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Abstract. We introduce some abstract convexity notions in a real linear space and investigate
which of the results from the convex analysis in topological vector spaces still work in a linear
space. The differences between these abstract convexity notions and those established in spaces
endowed with a topology are underlined by some examples.

1. Introduction

Convex analysis is an important tool from the theoretical point of view, but also
because of its usefulness in the optimization theory. Developing this theory in finite
dimensional spaces (see [10]) or more general in locally convex spaces (see [2], [15]),
soon it was realized that some of the general results remain valid in a more general
setting, like metric spaces or linear spaces (so without any topology). This theory
is known under the name abstract convex analysis. For an exhaustive survey of these
abstract notions we refer to the books of Singer (see [13]) and Rubinov (see [12]). Many
papers deal with this kind of abstract notions, see for instance [1], [4], [6], [7], [9], [11],
[14].

In this paper we investigate some abstract convexity notions in the framework of
real linear spaces. In a locally convex space X there is a strong connection between
a lower semicontinuous function f : X → R ∪ {±∞} and its epigraph, namely f is
lower semicontinuous if and only if epi (f ) is closed in X × R . But the closure of a
set and the lower semicontinuity are topological notions, so in a real linear space the
question is how to define a "lower semicontinuous" function and the "closure" of a set,
in order to have a similar result between these two notions.

The aim of this paper is to verify which of the results that hold in locally convex
spaces remain true in a real linear space (of course, using the abstract convexity notions).

The paper is organized as follows. In the next section we present some definitions,
notations and preliminary results concerning c-convex functions that will be used later
in the paper. In Section 3 we introduce the notion of a c-convex set and investigate some
properties of it. Section 4 is devoted to the investigations of the connections between a
c-convex function and a c-convex set.
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2. Preliminaries

In the following, we consider a real linear space X and X# its algebraic dual space.
Let f : X → R be a given function, where R = R ∪ {±∞}.

We have
• the domain of f : dom (f ) = {x ∈ X : f (x) < +∞} ,
• the epigraph of f : epi (f ) = {(x, r) ∈ X × R : f (x) � r},
• f is proper if f (x) > −∞ ∀x ∈ X and dom (f ) �= ∅,
• co (f ) : X → R is the greatest convex function majorized by f ,
• 〈 x#, x〉 := x#(x) , where x#(x) defines the value of the linear functional x# ∈ X#

at the element x ∈ X ,
• g : X → R is affine if ∃(x#,α) ∈ X# × R such that g(x) = x#(x) + α ∀x ∈ X ,
• g � f ⇔ g(x) � f (x) ∀x ∈ X,
• A (X, f ) is the set of affine minorants of f on X ,
• the indicator function of a subset A of X, defined by

δA(x) =
{

0, if x ∈ A,
+∞, otherwise.

If X is a locally convex space, it can be proved (see for instance [2]) that the
following conditions are equivalent

(a) f (x) > −∞ ∀x ∈ X , f convex and lower semicontinuous,
(b) there exists an affine minorant of f and f is the pointwise supremum of all its

affine minorants (here, an affine function is characterized by an element x∗ from
the topological dual X∗ of X ).

Regarding this result, we give the analogue notion of "lower semi - continuity" for
a convex function defined on a real linear space X .

DEFINITION 1. A function f : X → R is called c-convex on X if

f (x) = sup{g(x) : g is an affine minorant of f } ∀x ∈ X.

The set of all c-convex functions on X is denoted by Γ(X) . In the literature (see,
for instance, [1], [6], [7], [11]) the functions defined in this way are called in different
ways, existing a number of terms for this notion. As there exists an analogy between it
and the notion of a lower semicontinuous (closed) convex hull of a function in locally
convex spaces, we consider that the term ”c-convex” is appropriate. Let us notice that
a c-convex function is always convex (being the pointwise supremum of a family of
affine functions).

LEMMA 1. Every affine function g : X → R is c-convex on X.

Proof. As g � sup{h : h affine, h � g} � g , one has equality and so g ∈
Γ(X) . �

If X is a locally convex space, the lower semicontinuous convex hull of a function
f : X → R , denoted by cl

(
co (f )

)
is the function whose epigraph is the closure

of co
(
epi (f )

)
in X × R . It is well known that cl

(
co (f )

)
is the greatest lower
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semicontinuous convex function majorized by f (see [2]). So it is natural to define an
analogue notion in the case of real linear spaces, in the following way.

