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Abstract. A quasi norm is a non-negative function ‖.‖ on a linear space X satisfying the same
axioms as a norm except for the triangle inequality, which is replaced by the weaker condition
that “there is a constant K � 1 such that ‖x + y‖ � K(‖x‖ + ‖y‖) for all x, y ∈ X ”. In this
paper, we prove the Hyers–Ulam–Rassias stability of linear mappings in quasi-Banach modules
associated to the Cauchy functional equation and a generalized Jensen functional equation.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of S.M.
Ulam [18] concerning the stability of group homomorphisms: Given a group G1 , a
metric group (G2, d) and a positive number ε , does there exist a number δ > 0 such
that if a function f : G1 → G2 satisfies the inequality d(f (xy), f (x)f (y)) < δ for all
x, y ∈ G1 then there exists a homomorphism T : G1 → G2 such that d(f (x), T(x)) < ε
for all x ∈ G1 ?

If the answer is affirmative, we say that the equation of homomorphism T(xy) =
T(x)T(y) is stable. The concept of stability for a functional equation arises when
we replace the functional equation by an inequality which acts as a perturbation of the
equation. Thus the stability question of functional equations is that how do the solutions
of the inequality differ from those of the given functional equation?

D. H. Hyers [6] gave a first affirmative answer to the question of Ulam for Banach
spaces: Let E1 be a normed space and E2 be a Banach space. Suppose that for
some ε � 0 , the mapping f : E1 → E2 satisfies ‖f (x + y) − f (x) − f (y)‖ � ε for
all x, y ∈ E1 . Then there exists a unique additive mapping T : E1 → E2 such that
‖f (x) − T(x)‖ � ε for all x ∈ E1.

Let f : E1 → E2 be a mapping from a normed space E1 into a Banach space
E2 such that f (tx) is continuous in t ∈ R for each fixed x ∈ E1 . Th.M. Rassias
[13] introduced the following inequality: Assume that there exist constants ε � 0 and
p ∈ [0, 1) such that

‖f (x + y) − f (x) − f (y)‖ � ε(‖x‖p + ‖y‖p) (x, y ∈ E1).
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Then there exists a unique R -linear mapping T : E1 → E2 such that

‖f (x) − T(x)‖ � 2ε
|2 − 2p| ‖x‖

p (x ∈ E1).

(of course, his proof still works in the case where p < 1 ).
The above inequality has provided a lot of influence in the development of what

is now known as Hyers–Ulam–Rassias stability of functional equations. In 1991, Z.
Gajda [4] following the same approach as in [13] proved that Th.M. Rassias’ result is
also valid for the case p > 1 . It is shown that there is no analogue of Th.M. Rassias
result for p = 1 (see [4, 14]). The topic of approximate mappings or the stability
of functional equations was studied and extended by a number of mathematicians; see
[3, 5, 7, 8, 10, 15] and references therein.

For the sake of convenience, we mention some basic facts about quasi-Banach
spaces.

DEFINITION 1.1. ([2, 16]) Let X be a linear space. A quasi-norm is a real-
valued function on X satisfying the following:

(1) ‖x‖ > 0 for all x �= 0 in X ;
(2) ‖λx‖ = |λ | · ‖x‖ for all scalars λ and all x ∈ X .
(3) There is a constant K � 1 such that ‖x+y‖ � K(‖x‖+‖y‖) for all x, y ∈ X .
Then the pair (X , ‖ · ‖) is said to be a quasi-normed space. The smallest possible

K is called the quasi-norm constant of ‖ · ‖ . It is easy to see that the balls with respect
to ‖ · ‖ define a linear topology on X . In this way, X becomes a locally bounded
space (i.e. it has a bounded neighborhood of 0 ), and conversely, every locally bounded
topology on a vector space comes from a quasi-norm. A quasi-Banach space is a
complete quasi-normed space, i.e. a quasi-normed space in which each ‖ · ‖ -Cauchy
sequence is convergent. This class includes Banach spaces. The most significant class
of quasi-Banach spaces which are not Banach spaces are the Lp spaces for 0 < p < 1
with the Lp -norm ‖ · ‖p .

A quasi-norm ‖ · ‖ is said to be a p -norm (0 < p � 1) if

‖x + y‖p � ‖x‖p + ‖y‖p (x, y ∈ X ).

In this case, a quasi-Banach space is called a p -Banach space.

DEFINITION 1.2. Let (A , ‖·‖) be a normed algebra. A (left) quasi-normed module
over A is a quasi-normed space (X , ‖ · ‖) which is an algebraic (left) A -module
and ‖ax‖ � ‖a‖ · ‖x‖ for all a ∈ A and all x ∈ X .

The notions of quasi-Banach module and p -Banach module can be defined in a
similar fashion.

