
Mathematical
Inequalities

& Applications
Volume 11, Number 3 (2008), 559–562

ON THE ELLIPTIC INEQUALITY Lu � 0

CRISTIAN-PAUL DANET

(communicated by J. Pečarić)

Abstract. In this note we obtain a strictly positive function u in Ω satisfying Lu � 0 in Ω ,
where L is a general elliptic operator of second order. Some immediate applications are also
indicated.

1. Introduction

It is known (see for example [3], p.73) that it is not always possible to find a strictly
positive function u in the bounded domain Ω ⊂ IRn, n � 2 satisfying

Lu ≡ aij(x)Diju + bi(x)Diu + c(x)u � 0 in Ω, (1)

where aij = aji and c is of arbitrary sign in Ω . We note that if c � 0 then it is trivial
to find positive functions satisfying (1). For example, we can use constant functions
or existence theorems ([1], Theorem 6.13, p.106) to produce positive nonconstant
functions.
The object of the this note is to indicate conditions where it is possible to produce
such a function (Lemma). This result has various applications. For example, it can
be used to present some results of interest for second or higher order elliptic problems
such as uniqueness results (Theorem 1), comparison-type results (Theorem 2), Harnack
inequalities for inhomogeneous equations ([3], Remark iv), p.117), Phragmèn-Lindelöf
principles ([3], Theorem 19, p.97) etc.

2. Results

LEMMA 1. Let

a(x) � diamΩ(diamΩ+ δ)(
√

n + 1)
2(n − 1)

c0 in Ω (2)

where c0 = supΩ c, δ is any positive constant and diamΩ is the diameter of the
bounded domain Ω ⊂ IRn, n � 2 . Let i1, . . . , in ∈ {1, . . . , n} be distinct numbers. If
aii = a, i = 1, . . . , n in Ω and one of the following conditions holds
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c0). aij � 0 for all i, j = 1, . . . , n, i �= j and bk � 0 for all k = 1, . . . , n in Ω ; or
c1). there exist(s) i1, . . . , iq (1 � q � n−1) such that ai1ik , . . . , aiqik � 0, bi1 , . . . , biq

� 0 in Ω for all ik �= i1, . . . , ik �= iq , the rest of the coefficients aij , i �= j are
nonpositive and the rest of coefficients bk are nonnegative in Ω ; or

c2). aij � 0 for all i, j = 1, . . . , n, i �= j and bk � 0 for all k = 1, . . . , n in Ω ;
then there exists a strictly positive function u in Ω that satisfies (1).

Proof. We select two points x0, y0 ∈ ∂Ω such that |x0 − y0| =diamΩ and
construct a ball B1 of radius diamΩ/2 such that B1 ⊇ Ω and x0, y0 ∈ ∂B1 .

The ball B1 may be imbedded in a cube K , parallel to the coordinate axes and
side length diamΩ . Rotating, we can assume without loss of generality that x0, y0 ∈
diagK where diagK represents a diagonal of K.

Let y be a vertex of K such that y ∈diagK, i.e., x0, y0 and y need to be colinear.
Further, we construct a ball B with center y such that x0 ∈ ∂B . Of course, y /∈ Ω

and Ω ⊂ B .
Now we can define the smooth function (in Ω )

u(x) = dist (x, ∂B) + δ, x ∈ Ω, (3)

where δ is an arbitrary positive constant.
A straightforward calculation gives

Diu = − xi − yi

|x − y| , i = 1, . . . , n, (4)

Diju = − δ ij

|x − y| +
(xi − yi)(xj − yj)

|x − y|3 , i, j = 1, . . . , n. (5)

Since

0 < |x − y| � |x0 − y| =
diamΩ(

√
n + 1)

2
∀ x ∈ Ω, (6)

it follows that if the relation (2) and if one of the conditions cq)., q = 0, 1, 2 is fulfilled
(choose y corresponding to each individual case cq)., q = 0, 1, 2 then,

Lu � 0 in Ω. (7)

�
Now we indicate some immediate applications.
The following uniqueness result is stated ([3], Theorem 11, p.73):
If there exists a function w > 0 in Ω that satisfies (1) in Ω and if Ω is bounded,

then the problem
Lu = f in Ω,

u = g on ∂Ω,
(8)

has at most one solution. Here L is an uniformly elliptic operator.
Using this result and the Lemma we can prove the following version of the above

mentioned uniqueness result

THEOREM 1. The problem (8) has at most one classical solution. Here the
condition (2) is satisfied, one of the conditions cq)., q = 0, 1, 2 is satisfied and aii =
a, i = 1, . . . , n in Ω .
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An interesting comparison principle for fourth-order operators was proved by V.
B. Goyal and P. W. Schaefer ([2], Theorem 1).

Let c be a strictly positive constant and assume that there exists a strictly positive
function u in Ω satisfying

Δu + cu � 0 in Ω. (9)

If v, w ∈ C4(Ω) ∩ C2(Ω) satisfy

Δ2v − c2v � Δ2w − c2w in Ω,

v � w, Δw � Δv on ∂Ω, (10)

then
v � w in Ω.

We note that in [2] it is not indicated when the comparison principle is valid, i.e.,
it wasn’t indicate a function u > 0 in Ω satisfying (9).

Using the above mentioned comparison principle and our Lemma we obtain the
following improved result:

THEOREM 2. Let c be a strictly positive constant such that

c � 2(n − 1)
diamΩ(diamΩ+ δ)(

√
n + 1)

, (11)

where δ is any positive constant. Assume that v, w ∈ C4(Ω) ∩ C2(Ω) satisfy (10).
Then

v � w in Ω. (12)

REMARKS.
1. Protter and Weinberger gave amethod for determining a strictly positive function

that satisfies (1) ([3], p.73-74). Here we offer alternate conditions for the existence of a
strictly positive function u in Ω satisfying (1). For example, the authors in [3] cannot
handle the case L elliptic or/and all bi are unbounded by below or/and c unbounded
in Ω , while we can. Hence Theorem 1 works if all bi are unbounded by below in Ω.

2. Suppose that Ω ⊂ IRn, n � 2 is a ball of radius R . We see that if we use our
results instead of the results in [3], p.73-74 then, the comparison principle (Theorem 2)
works under the less restrictive condition c � n−1/R(2R+δ)(

√
n+1) (i.e., condition

(11)) than c � 4/(2R)2e2 (i.e., the condition imposed in [3], relation (6), p.74).
3. The constant

C(Ω, n) =
diamΩ(diamΩ+ δ)(

√
n + 1)

2(n − 1)
(13)

(see relation (2)) is not sharp. For some domains with corners, e.g., a pyramid, a
parallepiped, a cone etc., C(Ω) can be taken

C(Ω, n) =
(diamΩ+ δ)2

(n − 1)
. (14)
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4. Improvements of (14) are also possible for particular domains (e.g., an annular
domain) when all coefficients aij ≡ 0, i �= j and bi ≡ 0 in Ω .
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