DEFINITION 2. We define the c-convex hull of f by

cc (f ) : X → R , cc (f )(x) = sup{g(x) : g ∈ Γ(X), g � f } ∀x ∈ X.

Other authors use for the c-convex hull the terminology of "regular hull" of f (see
[4]).

An example of a space X and a function f : X → R which is c-convex but not
lower semicontinuous will be given in Section 4.

The following result shows that in the definition of the c-convex hull of a function
it is enough to take the supremum of the family of its affine minorants.

LEMMA 2. For f : X → R we have

cc (f ) = sup{g : g affine, g � f }.

Proof. Using Lemma 1 we obtain that for all x ∈ X

sup{g(x) : g affine, g � f } � sup{g(x) : g ∈ Γ(X), g � f } = cc (f )(x).

If we suppose that there exists x0 ∈ X such that

sup{g(x0) : g affine, g � f } < cc (f )(x0),

then there exists r ∈ R with the following property

sup{g(x0) : g affine, g � f } < r < cc (f )(x0)

= sup{g(x0) : g ∈ Γ(X), g � f }.
Then

∀g affine, g � f , we have g(x0) < r (1)

and
∃g0 ∈ Γ(X), g0 � f such that g0(x0) > r.

The function g0 being c-convex, since g0(x0) = sup{h(x0) : h affine, h � g0} > r ,
there exists h0 affine, h0 � g0 such that h0(x0) > r. But h0 � g0 � f , so h0 is affine
and h0 � f . This implies by (1) that h0(x0) < r, contradicting h0(x0) > r . �

PROPOSITION 1. Let be f : X → R . The following assertions are true:
(a) cc (f ) � co (f ) � f ,
(b) f ∈ Γ(X) ⇔ f = cc (f ).

Proof.
(a) As ∀x ∈ X , cc (f )(x) = sup{g(x) : g ∈ Γ(X) and g � f } � f (x) , cc (f ) is a

convex function majorized by f and the conclusion follows.
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(b) If f ∈ Γ(X) then cc (f )(x) = sup{g(x) : g ∈ Γ(X) and g � f } � f (x), ∀x ∈ X ,
and by (a) we get f = cc (f ) .
If f = cc (f ) then it is obvious that f ∈ Γ(X) (see Lemma 2). �

DEFINITION 3. Let x# ∈ X#, x# �= 0 and α ∈ R. Then
(a) H(x#,α) = {x ∈ X : x#(x) = α} is called a hyperplane in X ,
(b) H�(x#,α) = {x ∈ X : x#(x) � α} is called a c-half-space in X .

Now we recall some well-known definitions (see for instance [15]). For a subset
D ⊆ X the core (or the algebraic interior) of D is defined by

core (D) = {d ∈ D : ∀x ∈ X, ∃ε > 0 such that ∀λ ∈ [−ε, ε], d + λx ∈ D}.
The core of D relative to aff (D − D) is called the intrinsic core (or the relative
algebraic interior) of D and is denoted by icr (D) , that is the set

{d ∈ D : ∀x ∈ aff (D − D), ∃ε > 0 such that ∀λ ∈ [−ε, ε], d + λx ∈ D}.
It is easy to see that core (D) ⊆ icr (D) ⊆ D and icr ({a}) = {a} ∀a ∈ X . The

following separation theorem can be found in [3] (see also [5]).

THEOREM 1. Let A and B be convex subsets of X such that both icr (A) and
icr (B) are nonempty. Then A and B can be separated by a hyperplane H with
A ∪ B � H if and only if icr (A) ∩ icr (B) = ∅.

In finite dimensional spaces we have that if f is a convex function, then f (x) =
cl (f )(x), ∀x ∈ ri (dom (f )) , where ri (dom (f )) is the relative interior of the domain
of f (see [10]). By using Theorem 1, we show that a similar result holds also in real
linear spaces, working with the intrinsic core of dom (f ) .

