corollary 4.4 is the theorem of
Rochberg and Simonenko (cf. [13], [1, p. 216], [12]). Their proof did not use the
theorem of Widom and Devinatz. We use the theorem of Widom and Devinatz to prove
Theorem 4.3.

THEOREM 4.3. Let 1 < p < co. Suppose w,logw € L' and |v[P'w € (A,). Let
¢ be a nonzero function in L°° . Then the following properties are equivalent.

(1) Tj is an invertible operator on ran P".

(2) ¢ = yexp(U —iV), where vy is a constant with |y| = 1, U is a bounded
real function, V is a real function in L' and |v|Pwexp(pV/2) € (A,). (V denote the
harmonic conjugate function of V .)

Proof. Suppose (1) holds. Since logw € L!, there is an outer function h
satisfying w = |h[P. Since log|v| € L', there is an outer function k satisfying
|k| = |v|. By Theorem 2.4, ranP" = %H”(w) = vHP(|v|Pw) and [P (w) = HP(w) ®
KHY(w) = ran P* & {H})(w). Since 1 € HP(|v[Pw), v € vHP(|[v|’'w) = ran P". Since
Tdv) is invertible, there is an f € ran P” such that T;)f =v. Hence, P'(¢f) = v. Hence,
of —v=0"(¢f). Hence, thereis a g € ranQ” such that ¢f = v+ g. Let

kh
kh’
Then yfkh = ¢fkh = (v + g)kh. Since f € ranP' = YHP(w), it follows that
¢ HP(w) = h™'HP. Hence, 1 € H?. Since g € ranQ’ = YHj)(w) = Hp it

follows that %7 S H_g Let Fyp = f—]v‘h . Then Fy € H?, and

v =0

Y
k

g —
wFo—kh:gTEH{)’.
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Let ¢ be the Oth Fourier coefficient of k. Since kh is an outer function, ¢ # 0. Then
wFy—c¢ e H_g. Hence, Ty Fo = ¢. Hence, 1 € ranT,,. Hence, there is an F € H?
such that wF — 1 € Hj. Hence, yzF — z € HP. Hence, T, (zF) — z is a constant.
Since 1 € ran Ty, , this implies that z € ran T, . Suppose 1,z,...,2" € ran T, and there
are constants ¢y, ¢y, ..., ¢, such that Wz'F — 7' — (c12" ' 4+ 22" 2 + ... +¢n) € H_g
Then

y"F — 27— (1 e 4 enz) € HP.

Let ¢,+1 be the Oth Fourier coefficient of this function. Then

VN F -2 (i e ezt enn) € H_g.
Hence,

Ty(@"'F) =" — (12" + 22" + o+ caz + enrr) = 0.
Since 1,z,...,2" € ranTy,, it follows that "1 € ran Ty . Hence, 1,z, Z%,... € ran Ty .
Hence, ranT,, is dense in H? (cf. [9]). By Lemma 4.2, T, is left invertible. Hence,
T, is an invertible operator on H”. By the theorem of Widom and Devinatz (cf. [1],
[11],[12]), w = y1 exp(U —iVp) , where ¥, is a constant with |y;| = 1, U is a bounded
real function, V; is a real functionin L' and exp(pVy/2) € (A,). Hence,

kh 5
¢E =y =yexp(U —iVp).

There are constants ¥, and y3 with |y,| = |y3| = 1 such that
W = yexp (logw + i(logwY),

k = ys exp (log|v] + i(log [v[]") -
Hence, there is a constant y4 with |y4| = 1 such that

(ki)
[kh?

o= exp(U — iVp) = vsexp (U —i(Vo —log|v|* — long/p)”) .
Let V = Vo —log |[v]> — logw?” . Then ¢ = y,exp(U — iV) and |[v|Pw = exp(p(Vo —
V)/2). Hence, |[v[Pwexp(pV/2) = exp(pVo/2) € (A,). This implies (2).

Conversely, suppose (2) holds. By the similar calculation, (2) implies that y =
y1exp(U — iVp), where y; is a constant with |y;| = 1, U is a bounded real function,
Vo is a real function in L' and exp(pVy/2) € (A,). By the theorem of Widom and
Devinatz (cf. [1], [11], [12]), T}, is aninvertible operatoron H” . By Lemma4.2, T} isa
left invertible operator on ran P". Itis sufficient to prove that ran 7; is dense in ran P”.
Let n be a nonnegative integer. Then there is an F € H? such that T,F = P(Z"kh).
Since P(WF — 7"kh) = 0, it follows that WF — 7'kh = q>khF — 7%kh € Hp Hence,
‘l’lf—{ — 7"k € Hj(w). By Theorem 2.4, 2L — 2'v € LH}(w) = kerP". Let G = &
Then G € yHP(w) = ranP’. Since ¢G — 7"v € kerP’, it follows that TyG =
PV(¢g) P'(7"v) = Z"v. Hence, 7"v € ranT}, (n =0,1,2...). Let g € ran P". Then
v~lg € k='HP(w) = HP(|v[Pw). Hence, there is a sequence of analytic polynomials f,
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such that [|[f, —v="'gl|zp(vjpw) — 0, (n — 0) . Hence, |[vfu — gl|1r(w) — 0. Therefore
ran Ty is dense in ran P". This implies (1). Theorem 4.3 is proved. [J