Given a p -norm, the formula d(x, y) := ‖x − y‖p gives us a translation invariant
metric on X . By the Aoki–Rolewicz theorem [16] (see also [2]), each quasi-norm
is equivalent to some p -norm. Since it is much easier to work with p -norms than
quasi-norms, henceforth we restrict our attention mainly to p -norms.

In this paper, we prove the Hyers–Ulam–Rassias stability of linear mappings in
quasi-Banachmodules associated to the Cauchy functional equation and the generalized
Jensen functional equation by using some ideas of [17].
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Throughout the paper, let X be a quasi-normed A -module with quasi-norm
‖ · ‖X and Y be a p -Banach A -module with p -norm ‖ · ‖Y and the quasi-norm
constant K . These modules are assumed to be unit-linked, in the sense of 1.x = x for
x in the modules.

2. Stability of linear mappings associated to Cauchy equation

In this section, we prove the Hyers–Ulam–Rassias stability of linear mappings in
quasi-Banachmodules over a unital C∗ -algebra A associated to the Cauchy functional
equation f (x + y) = f (x) + f (y) (see also [11]). We denote the unitary group and the
positive part of the unit ball A1 of A by U(A ) and A +

1 , respectively.

THEOREM 2.1. Let r > 1 and ε be a positive real number. Let f : X → Y be
a mapping such that

‖f (ux + y) − uf (x) − f (y)‖Y � ε(‖x‖r
X + ‖y‖r

X ) (2.1)

for all x, y ∈ X and all u ∈ U(A ) . Then there exists a unique A -linear mapping
L : X → Y such that

‖f (x) − L(x)‖Y � 2ε
(2pr − 2p)

1
p
‖x‖r

X (x ∈ X ). (2.2)

Proof. Fix x ∈ X . Replace both y and x by x/2 and put u = 1 ∈ U(A ) in
(2.1) to get

∥∥∥f (x) − 2f
( x

2

)∥∥∥
Y

� 2ε
2r

‖x‖r
X , (2.3)

whence ∥∥∥2jf
( x

2j

)
− 2j+1f

( x
2j+1

)∥∥∥
Y

� ε
2j(r−1)+r−1

‖x‖r
X

for all non-negative integers j . Since Y is a p -Banach A -module,

∥∥∥2lf
( x

2l

)
− 2mf

( x
2m

)∥∥∥p

Y
�

m−1∑
j=l

∥∥∥2jf
( x

2j

)
− 2j+1f

( x
2j+1

)∥∥∥p

Y

� εp

2p(r−1) ‖x‖
pr
X

m−1∑
j=l

(
1

2(r−1)p

)j

(2.4)

for all non-negative integers m and l with m > l . It follows from (2.4) that the sequence{
2nf ( x

2n )
}

is a Cauchy sequence. Since Y is complete, the sequence
{
2nf ( x

2n )
}

is
convergent. Hence one can define the mapping L : X → Y by

L(x) := lim
n→∞ 2nf

( x
2n

)
(x ∈ X )
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Set u = 1 in (2.1) to obtain

‖L(x + y) − L(x) − L(y)‖Y = lim
n→∞ 2n

∥∥∥∥f

(
x + y
2n

)
− f

( x
2n

)
− f

( y
2n

)∥∥∥∥
Y

� lim
n→∞

ε
2n(r−1) (‖x‖r

X + ‖y‖r
X ) = 0 (x, y ∈ X )

Therefore

L(x + y) = L(x) + L(y) (x, y ∈ X ).

Moreover, letting l = 0 and m → ∞ in (2.4), we get (2.2).
Put y = 0 in (2.1) to get

‖L(ux) − uL(x)‖Y = lim
n→∞ 2n

∥∥∥f
(ux

2n

)
− uf

( x
2n

)∥∥∥
Y

� lim
n→∞

ε
2n(r−1) ‖x‖r

X = 0 (x ∈ X , u ∈ A ).

So L(ux) = uL(x) for all x ∈ X and all u ∈ U(A ) .
For the proof of A -linearity of L we use a standard strategy. Let a ∈ A (a �= 0) .

Assume that M is a natural number greater than 4‖a‖ . Then ‖ a
M ‖ < 1

4 < 1
3 = 1 − 2

3 .
By Theorem 1 of [9], there exist three unitaries u1, u2, u3 ∈ U(A ) such that 3 a

M =
u1 + u2 + u3 . By the additivity of L we get L(rx) = rL(x) for all x ∈ X and all
rational number r . Hence

L(ax) = L

(
M
3

· 3 · a
M

x

)
=

M
3

L
(
3 · a

M
x
)

=
M
3

L(u1x + u2x + u3x) =
M
3

(L(u1x) + L(u2x) + L(u3x))

=
M
3

(u1 + u2 + u3)L(x) =
M
3

· 3 · a
M

L(x) = aL(x) (x ∈ X ).