THEOREM 2. Let f : X → R be a convex function. Then

f (x) = cc (f )(x) ∀x ∈ icr (dom (f )).

Proof. If icr (dom (f )) = ∅ then we have nothing to prove. Consider an arbitrary
element x0 ∈ icr (dom (f )) . We already know from Proposition 1(a) that cc (f )(x0) �
f (x0). If we suppose that we have strict inequality, then one can find a real number r0

such that cc (f )(x0) < r0 < f (x0) . Using Lemma 2 we obtain

g(x0) < r0, ∀g which are affine minorants of f . (2)

Because of icr (dom (f )) �= ∅ it follows icr (epi (f )) �= ∅ (see [3]). As (x0, r0) /∈
epi (f ) , and so (x0, r0) /∈ icr (epi (f )) , we can apply Theorem 1 in order to separate
the sets {(x0, r0)} and epi (f ) . So ∃(x#,α) ∈ X# × R , (x#,α) �= (0, 0) such that

x#(x) + αr � x#(x0) + αr0, ∀(x, r) ∈ epi (f ) (3)

and
x#(x) + αr > x#(x0) + αr0, for at least one (x, r) ∈ epi (f ). (4)
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We claim that α �= 0 . Indeed, if α = 0 then x# �= 0 , x#(x) � x#(x0) ∀x ∈ dom (f )
and x#(x) > x#(x0) . As the sets {x0} and dom (f ) can be separated by a hyperplane
which is not containing their union, by Theorem 1 we have that {x0}∩ icr (dom (f )) =
icr

({x0}
) ∩ icr (dom (f )) = ∅ , which is a contradiction. Hence α �= 0 . Moreover,

α is a non-negative number (if α < 0 then for (x, r) := (x0, f (x0) + ε) in (3)
we get x#(x) + α(f (x0) + ε) � x#(x0) + αr0 ∀ε > 0 , and taking the limit when
ε → +∞ we obtain a contradiction). Dividing by α > 0 in (3) we get r �
r0 + (1/α)x#(x0) − (1/α)x#(x) ∀(x, r) ∈ epi (f ) , implying that

f (x) � r0 + (1/α)x#(x0) − (1/α)x#(x) ∀x ∈ X.

We define g : X → R, g(x) = −(1/α)x#(x) + r0 + (1/α)x#(x0) . Then g is an
affine minorant of f , so by (2), r0 > g(x0) = r0 and this is a contradiction. Hence
cc (f )(x0) = f (x0) . �

REMARK 1. As an easy consequence of the above theorem we have

f (x) = cc (f )(x) ∀x ∈ core (dom (f )),

if f : X → R is a convex function.

3. C-convex sets

In this section we introduce an abstract notion in a real linear space in analogy to
the closed convex hull of a set in a locally convex space. Then we investigate some
properties of this notion.

DEFINITION 4. For M ⊆ X we define the c-convex hull of M by

cc (M) =
⋂

(x#,α)∈(X#\{0})×R

{
H�(x#,α) : M ⊆ H�(x#,α)

}
.

We say that M is c-convex if and only if M = cc (M). As the proof of the following
properties is trivial, we omit it.

(a) ∅ and X are c-convex;
(b) for every M ⊆ X, M ⊆ co (M) ⊆ cc (M) , where co (M) is the convex hull of

M , that is the smallest convex set which contains M ;
(c) A ⊆ B ⇒ cc (A) ⊆ cc (B) ;
(d) For every M ⊆ X, cc

(
cc (M)

)
= cc (M) ;

(e) If (M)i, i ∈ I , is a family of c-convex sets in X , then
⋂
i∈I

Mi is also c-convex.

The authors of [4] use for this set introduced in Definition 4 the notion of regular
hull of a set.

LEMMA 3. H = H�(x#,α) is c-convex, for every x# ∈ X# \ {0} and α ∈ R .

