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Abstract. The aim of this paper is to prove that the uniform exponential stability of a strongly
continuous semigroup {T(t)}t�0 (acting on a complex Hilbert space H) can be derived as
a consequence of the well behavior of its numerical range in a suitable Orlicz space. More
precisely, assuming that there exists an Orlicz space E = (LΦ,ρΦ) over R+ such that

lim inf
α↓0

[α|| exp−α ||E� ] = 0

and
sup

||x||�1
ρΦ(|〈 T(·)x, x〉 |) � M < ∞,

then the uniform growth bound ω0 of the semigroup verifies an estimate of the form

ω0 � Mβ := β − (2M|| exp−β ||E� )−1 < 0

for some positive number β . As an application, the well posedness of an abstract infinite time
Cauchy problem is discussed.

1. Introduction

Let H be a complex Hilbert space and let 1 � p < ∞. Recall that a semigroup
T = {T(t)}t�0 on H is called:

• weakly- Lp -stable if for every x, y ∈ H we have∫ ∞

0
|〈T(t)x, y〉 |pdt < ∞;

• uniformly exponentially stable if its uniform growth bound is negative, that is

ω0(T) := lim
t→∞

ln ||T(t)||
t

< 0,

or, equivalently, if
||T(t)|| � Ne−νt for all t � 0.

for some positive constants N and ν .
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It is clear that each uniformly exponentially semigroup is weakly-Lp -stable. In
1983 A. J. Pritchard and J. Zabczyk [9] raised the problem whether every weakly-
Lp -stable semigroup is uniformly exponentially stable. The answer is positive and a
solution can be found in [3], [11]. In this note we extend their result to the more general
framework of Orlicz spaces. In order to formulate our generalization we shall need a
preparation on Orlicz spaces. For further details the reader is referred to [4], [5], [6], [1]
and references therein.

The Orlicz spaces over R+ are attached to nondecreasing convex functions Φ :
[0,∞) → [0,∞] such that Φ(0) = Φ(0+) = 0 and Φ is not identically 0 or ∞
on (0,∞). We denote by LΦ the set of all complex-valued measurable functions f
defined on R+ for which there exists a positive λ such that

∫∞
0 Φ(λ |f (t)|)dt < ∞.

Clearly, LΦ is a linear space with respect to the usual operations and we can turn LΦ

into an Orlicz space by considering on it the norm ρΦ, where

ρΦ(f ) := inf{k > 0 :
∫ ∞

0
Φ(k−1|f (t)|)dt � 1}.

If Φ satisfies the Δ2 -condition i.e., there exists a positive constant C such that

Φ(2t) � CΦ(t) for all t � 0,

then the dual space
(
LΦ
)�

is also an Orlicz space. Moreover, in this case
(
LΦ
)�

can

be identified with LΦ
�
, where

Φ�(t) := sup
s�0

(ts −Φ(s)), t � 0

is the Legendre transform of Φ.
Clearly, all Lebesgue spaces Lp(R+) (for 1 � p < ∞) are examples of Orlicz

spaces which satisfy the Δ2 -condition.
We can now state our main result:

THEOREM 1. Let T = {T(t)}t�0 be a strongly continuous semigroup acting on a
complex Hilbert spaceH. ThenT is uniformly exponentially stable if (and only if) it
verifies the following condition

M = sup
||x||�1

ρΦ(|〈T(·)x, x〉 |) < ∞, (1.1)

with respect to an Orlicz spaceE =
(
LΦ, ρΦ

)
whose dual spaceE� has the property

that
lim inf
α↓0

[α|| exp−α ||E� ] = 0. (1.2)

The necessity of the condition (1.1) is straightforward. In fact, if the semigroup T
is uniformly exponentially stable, then (1.1) works for all Orlicz spaces. The sufficiency
part is detailed in the next section.

As shows the case where T is the left translation semigroup on H = L2(R) and
E = L∞(R+), the condition (1.2) is essential for the validity of Theorem 1.