Since A is unital we conclude that L is A -linear.
Now, let T : X → Y be another additive mapping satisfying (2.2). Then we

have

‖L(x) − T(x)‖Y = 2n
∥∥∥L

( x
2n

)
− T

( x
2n

)∥∥∥
Y

� 2nK
(∥∥∥L

( x
2n

)
− f

( x
2n

)∥∥∥
Y

+
∥∥∥T

( x
2n

)
− f

( x
2n

)∥∥∥
Y

)

� 4Kε
(2pr − 2p)

1
p 2n(r−1)

‖x‖r
X ,

which tends to zero as n → ∞ for all x ∈ X . So we can conclude that L(x) = T(x)
for all x ∈ X . This proves the uniqueness of L . �
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THEOREM 2.2. Let r < 1 and ε be a positive real number. Let f : X → Y be
a mapping satisfying

‖f (ax + y) − af (x) − f (y)‖Y � ε(‖x‖r
X + ‖y‖r

X ) (2.5)

for all x, y ∈ X and all a ∈ A +
1 ∪{i} . Then there exists a unique A -linear mapping

L : X → Y such that

‖f (x) − L(x)‖Y � 2ε
(2p − 2pr)

1
p
‖x‖r

X (x ∈ X ). (2.6)

Proof. Fix x ∈ X . Letting y = x and a = 1 in (2.5), we obtain

∥∥∥∥f (x) − 1
2
f (2x)

∥∥∥∥
Y

� ε‖x‖r
X

Since Y is a p -Banach A -module,

∥∥∥∥ 1
2l

f (2lx) − 1
2m

f (2mx)
∥∥∥∥

p

Y

�
m−1∑
j=l

∥∥∥∥ 1
2j

f (2jx) − 1
2j+1

f (2j+1x)
∥∥∥∥

p

Y

� εp‖x‖pr
X

m−1∑
j=l

(
1

2p(1−r)

)j

(2.7)

for all non-negative integers m and l with m > l . It follows from (2.7) that the
sequence

{
1
2n f (2nx)

}
is a Cauchy sequence. Since Y is complete, the sequence{

1
2n f (2nx)

}
is convergent. Hence one can define the mapping L : X → Y by

L(x) := lim
n→∞

1
2n

f (2nx) (x ∈ X ).

Using the same reasoning as in the proof of Theorem 2.1, L is the unique additive
mapping satisfying (2.6) and

L(ax) = aL(x) (a ∈ A +
1 ∪ {i}, x ∈ X ).

Next let a ∈ A + and x ∈ X . Then there exists a positive integer M such that
‖a‖
M 1 ∈ A +

1 . So

L(ax) = L

(
a

‖a‖ .‖a‖x
)

=
a

‖a‖L

(‖a‖
M

.Mx

)

=
a
‖a‖ .

‖a‖
M

L(Mx) =
a
M

ML(x) = aL(x)
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We also have L(−x) = L(i2x) = iL(ix) = −L(x) . Since each element a of A has a
decomposition of positive elements as a = (a1 − a2) + i(a3 − a4) , we conclude that L
is A -linear mapping. �

3. Stability of linear mappings associated to Jensen equation

In this section, we prove the Hyers–Ulam–Rassias stability of linear mappings in
quasi-Banach modules over a unital normed algebra A , associated to the generalized
Jensen functional equation Nf ( x+y

N ) = f (x) + f (y) (see also [1, 12]). Let S(A )
denotes the unite sphere {a ∈ A : ‖a‖ = 1} of A .

THEOREM 3.1. Let r < 1 , ε > 0 and N > 1 be an integer. Let f : X → Y be
a mapping with f (0) = 0 such that∥∥∥∥Nf

(
ax + y

N

)
− af (x) − f (y)

∥∥∥∥
Y

� ε(‖x‖r
X + ‖y‖r

X ) (3.1)

(x, y ∈ X , a ∈ S(A )).