Proof. We have the following sequence of inclusions

H ⊆ cc (H) =
⋂

(y#,β)∈(X#\{0})×R

{
G�(y#, β) : H ⊆ G�(y#, β)

} ⊆ H,
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and the result follows. �

REMARK 2. If X is a locally convex space, then cl
(
co (M)

)
is the intersection of

all closed half-spaces which contain M , where cl
(
co (M)

)
is the topological closure of

co (M) (see for example [2]). Here, a closed half-space is characterized by an element
x∗ from X∗ , the topological dual space of X and because X∗ ⊆ X# , we have in general
M ⊆ cc (M) ⊆ cl

(
co (M)

)
. If M is convex and closed, then from the above inclusion

we have that M is c-convex. If X is of finite dimension, then X# = X∗ , so in this case
cc (M) = cl

(
co (M)

)
. We show by an example that if X is of infinite dimension, then

the above inclusion may be strict. Consider X an infinite dimensional normed space
and let {ei : i ∈ I} be a vector basis of it. We may suppose that N ⊆ I . Obviously,
{(1/‖ei‖

)
ei : i ∈ I} is again a vector basis, so without lose of generality we may

suppose that ‖ei‖ = 1, ∀i ∈ I . Define f 0 : {ei : i ∈ I} → R,

f 0(ei) =
{

i, if i ∈ N
0, otherwise.

It is well known from the linear algebra that f 0 can be extended uniquely to a linear
function on X , say x#

0. We claim that x#
0 ∈ X# \ X∗ . Indeed, if we suppose that x#

0 is
continuous, then ∃L � 0 such that |x#

0(x)| � L‖x‖ ∀x ∈ X (see Proposition 2.1.2 in
[8]). But this implies, for x = ei, i ∈ N , that i � L ∀i ∈ N , which is a contradiction.
Now consider the following set

M := ker(x#
0) = {x ∈ X : x#

0(x) = 0}.
M is a subspace of X , so is convex. We have

M = {x ∈ X : x#
0(x) � 0} ∩ {x ∈ X : −x#

0(x) � 0}
thus, by Lemma 3 and assertion (e), M is c-convex. Let be xn = e1 − (1/n)en ∀n ∈ N .
It is easy to see that xn ∈ M ∀n ∈ N . Because of ‖xn − e1‖ = 1/n ∀n ∈ N , we get
that the limit of the sequence {xn} is e1 , but this element does not belong to M , so
M is a c-convex set which is not topologically closed. Hence M = cc (M) � cl (M) =
cl

(
co (M)

)
.

PROPOSITION 2. For every subsets E , F of X we have

cc
(
E + cc (F)

)
= cc (E + F),

where E + F is the Minkowski sum of the sets E and F .

Proof. We only have to prove the inclusion

cc
(
E + cc (F)

) ⊆ cc (E + F),

because the reverse one is trivial. By definition,

cc
(
E + cc (F)

)
=

⋂
(x#,α)∈(X#\{0})×R

{
H�(x#,α) : E + cc (F) ⊆ H�(x#,α)

}
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and
cc (E + F) =

⋂
(x#,α)∈(X#\{0})×R

{
H�(x#,α) : E + F ⊆ H�(x#,α)

}
.

Let H�(x#,α) = {x ∈ X : x#(x) � α} be a c-half-space with (x#,α) ∈ (X# \{0})×R
such that

E + F ⊆ H�(x#,α). (5)

We show that
E + cc (F) ⊆ H�(x#,α). (6)

For this, let e ∈ E and g ∈ cc (F) be fixed. Using (5) we obtain: e + f ∈
H�(x#,α) ∀f ∈ F, so x#(e+ f ) � α ∀f ∈ F or, equivalently, x#(f ) � α− x#(e) ∀f ∈
F, which implies

F ⊆ {
x ∈ X : x#(x) � α − x#(e)

}
.

Thus F is a subset of a c-half-space, and because g ∈ cc (F) , we get

g ∈ {
x : x#(x) � α − x#(e)

} ⇔ x#(g) � α − x#(e)

⇔ x#(e + g) � α ⇔ e + g ∈ H�(x#,α).

Hence, the inclusion in (6) is true and thismeans, taking into consideration that (x#,α) ∈
(X# \ {0})× R was arbitrary chosen, that cc

(
E + cc (F)

) ⊆ cc (E + F) . �

We close this section giving a result concerning the c-convexity of the cartesian
product of two sets.

PROPOSITION 3. Let X and Y be real linear spaces, A ⊆ X and B ⊆ Y . Then

cc (A × B) = cc (A) × cc (B).

