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Abstract. In this article we introduce the sequence spaces cI(Λ) , cI0(Λ) , mI(Λ) and mI
0(Λ)

associated with the multiplier sequence Λ = (λk) of non-zero scalars. We study the different
algebraic and topological properties of these sequence spaces like solidness, symmetricity, se-
quence algebra, convergence free etc. Also we characterize the multiplier problem and obtain
some inclusion relation involving these sequence spaces.

1. Introduction

The works on I -convergence was studied at the initial stage by Kostyrko, Macaj
and Šalát [5]. Later on it was further investigated by Kostyrko, Šalát and Wilczynski
[4], Šalát, Tripathy and Ziman ([6], [7]), Demirci [1] and others. The idea depends on
the notion of ideals of subsets of N .

The scope for the studies on sequence spaces was extended by using the notion of
associated multiplier sequences. Goes and Goes [2] defined the differentiated sequence
space dE and integrated sequence space

∫
E for a given sequence space E ,by using

multiplier sequences (k−1) and (k) respectively. Kamthan [3] used the multiplier
sequence (k!) . Tripathy and Sen [11], Tripathy [9] and Tripathy and Mahanta [10]
used a general multiplier sequence Λ = (λk) of non-zero scalars for their studies on
sequence spaces associated with multiplier sequences. In this paper we shall consider a
general multiplier sequence Λ = (λk) of non-zero scalars.

Let Λ = (λk) be a sequence of non-zero scalars. Then for a sequence space E , the
multiplier sequence space E(Λ) , associated with the multiplier sequence Λ is defined
as

E(Λ) = {(xk) ∈ w : (λkxk) ∈ E}.
Throughout the paper w , �∞ , c , c0 denote the classes of all,bounded, convergent,

null sequence spaces respectively.
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2. Definitions and Preliminaries

Let X be a non-empty set. Then a family of sets I ⊂ 2X , (power sets of X ) is
said to be an ideal, if A , B ∈ I then A∪B ∈ I and for each A ∈ I with B ⊂ A implies
B ∈ I .

A non-empty family of sets F ⊂ 2X is said to be a filter on X if and only if
φ /∈ F , for each A, B ∈ F we have A ∪ B ∈ F and for each A ∈ F and B ⊃ A ,
implies B ∈ F .

For each ideal I , there is a filter F (I) corresponding to I i.e. F (I) = {K ⊆ N :
Kc ∈ N} , with Kc = N − K .

The usual convergence is a particular case of I -convergence. In this case I = If
(the ideal of all finite subsets of N ).

Let A ⊂ N , then A is said to have asymptotic density δ(A) , if δ(A) =

lim
n→∞

1
n

∞∑
k=1

χA(k) exists.

A sequence (xn) is said to be statistically convergent to L , if for every ε > 0 ,
δ({k ∈ N : |xk − L| � ε}) = 0 .

The statistical convergence is a particular case of I -convergence. In this case
I = Iδ (the ideal of all subsets of N of zero asymptotic density).

Let A ⊂ N and dn = 1
sn

n∑
k=1

χA(k)
k , for n ∈ N , where sn =

n∑
k=1

1
k . If lim

n→∞ dn(A)

exists, then it is called as the logarithmic density of A . Id = {A ⊂ N : d(A) = 0} is
an ideal.

Let T = (tnk) be a regular non-negative matrix (one may refer to Hardy [5]).

For A ⊂ N , define d(n)
T (A) =

∞∑
k=1

tn,kχA(k) for n ∈ N . If lim
n→∞ d(n)

T (A) = dT(A)

exists, then dT(A) is called as T -density of A . Clearly IdT = {A ⊂ N : dT(A) = 0} is
an ideal. Further Iδ and Id are particular cases of IdT .

Let Ic = {A ⊂ N :
∑
a∈A

1
a < ∞} . Then Ic is an ideal of N .

For other examples of I -convergence, one may refer to Kostyrko, Šalát and
Wilczynski [4]. The notion of I -monotonic sequence was studied by Šalát, Tripa-
thy and Ziman [6].

A sequence x = (xk) of complex terms is said to be I -convergent to L if for every
ε > 0, {k ∈ N : |xk − L| � ε} ∈ I .

A sequence x = (xk) of complex terms is said to be I -Cauchy if for every ε > 0 ,
there exists a number m = m(ε) such that {k ∈ N : |xk − xm| � ε} ∈ I .