A CONDITION OF UNIFORM EXPONENTIAL STABILITY FOR SEMIGROUPS 531

In the special case where Φ(t) = tp (for 1 � p < ∞), the result of Theorem1 was
first proved by G. Weiss [11]. Clearly, in that case the condition (1.2) is automatically
fulfilled. Our result covers more general Orlicz functions Φ which satisfy the Δ2 -
condition and limt→0+ tρΦ

∗
(exp−t) = 0 such as Φ(t) = et − t − 1. In this case

Φ∗(t) = (t + 1) ln(t + 1) − t

and

ρΦ
∗
(exp−α) = inf

{
k > 0 :

∫ ∞

0
Φ∗(

e−αt

k
)dt � 1

}

= inf

{
k > 0 :

1
α

∫ 1/k

0

u + 1
u

ln(u + 1)du − 1
kα

� 1

}

= sup

{
b > 0 :

∫ b

0

u + 1
u

ln(u + 1)du � b + α

}
= b0,

where b0 is the unique solution of the following equation (in variable x),∫ x

0

u + 1
u

ln(u + 1)du = x + α.

The map α : x → ∫ x
0

u+1
u ln(u + 1)du− x (from [0,∞) into [0,∞)) is surjective

and also increasing, so that its inverse is continuous. Consequently α−1 is bounded on
[0, 1], which yields limt→0+ tρΦ

∗
(exp−t) = 0.

J.M.A.M. van Neerven [7] has noticed that any bounded strongly continuous semi-
group (acting on a complex Hilbert space H ) is uniformly exponentially stable if there
exists a nondecreasing function ϕ : R+ → R+ such that ϕ(t) > 0 for t > 0 and∫ ∞

0
ϕ(|〈T(t)x, y〉 |)dt < ∞, for all x, y ∈ H.

We leave open the question whether the boundedness condition can be dropped.

2. Proof of Theorem 1

Proof. We already noticed that only the sufficiency part needs an argument. For
this, we need the remark that the condition of boundedness (1.1) yields

N = sup
||x||,‖y‖�1

ρΦ(|〈T(·)x, y〉 |) � 2M < ∞,

as a consequence of the polarization identity

|〈T(t)x, y〉 | =
1
4

3∑
k=0

ik〈T(t)(x + iky), x + iky〉 .
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The next step is to motivate the existence of the improper integral∫ ∞

0
u�(t)T(t)xdt := lim

s→∞

∫ s

0
u�(t)T(t)xdt,

for all u� ∈ E� and x ∈ H. In terms of series, this limit means the convergence of

∞∑
n=0

∫ sn+1

sn

u�(t)T(t)xdt (2.1)

for all positive sequences (sn)n, with s0 = 0, which are increasing to ∞. This
can be derived from a classical result due to Orlicz-Pettis, which asserts that every
weakly unconditionally convergent series (in a Banach space) is also unconditionally
convergent. In fact,

N∑
n=0

∣∣∣∣
〈∫ sn+1

sn

u�(t)T(t)xdt, y

〉∣∣∣∣ =
N∑

n=0

eiλn

〈∫ sn+1

sn

u�(t)T(t)xdt, y

〉

=

〈
N∑

n=0

∫ sn+1

sn

eiλnu�(t)T(t)xdt, y

〉

=

〈∫ sN+1

0

(
N∑

n=0

eiλnχ[sn,sn+1)

)
u�(t)T(t)xdt, y

〉

� M||u�||E� ||x|| ‖y‖ ,

for all x, y ∈ H and N ∈ N, which yields the weak unconditional convergence of the
series (2.1).

Since ∥∥∥∥
∫ s

0
u�(t)T(t)xdt

∥∥∥∥ = sup
||y||�1

∣∣∣∣
〈∫ s

0
u�(t)T(t)xdt, y

〉∣∣∣∣
we get also the inequality∥∥∥∥

∫ ∞

0
u�(t)T(t)xdt

∥∥∥∥ � M||x||||u�||E� .

As well known, the dual space of any Orlicz space is a rearrangement invariant Banach
function space which contains the space L1(R+) ∩ L∞(R+). See [1], [5], [6]. Thus for
each β > 0 the function exp−β belongs to E�. Moreover, if λ ∈ C and Re λ > 0,

then the improper integral
∫∞

0 e−λ tT(t)xdt exists for all x ∈ X; necessarily, every such
λ belongs to ρ(A) and the formula R(λ , A)x =

∫∞
0 e−λ tT(t)xdt holds.

By our hypothesis (1.2), we can choose a z0 ∈ C such that β = Re z0 > 0 and

Mz0 := β − (2M|| exp−β ||E�)−1 < 0.
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Then for every λ ∈ C with Mz0 < Re λ < 0 the point λ0 = Re z0 + i Imλ belongs
to ρ(A) . Since

|λ − λ0| = Re λ0 − Re λ < (2M|| exp−β ||E�)−1

� 1
2||R(λ0, A)|| <

1
||R(λ0, A)|| ,

this yields that λ also belongs to ρ(A) and

||R(λ , A)|| � ||R(λ0, A)||
1 − |λ − λ0|||R(λ0, A)|| � 2M|| exp−β ||E� .