By Theorem 4.3, Ty is invertible on ranP" if and only if T, is invertible on
HP(|v|Pw). Hence, it is proved that the condition " T}, is an invertible operator on H” "
is also equivalent in the theorem.

COROLLARY 4.4. Let 1 < p < co. Suppose w € (A,). Let ¢ be a nonzero
function in L*° . Then the following properties are equivalent.

(1) Ty is an invertible operator on HP (w).

(2) ¢ = yexp(U—iV), where y is a constant with |y| = 1, U is a bounded real
function, V is a real function in L' and wexp(pV/2) € (Ap).

Proof. Let v =k = 1. By Theorem 2.4, ranP = ranP" = {HP(w) = H"(w).
Theorem 4.3 proves Corollary 4.4. [J

COROLLARY 4.5. Let 1 < p < oo, andlet 1/p+ 1/q = 1. Let a be an outer
function such that w = |a| 2. If w?=P)/2 ¢ (Ap), then P* is a bounded projection
from LP(w) onto HP(w) such that (P*)* = P*, —on L’(w)NLi(w). Then the
following properties are equivalent.

(1) T§ is an invertible operator on HP(w).

(2) ¢ = yexp(U —iV), where y is a constant with |y| = 1, U is a bounded
real function, V is a real function in L' and w®=P)/2exp(pV/2) € (A,).

Proof. By Corollary 3.4, P* is a bounded projection from L?(w) onto HP(w)
such that (P*)* = P“. In the proof of Theorem 4.3, let v = k = .. Then
kh
V= ¢E'
By Theorem 4.3, Ty is invertible on H”(w) if and only if ¢ =y exp(U — iV), where
y is a constant with |y| = 1, U is a bounded real function, V is a real function in L
and w>=P)2exp(pV/2) = |v[Pwexp(pV/2) € (A,). Corollary 4.5 is proved. [

COROLLARY 4.6. Let ¢ be a nonzero function in L. Let w € L'. Suppose
w = |a|~% for some outer function o. Then P* is a self-adjoint projection from
L?*(w) onto H?>(w). Then the following properties are equivalent.

(1) T§ is an invertible operator on H?(w).

(2) T, is an invertible operator on H*.

(3) ¢ = yexp(U —iV), where vy is a constant with |y| = 1, U is a bounded
real function, V is a real functionin L' and e' € (A,).

Proof. By Theorem 4.3, T§ is invertible on ran P” if and only if T} is invertible
on HP([v[Pw). Hence (1) is equivalent to (2). By Theorem 2.7, P* is a self-adjoint
projection from L*(w) onto H?(w). Since p = 2, it follows that w(>=?)/2exp(pV/2) =
e” € (A,). By Corollary 4.5, (1) is equivalent to (3). Corollary 4.6 is proved. [

By the theorem of Widom (cf. [1, p. 68], [12, p. 260]), the spectrum of Ty €
B(H?*(w)) is connected.



524 TAKAHIKO NAKAZI AND TAKANORI YAMAMOTO
5. Invertibility of Rj

In this section, we assume that v is an outer function. We do not assume that
P € B(L(w)). Hence, the results in this section do not follow from the theorem of
Rochberg and Simonenko or the theorem of Widom and Devinatz (cf. [13], [1, p. 216],
[12]). Let 1 < p < co. Let w, logw € L'. Let ¢ € L> . The operator Ry, is defined

as a bounded operator from H”(w) to L”(w)/tHg(w) by

Rif = 0f +=Hy(w). (f € H'(w)).

If P € B(L”(w)), then ker P = LH!(w). If w = |a| =2 for some outer function o,
then Ry is a bounded operator from H”(w) to L?(w)/K{(w) such that

RGf = of +K5(w),  (f € H(w)).