A sequence space E is said to be solid (or normal) if (xk) ∈ E , and (αk) ∈ E , a
sequence of scalars with |αk| � 1 , for all k ∈ N , then (αkxk) ∈ E .

A sequence space E is said to be symmetric if (xπ(k)) ∈ E , whenever (xk) ∈ E ,
where π is a permutation of N .

A sequence space E is said to be a sequence algebra if (xk) ∗ (yk) = (xkyk) ∈ E ,
whenever (xk), (yk) ∈ E .

A sequence space E is said to be convergence free, if (xk) ∈ E , and if yk = 0 ,
whenever xk = 0 , then (yk) ∈ E .
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A sequence x = (xk) is said to be I -bounded if there exists an M > 0 , such that
{k ∈ N : |xk| > M} ∈ I .

Throughout �I
∞ , cI , cI

0 denote the classes of all I -bounded, I -convergent and
I -null sequences respectively.

We write mI = cI ∩ �∞ and mI
0 = cI

0 ∩ �∞ .
The spaces �I∞(Λ) , cI(Λ) , cI

0(Λ) are defined as follows:
�I∞(Λ) = {(xk) ∈ w : sup

k
|λkxk| < ∞}.

cI(Λ) = {(xk) ∈ w : I − lim(λkxk − L) = 0, for some L ∈ C}.
cI
0(Λ) = {(xk) ∈ w : I − lim(λkxk) = 0}.

Also we write mI(Λ) = cI(Λ) ∩ �∞(Λ) and mI
0(Λ) = cI

0(Λ) ∩ �∞(Λ) .

LEMMA 1. (Tripathy and Mahanta [10], Proposition 4). If a space E is bounded
and solid then (λk) ∈ M(E, E) if and only if (λk) ∈ �∞ .

LEMMA 2. (Šalát, Tripathy and Ziman [7], Lemma 2.5). Let K ∈ F (I) and
M ⊆ N . If M /∈ I , then M ∩ K /∈ I .

3. Main Results

The proof of the following result is easy, so omitted.

THEOREM 1. For Λ = (λk) a given multiplier sequence, cI(Λ) , cI
0(Λ) , mI(Λ)

and mI
0(Λ) are linear spaces.

THEOREM 2. The sequence spaces mI(Λ) and mI
0(Λ) are Banach spaces with the

norm

||x||Λ = sup
k

|λkxk|. (1)

Proof. Clearly mI(Λ) is a normed linear space with the norm (1). Now we show
that mI(Λ) is complete with respect to the norm (1).

Let (x(i)) be a Cauchy sequence in mI(Λ) . Then for each ε > 0 , there exists a
number n0 such that

||x(i)
k − x(j)

k ||Λ < ε, for all i, j � n0

⇒ sup
k

|λk(x
(i)
k − x(j)

k )| < ε, for all i, j � n0

⇒ |λk(x
(i)
k − x(j)

k )| < ε, for all i, j � n0, for each k ∈ N. (2)

⇒ (λkx
(i)
k ) is a Cauchy sequence in C.

Let (y(i)
k ) = (λkx

(i)
k ) , for each k ∈ N . Since C is complete, there exists yk ∈ C

such that y(i)
k → yk , as i → ∞ , for each k ∈ N . Since mI(Λ) is a linear space,

we can write yk as yk = λkxk , for each k ∈ N . Then (yk) ∈ mI(Λ) . Therefore

lim
i→∞(λkx

(i)
k ) = yk , for each k ∈ N .
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From (2),

lim
j→∞

|λk(x
(i)
k − x(j)

k )| < ε, for all i � n0, for each k ∈ N

⇒ sup
k

|λk(x
(i)
k − xk)| < ε, for all i � n0

⇒ ||x(i) − x|| < ε, for all i � n0.

For all i � n0 , x = x(i) − (x(i) − x) ∈ mI(Λ) , because mI(Λ) is a linear space.
Therefore mI(Λ) is complete and hence it is a Banach space.
Similarly it can be shown that mI

0(Λ) is a Banach space.

THEOREM 3. The sequence space mI
0(Λ) is solid.

Proof. Let (xk) ∈ mI
0(Λ) and (αk) be a sequence of scalars with |αk| � 1 , for

all k ∈ N .
The result follows from the following inclusion relation

{k ∈ N : |λkxk| � ε} ⊇ {k ∈ N : |αkλkxk| � ε}.

PROPOSITION 4. The sequence space mI(Λ) is not solid in general.