Finally, the Gearhart-Prüss Theorem (see [2], [10]) allows us to conclude that ω0(T) �
Mz0 < 0. �

3. Applications

In this section we consider a linear operator A : D(A) ⊂ H → H acting on
the complex Hilbert space H, that generates a strongly continuous semigroup T =
{T(t)}t�0.

THEOREM 2. Under the above assumptions on A, if moreover
(i) Φ verifies the Δ2 -condition and 2M = sup

||x||�1
ρΦ(|〈T(·)x, x〉 |) < ∞;

(ii) the corresponding dual function Φ∗ is strictly increasing on [0,∞) and

lim inf
α↓0

[α|| exp−α ||LΦ∗ ] = 0,

then for each b ∈ H and each u∗(·) in LΦ
∗
, the following infinite time Cauchy Problem

(A, b,−∞, 0) :

{
ẋ(t) = Ax(t) + bu∗(−t) for t � 0

x(−∞) = lim
t→−∞ x(t) = 0,

has a unique solution on (−∞, 0].

Proof. First we shall prove that the function φ given by the improper integral

φ(t) =
∫ t

−∞
T(t − τ)u∗(−τ)bdτ = lim

s→−∞

∫ t

s
T(t − τ)u∗(−τ)bdτ,

is correctly defined on (−∞, 0]. In fact, using the Hölder inequality, for all t1 < t2 in
(−∞, t], we get∥∥∥∥
∫ t2

t1

T(t − τ)u∗(−τ)bdτ
∥∥∥∥ � sup

||y||�1

∫ t2

t1

|〈T(t − τ)b, y〉 | · |u∗(−τ)|dτ

� sup
||y||�1

∫ t−t1

t−t2

|〈T(ρ)b, y〉 | · |u∗(ρ − t)|dρ

� sup
||y||�1

∫ ∞

0
1[t−t2,t−t1](ρ)|〈T(ρ)b, y〉 | · |u∗(ρ − t)|dρ

� M||b||ρΦ∗
(1[t−t2,t−t1](·)|u∗(· − t)|).
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Taking into account that LΦ
∗

is rearrangement invariant, we have the relations

ρΦ
∗
(1[t−t2,t−t1](·)|u∗(· − t)|) = ρΦ

∗
(1[−t2,−t1](t + ·)|u∗(·)|)

= ρΦ
∗
(1[−t−t2,−t−t1](·)|u∗(·)|).

Put s1 = −t − t2 and s2 = −t− t1. Then 0 � −t � s1 < s2 < ∞ and, conversely, all
such pairs s1, s2 come this way.

Given 0 < η � 1, the function 1
ηu∗(·) belongs to LΦ

∗
, which yields∫∞

0 Φ∗
(

1
η |u∗(τ)|

)
dτ < ∞. Therefore there exists δ > 0 such that for all δ �

s1 < s2 < ∞ we have∫ s2

s1

Φ∗
(

1
η
|u∗(τ)|

)
dτ =

∫ ∞

0
Φ∗
(

1[s1,s2](τ)
1
η
|u∗(τ)|

)
dτ � η � 1.

This gives us
ρΦ

∗
(1[−t−t2,−t−t1](·)|u∗(·)|) � η,

whenever t1 < t2 < −δ. In fact,

η ∈ {k > 0 :
∫ s2

s1

Φ∗
(

1
k
|u∗(τ)|

)
dτ =

∫ ∞

0
Φ∗
(

1[s1,s2]
1
k
|u∗(τ)|

)
dτ � 1}.

Clearly, φ verifies the integral equation:

x(t) = T(t − s)x(s) +

t∫
s

T(t − τ)u∗(−τ)bdτ, s � t � 0.

Moreover, for each t < 0 we have

‖φ(t)‖ =
∥∥∥∥
∫ t

−∞
T(t − τ)u∗(−τ)bdτ

∥∥∥∥
= sup

||y||�1

∫ ∞

0
|〈T(ρ)b, y〉 | · |u∗(ρ − t)|dρ

� M||b||ρΦ∗
(|u∗(· − t)|) = ρΦ

∗
(1[−t,∞)(·)|u∗(·)|).