If P" € B(L(w)), then T; is an invertible operator on ranP” if and only if Ry is

an invertible operator from H”(w) onto L(w)/%H{(w). Theorem 4.3 for an outer
function v follows from Theorem 5.2. Theorem 5.2 with P € B(L?(w)) follows from
Theorem 4.3. We use Lemma 5.1 to prove Theorem 5.2. Nakazi [9] considered the case
when v = 1, and proved Lemma 5.1. We use Lemma 5.1 to prove Theorem 5.2.

LEMMA5.1. Let 1 < p < oo. Suppose w = |h[P for some outer function h € H?,
¢ € L™ and v is an outer function. Then the following conditions are equivalent.

(1) R} is an invertible operator from HP(w) onto LP(w)/Hg(w).

(2) ¢ = ko(ho/ho)(h/h), where ko is an invertible function in H* and hy is an
outer function in HP with |hoP € (Ap).

(3) ¢ = yexp(U —iV), where vy is a constant with |y| = 1, U is a bounded
real function, V is a real function in L' and wexp(pV/2) € (A,).

THEOREM 5.2. Let 1 < p < oo. Suppose w = |h|P for some outer function
he HP, ¢ € L™ and v is an outer function. Let

v =9
1%

Then the following conditions are equivalent.
(1) R}, is an invertible operator from H”(w) onto LF(w)/%Hg(w).

v

(2) ¢ = yexp(U —iV), where vy is a constant with |y| = 1, U is a bounded
real function, V is a real function in L' and |v|P'wexp(pV/2) € (A,).

Proof. If Ry is left invertible, then for any f € H”(w) and g € Hg(w),

T v_|P
/ ¢§f +3 wdm:/’qy‘—&—:g’ wdm}s/V\pwdm,
v
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1
ok/k
is also true. Hence, R:D is left invertible if and only if R

is left invertible. The converse

1
Ok/k

where € is a positive constant. This implies that R
is left invertible. Since

(27 00)/2HGw)) " = 2KGw),  (HPO0)" = L9(w) /RE ),

it follows that (Ry)* is a bounded operator from ¢K%(w) to L?(w)/Kg(w). For all
F € K9(w) and all g € H?(w),
v
YF R >
<17 o8

(i (2). )
= /E_Fq)_gwdm

(92F +Kjw), ¢).-

Hence, B
@) (3F) = o%F + K. (F € KU

If Ry, is aright invertible operator from H”(w) to L*(w)/Hp(w), then (Ry)* is aleft

invertible operator from XK9(w) to L7(w)/Kg(w). Hence,

/ “%—m G’qum > 8/ [F|*wdm, (F € K'(w), G € Kj(w)).

Hence (R.  )* is a left invertible operator from K9(w) to LY(w)/K{(w). Hence,

o7 /v
R‘}WV is a right invertible operator from H”(w) to L”(w)/H}(w). The converse is also

1
ov/v
is invertible if and only if Rév, /y is invertible. By Lemma 5.1, Rév, /y is invertible if and
only if

true. Hence, Ry is right invertible if and only if R is right invertible. Hence, Rj

[v|? v o
2 = ‘P; =y exp(U — iVy),

where ¥, is a constant with |y| = 1, U is a bounded real function, Vj is a real function
in L' and wexp(pV/2) € (A,). Since v is an outer function,

v? = 11 exp(log v + i(log [v[*)).
Hence,
¢ = yrexp (U —i(Vo —log[v’y) .
Let V=V, — log|v|*>. Then ¢ = y,exp(U — iV), and
pPwexp(pV/2) = w (jvPe)” = wexp(pVo/2) € (4,).
Theorem 5.2 is proved. [

By Theorem 4.3 and Theorem 5.2, if P € B(L”(w)) and v is an outer function,
then T} is invertible if and only if R}, is invertible.
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6. Norms of Hankel Operators Hj

In this section, the operator norm inequality for the generalized Hankel operator Hy
is presented. Let Q" = I —P". By Theorem 2.3, if Q" € B(L”(w)), then |v[Pw € (A,).
For ¢ € L>, the generalized Hankel operator H is defined as a bounded operator
from ran P¥ to ker P¥ by

Hyf = Q"(¢f), (f €ranP’).
Ifwe (Ap) , Q=1—-P,and ¢ € L*°, then the original Hankel operator H, is defined
as a bounded operator from H?(w) to H”(w) by

Hof = Q(¢f), (f € H'(w)).
We use Lemma 6.1 to prove Theorem 6.2.

LEMMA 6.1. Let 1 < p < oo, andlet 1/p+ 1/q = 1. Suppose w € L',w >
0,logw € L'. For a function k, the following two properties are equivalent.

(1) ke HL, and ||k|j; < 1.

(2) There are f € H?(w) and g € K{(w) such that ||f ||p.w = ||gllgw < 1, and
k=fgw.

