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STABILITY OF LINEAR MAPPINGS IN QUASI–BANACH MODULES

MOHAMMAD SAL MOSLEHIAN AND GHADIR SADEGHI

Abstract. A quasi norm is a non-negative function ‖.‖ on a linear space X satisfying the same
axioms as a norm except for the triangle inequality, which is replaced by the weaker condition
that “there is a constant K � 1 such that ‖x + y‖ � K(‖x‖ + ‖y‖) for all x, y ∈ X ”. In this
paper, we prove the Hyers–Ulam–Rassias stability of linear mappings in quasi-Banach modules
associated to the Cauchy functional equation and a generalized Jensen functional equation.
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Birkhäuser, Basel, 1998.
[8] S.-M. JUNG, Hyers–Ulam–Rassias Stability of FunctionalEquations inMathematical Analysis, Hadronic

Press lnc. Palm Harbor, Florida, 2001.
[9] R. V. KADISON AND G. K. PEDERSEN, Means and convex combinations of unitary operators, Math. Scan.

57 (1985), 249–266.
[10] M. S. MOSLEHIAN, Approximately vanishing of topological cohomology groups, J. Math. Anal. Appl.

318 (2006), no. 2, 758–771.
[11] C. PARK, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002),

711–720.
[12] C. PARK AND W. PARK, On the Jensen’s equation in Banach modules, Taiwanese J. Math. 6 (2002),

523–531.
[13] TH. M. RASSIAS, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72

(1978), 297–300.
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