On the other hand ρΦ
∗
(1[−t,∞)(·)|u∗(·)|) → 0 as t → −∞. Indeed, for 1 � ε > 0

arbitrarily fixed and t < 0 sufficiently small, we have∫ ∞

0
Φ∗
(

1[−t,∞)(s)
|u∗(s)|
ε

)
ds =

∫ ∞

0
Φ∗
(

1
ε
|u∗(s)|

)
ds < ε.

Then lim
t→−∞ φ(t) = 0 , which ends the proof of the fact that φ is a solution of the

problem (A, b,−∞, 0) . �

THEOREM 3. Assume that Φ satisfies the condition (1.2). If for each b ∈ H and
each u∗(·) ∈ (LΦ)∗ the infinite time Cauchy Problem (A, b,−∞, 0) has a unique
solution, then the semigroup generated by A is uniformly exponentially stable.
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Proof. Let E the set of all H -valued bounded and continuous functions g defined
on (−∞, 0]. Endowed with the norm |g|E := sup

t�0
|g(t)|, the set E becomes a Banach

space. Let b ∈ H and h > 0 be fixed and denote by xu∗ the unique solution of
(A, b,−∞, 0) . We will consider the bounded linear operators P and Q, defined by:

u∗ 
→ Qu∗ := xu∗ : (LΦ)∗ → E and g 
→ Pg := g(0) : E → H.

Since PQ is bounded we infer the existence of a positive constant Kb such that∥∥∥∥∥
∫ 0

−∞
T(−τ)u∗(−τ)dτ

∥∥∥∥∥ � Kb||u∗||(LΦ)∗ for all u∗ ∈ (LΦ)∗.

Then for each u∗ ∈ (LΦ)∗ with u∗(s) = 0 for all s > h, we have that∣∣∣∣
∫ T

0
〈T(τ)b, y〉 u∗(τ)dτ

∣∣∣∣ � Kb||u∗||(LΦ)∗ for all y ∈ H, ||y|| � 1,

and because (LΦ)∗ is a Banach function space, the previous inequality actually works
for all u∗ ∈ (LΦ)∗. Equivalently,∣∣∣∣

∫ ∞

0
1[0,h](τ)〈T(τ)b, y〉 u∗(τ)dτ

∣∣∣∣ � Kb||u∗||(LΦ)∗ ,

for all y ∈ H, ||y|| � 1, and all u∗ ∈ (LΦ)∗. Now it is easy to see that

ρΦ(1[0,h](·)|〈T(·)b, y〉 |) � Kb, for all y ∈ H, ||y|| � 1.

Therefore
ρΦ(|〈T(·)b, y〉 |) � Kb, for all y ∈ H, ||y|| � 1,

and from Theorem 1 we can conclude that the semigroup T is uniformly exponentially
stable. �

Assume that for each x, y ∈ H the map 〈T(·)x, y〉 defines an element of LΦ.
Then the map given by the formula

(x, y) 
→ 〈T(·)x, y〉 : H × H → LΦ

is a continuous sesquilinear function (linear in the first variable and anti-linear in the
second one). By the Closed Graph Theorem we get the existence of a positive constant
M such that

ρΦ(|〈T(·)x, y〉 |) � M||x|| · ||y|| for all x, y ∈ H.

This shows that the condition (1.1) can be replaced by the following one,∫ ∞

0
Φ(|〈T(t)x, y〉 |)dt < ∞, for all x, y ∈ H. (3.1)

We conclude our paper with an example.
Let H = L2[0, π] and A : D(A) ⊂ H → H given by Ax = d2x

dξ 2 , where the domain
D(A) consists of all absolutely continuous functions x(·) defined on [0, π], which
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verify the following three conditions: i) x(0) = x(π) = 0 ; ii) the first derivative dx
dξ

is absolutely continuous on [0, π]; iii) the second derivative d2x
dξ 2 belongs to H. With

the above notations, for each u∗(·) ∈ (LΦ)∗ and each b(·) ∈ H, the infinite Cauchy
Problem

∂y(t,ξ)
∂t = ∂2y(t,ξ)

∂ξ 2 + u∗(−t)b(ξ) for t ∈ (−∞, 0], ξ ∈ (0, π)

lim
t→−∞

∫ π
0 |y(t, ξ)|2dξ = 0

has a unique solution. Indeed, the uniform growth bound ω0(T) of the semigroup T
generated by A is equal to −1 and condition (3.1) applies (due to the fact that Φ is a
convex function).
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