Proof. The result follows from the following example.

EXAMPLE 1. Let I = Iδ . Consider the sequence (xk) defined by

xk =
{

k−1, if k = i3, i ∈ N

0, otherwise

Let αk = (−1)k , for all k ∈ N and λk = 1 , for all k ∈ N .
Then (λkxk) ∈ cI(Λ) , but (αkλkxk) /∈ cI(Λ) .

THEOREM 5. Let I = If , then the sequence spaces cI(Λ) and cI
0(Λ) are not

symmetric in general.

Proof. The result follows from the following examples.

EXAMPLE 2. Let I = Iδ . Consider the sequence (xk) defined by

xk =
{

k, if k = i2, i ∈ N
1
k3 , otherwise

Let λk = 1 , for all k ∈ N . Consider the rearrangement (yk) of (xk) defined by

(yk) = (x1, x2, x4, x3, x9, x5, x16, x6, x25, x7, x36, x8, . . . )

Then (λkyk) neither belongs to cI(Λ) nor to cI
0(Λ) ; where as (λkxk) belongs to

both cI(Λ) as well as cI
0(Λ) .

We may consider the following example too.
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EXAMPLE 3. For I = Ic . Let A = {k : k = i2 or j3, for i, j ∈ N} , then∑
a∈A

a−1 < ∞ . Consider the sequence (xk) defined by

xk =
{

k, if k ∈ A,

1, otherwise.

Let λk = 1 , for each k ∈ N . Consider the rearrangement (zk) of (xk) defined by

(zk) = (x1, x2, x8, x4, x5, x27, x6, x7, x64, x9, x10, . . . )

Then (λkzk) neither belongs to cI(Λ) nor to cI
0(Λ) ; but (λkxk) belongs to both

cI(Λ) and cI
0(Λ) .

THEOREM 6. The sequence spaces cI(Λ) and cI
0(Λ) are not sequence algebra in

general.

Proof. The result follows from the following example.

EXAMPLE 4. Consider the sequences xk = k2 , yk = k2 and λk = k−4 , for all
k ∈ N , then (xk), (yk) ∈ Z(Λ) , but (xk ∗ yk) /∈ Z(Λ) , where Z = cI , cI

0 .

THEOREM 7. The sequence spaces cI(Λ) and cI
0(Λ) are not convergence free.

Proof. The result follows from the following example.

EXAMPLE 5. Consider P ∈ Iδ and define the sequence (xk) by

xk =
{ 1

k , if k /∈ P,

k, if k ∈ P.

Let Q ⊆ N , Q /∈ Iδ and define the sequence (yk) by

yk =
{

k, if k ∈ Q,
1
k , if k /∈ Q.

Then (xk) ∈ cI
0(Λ) ⊂ cI(Λ) , but (yk) neither belongs to cI(Λ) nor to cI

0(Λ) .

THEOREM 8. If I = If , then the sequence spaces cI(Λ) and cI
0(Λ) are not

separable.

Proof. The proof of this result is easy, so omitted.

THEOREM 9. (λk) ∈ M(cI
0, c

I
0) = M(mI

0, m
I
0) if and only if (λku) ∈ �I

∞ .

Proof. Suppose (λk) ∈ �I
∞ . Then there exists a J > 0 such that

R = {k ∈ N : |λk| � J} ∈ I,

S = {k ∈ N : |xk| � ε
J
} ∈ I.

Then R ∪ S = {k ∈ N : |λkxk| � ε} ∈ I .
Then (λkxk) ∈ cI

0(= mI
0) . Hence (λk) ∈ M(cI

0, c
I
0) = M(mI

0, m
I
0) .

The converse part is easy, so omitted.
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THEOREM 10. If the sequence space cI is not solid, then (λk) /∈ (cI , cI) .

Proof. The result follows from Lemma 1.

THEOREM 11. If ΩΛ−1 = (ωkλ−1
k ) ∈ �I∞ , then Z(Ω) ⊂ Z(Λ) and the inclusion

is proper, where Z = cI , cI
0 , mI

0 , mI .

Proof. The proof is a routine verification and the inclusion is proper follows from
the following example.

EXAMPLE 6. Consider the sequence (xk) ∈ Z(Ω) and ωk = k−1 , λk = k−3 for
all k ∈ N . Then (xk) ∈ Z(Ω) and (ωkλ−1

k ) is bounded, but (xk) ∈ Z(Λ) .
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