Then there exists a unique A -linear mapping L : X → Y such that

‖f (x) − L(x)‖Y � Nrε
(Np − Npr)

1
p
‖x‖r

X (x ∈ X ). (3.2)

Proof. Fix x ∈ X . Setting y = 0 and a = 1 and replacing x by Nx in (3.1) to
get ∥∥∥∥f (x) − 1

N
f (Nx)

∥∥∥∥
Y

� εNr−1‖x‖r
X ,

whence ∥∥∥∥ 1
Nj

f (Njx) − 1
Nj+1

f (Nj+1x)
∥∥∥∥

Y

� ε
Nj(1−r)+1−r

‖x‖r
X

for all non-negative integers j . Since Y is a p -Banach A -module,

∥∥∥∥ 1
Nl

f (Nlx) − 1
Nm

f (Nmx)
∥∥∥∥

p

Y

�
m−1∑
j=l

∥∥∥∥ 1
Nj

f (Njx) − 1
Nj+1

f (Nj+1x)
∥∥∥∥

p

Y

� εp

Np(1−r) ‖x‖
pr
X

m−1∑
j=l

(
1

Np(1−r)

)j

(3.3)

for all non-negative integers m and l with m > l . It follows from (3.3) that the
sequence

{
1

Nn f (Nnx)
}

is a Cauchy sequence. Since Y is complete, the sequence{
1

Nn f (Nnx)
}

is convergent. Hence one can define the mapping L : X → Y by

L(x) := lim
n→∞

1
Nn

f (Nnx) (x ∈ X ).
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By (3.1),
∥∥∥∥NL

(
x + y

N

)
− L(x) − L(y)

∥∥∥∥
Y

= lim
n→∞

1
Nn

∥∥∥∥Nf

(
Nn x + y

N

)
− f (Nnx) − f (Nny)

∥∥∥∥
Y

� lim
n→∞

Nrn

Nn
ε(‖x‖r

X + ‖y‖r
X ) = 0 (x, y ∈ X ).

So

NL

(
x + y

N

)
= L(x) + L(y) (x, y ∈ X ).

Thus NL( x
N ) = L(x) for each x ∈ X , and so L(x + y) = NL( x+y

N ) = L(x) + L(y)
for all x, y ∈ X . Using the same strategy as in the proof of Theorem 2.1, one can
show that L(ax) = aL(x) for all x ∈ X and all a ∈ S(A ) . Now let μ be a scalar.
There is a positive integer M such that | μM | < 1 . Using a geometric argument, one
can easily show that there exist complex numbers λ1, λ2 such that |λ1| = |λ2| = 1 and
μ
M = λ1+λ2

2 . Then for each x ∈ X , we have

L(μx) =
M
2

L((λ1 + λ2)x) =
M
2

(L(λ1x) + L(λ2x)) =
M
2

(λ1 + λ2)L(x) = μL(x).

Thus

L(ax) = L

(
a

‖a‖ .‖a‖x
)

= ‖a‖L
(

a
‖a‖x

)
= ‖a‖. a

‖a‖L(x) = aL(x)

for all x ∈ X and all a ∈ A . It follows that L is an A -linear mapping. Moreover,
letting l = 0 and m → ∞ in (3.3), we get (3.2).

Now, let T : X → Y be another additive mapping satisfying (3.2). Then we
have

‖L(x) − T(x)‖p
Y =

1
Npn

‖L(Nnx) − T(Nnx)‖p
Y

� 1
Npn

(‖L(Nnx) − f (Nnx)‖p
Y + ‖T(Nnx) − f (Nnx)‖p

Y )

� 2 · Nprn

Npn
· εpNrp

Np − Npr
‖x‖pr

X ,

which tends to zero as n → ∞ for all x ∈ X . So we can conclude that L(x) = T(x)
for all x ∈ X . This proves the uniqueness of L . �

THEOREM 3.2. Let r > 1 , ε > 0 and N > 1 be an integer. Let f : X → Y
be a mapping with f (0) = 0 satisfying. Then there exists a unique A -linear mapping
L : X → Y such that

‖f (x) − L(x)‖Y � Nrε
(Npr − Np)

1
p
‖x‖r

X (x ∈ X ).
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Proof. Fix x ∈ X . Putting y = 0 and a = 1 in (3.1) we get∥∥∥f (x) − Nf
( x

N

)∥∥∥
Y

� ε‖x‖r
X .

Since Y is a p -Banach A -module,

∥∥∥Nlf
( x

Nl

)
− Nmf

( x
Nm

)∥∥∥p

Y
�

m−1∑
j=l

∥∥∥Njf
( x

Nj

)
− Nj+1f

( x
Nj+1

)∥∥∥p

Y

� εp‖x‖pr
X

m−1∑
j=l

(
1

Np(r−1)

)j

(3.4)

for all non-negative integers m and l with m > l . It follows from (3.4) that the
sequence

{
Nnf ( x

Nn )
}

is a Cauchy sequence. Since Y is complete, the sequence{
Nnf ( x

Nn )
}

converges. So one can define the mapping L : X → Y by

L(x) := lim
n→∞ Nnf

( x
Nn

)
(x ∈ X ).

The rest of the proof is similar to the proof of Theorems 3.1. �

REMARK 3.3. Let r = 0 in all of our results. Adding some suitable conditions,
e.g. the continuity of f at a point (cf. [6]), we can deduce the continuity of the obtained
A -linear mapping L .
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