Proof.  Suppose (1) holds. By the factorization theorem, there exists an inner
function j and an outer function ko € H' such that k = zjko. Let & € HP be an outer

function such that w = |a|’. If f = h’ljk(l)/p, then f € HP(w). By Lemma 2.5, if
g= w’lhzk(l)/q , then
WP

w

WP
g € —h'"TH{ = —Hg(w) = K{(w),

w
Wf llpw = l1&llgw = |Ik][1 < 1, and k = fgw. This implies (2). Conversely, suppose
(2) holds. Since K{(w) = L HI(w), it follows from (1) that gw € h’H{. Hence,
fgw € WHP(w)H{(w) = W"H}(w) = H| . By the Holder inequality, ||k||; = |f gwl|; <

If l|pwl|&llpw - This implies (1). Lemma 6.1 is proved. [

THEOREM 6.2. Let 1 < p < co. Suppose ¢ € L™, and w is a positive function
such that w, logw € L'. Let log|v| € L'. If |vPw € (A,), then the following
inequality holds.

1Hy |22y < 1Hgllaerony) < 11Q" 8w o)) [[HollB(22)-
Proof. By Theorem 2.3, if |v[Pw € (A,), then P" € B(L”(w)). We shall prove
the first inequality. Let k be an outer function such that |v| = |k|. Hence,

IHy |3y = sup I HGf llpw
feran PV ||f [|pw<1

WV

sup
feran PV |If lpw<Lg€KI (W), lgllgw<1

[ @ o) Senan.

/ <H:,f>§gwdm]

sup
18
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By Theorem 2.4, ran P’ = YHP(w). Hence, P"(¢f)% € HP(w). By Lemma 2.5,
if g € Ki(w), then g € ™ HI(w). Hence, gw € hH{(w). Hence, P"(¢f )kgw €

WPH}(w) = H} . Hence,
k
/¢;fgwdm‘ .

Let F = %f . Since ranP’ = JHP(w), it follows that f € ranP’ if and only if
F e H?(w), and ||f ||, = ||F||p,w. Hence,
/q)ngm‘.

| Hy B (w)) = sup
f.e

I1H |3z w)) = sup
FEHP (W), || Fllpw<1,8€K (w),]|gllqw<1

By Lemma 6.1 and the theorem of Nehari (cf. [1], [11], [12]),

IHgllprow) > sup
keHg,|Ik[l1<1

/(])kdm‘ = dist(¢, H™).

Next we shall prove the second inequality. If f € ranP” and G € H*, then Gf €
ranP' = YHP(w). Hence, v~ 'Gf € k~'H?(w) = HP(|v|pw). Since [v[Pw € (A,),
it follows that P'(Gf) = vP(v"'Gf) = w~!Gf = Gf. Hence, Q"(Gf) = (I —
P")(Gf) = 0. Hence,

|HyllBrowy) = sup I Haf llpw
Feran PYIf [pw<1

sup 19" (9 )lp.w

Feran P [f ||l

= sup 10"((¢ — G)f )llpow

Feran P [f || <1

12" B2 |9 — Glloo-

N

Hence,
1H lar o)) < 10" B (w)) Gt ¢ — Glloo = [1Q" | B(zr(w))dist(¢, H>).

Hence,

dist(9, H*) < [[Hgllprowy) < 1Q"|5p oy dist(@, H).
If v=w = 1, then the equalities hold, and hence we have the Nehari theorem:
[Holls2) = [|1Hglls2) = dist(¢, H>) . Theorem 6.2 is proved. [J

COROLLARY 6.3. Let 1 < p < 0co. Suppose ¢ € L™=, and w is a positive function
such that w, logw € L'.

(1) If w = |v[7P for some function v, then Hy is a bounded operator from ran P
to ker P¥ satisfying

1
y1Hollsas)-

H < Hgllswron) S Gy
1Hollpz) < [1Hgllswr o) sin(7m/p
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(2) If w = |a|=? for some outer function o, then H{ is a bounded operator

from H*(w) to KZ(w) satisfying

I1HG Is2w)) = [1Holl(22)-

Proof. Tt is sufficient to prove (1). By Lemma 2.2, if |v[Pw is a constant, then

|1P*[|8(zr(w)) = || P||B(ry - By the similar proof, it follows that ||Q"{|zr(w)) = [1Q|l(1r) -
Itis known that ||P|[gr) = ||Q|lsr) (cf. [5, Vol. 1, p. 79]). By the theorem of Gohberg,
Krupnik, Hollenbeck and Verbitsky (cf. [5], [6]), ||P||p1r) = s=7 - By Theorem 6.2,
Corollary 6.3 is proved. O

1]

sin(7/p)
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