Proof. A c-half-space in X × Y has the following form

H�(x#, y#, γ ) =
{
(x, y) ∈ X × Y : 〈 (x#, y#), (x, y)〉 � γ

}
=

{
(x, y) ∈ X × Y : x#(x) + y#(y) � γ

}
,

where x# ∈ X#, y# ∈ Y#, (x#, y#) �= (0, 0) and γ ∈ R .
Let (a, b) ∈ cc (A × B) =

⋂ {
H : A × B ⊆ H, H a c-half-space

}
. Consider

H�(x#,α) an arbitrary c-half-space such that A ⊆ H�(x#,α) , with x# �= 0 and
α ∈ R . Then A × B ⊆ {

(x, y) ∈ X × Y : x#(x) � α
}

= H�(x#, 0,α) and because
(a, b) is in the c-convex hull of A×B , we get (a, b) ∈ H�(x#, 0,α) , hence x#(a) � α ,
which is nothing else than a ∈ H�(x#,α) . Because H�(x#,α) was arbitrary chosen
we obtain a ∈ cc (A). Similarly we get b ∈ cc (B) , so the inclusion

cc (A × B) ⊆ cc (A) × cc (B)

is true.
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For the opposite inclusion, take (a, b) ∈ cc (A) × cc (B) . Consider H =
H�(x#, y#, γ ) an arbitrary c-half-space in X × Y such that A × B ⊆ H . If we succeed
to show that (a, b) ∈ H, which is nothing else than

x#(a) + y#(b) � γ (7)

then we are done. As (x#, y#) �= (0, 0) , we can suppose without lose of generality
that x# �= 0 . Let b0 ∈ B be arbitrary. For all a0 ∈ A we have (a0, b0) ∈ A × B ⊆
H�(x#, y#, γ ) , so x#(a0) + y#(b0) � γ , hence A ⊆ {

x ∈ X : x#(x) � γ − y#(b0)
}

.
Since a ∈ cc (A) , a must belong to the set

{
x ∈ X : x#(x) � γ − y#(b0)

}
, that is

x#(a) � γ − y#(b0) . We treat two cases.
(1) y# = 0 . Then x#(a) � γ and (7) is fulfilled.
(2) y# �= 0 . Then x#(a) + y#(b0) � γ . The element b0 being arbitrary in B , we

have x#(a) + y#(b0) � γ ∀b0 ∈ B , so B ⊆ {
y ∈ Y : y#(y) � γ − x#(a)

}
. Using the

fact that b ∈ cc (B) , relation (7) follows. �

4. The connection between c-convex functions and c-convex sets

The aim of this section is to study the relations between the notions introduced in
the previous sections. We start by characterizing the c-half-spaces in X × R .

LEMMA 4. There are three types of c-half-spaces in X × R , namely
1. {(x, r) ∈ X × R : x#(x) � α}, x# ∈ X#, x# �= 0,α ∈ R, called vertical half-

space,
2. {(x, r) ∈ X × R : x#(x) − r � α}, x# ∈ X#,α ∈ R, called upper half-space,
3. {(x, r) ∈ X × R : x#(x) − r � α}, x# ∈ X#,α ∈ R, called lower half-space.

Proof. The hyperplanes in X × R are of the form

{(x, r) ∈ X × R : 〈 (x#, b), (x, r)〉 = α} = {(x, r) ∈ X × R : x#(x) + br = α},
with x# ∈ X, b ∈ R, (x#, b) �= (0, 0), so a c-half-space has the following form

H = {(x, r) ∈ X × R : x#(x) + br � α}.
There are three possible cases, as follows.

(a) b = 0. In this case, H = {(x, r) ∈ X × R : x#(x) � α}, x# �= 0 , which is a
vertical half-space.

(b) b < 0. Dividing by −b we get H = {(x, r) ∈ X × R : (−1/b)x#(x) − r �
(−α/b)}, which is an upper half-space.

(c) b > 0. Then H = {(x, r) ∈ X × R : (−1/b)x#(x) − r � (−α/b)}, which is a
lower half-space. �

REMARK 3. Let us note that considering an arbitrary affine function h : X →
R, h(x) = x#(x) − α , for x# ∈ X# and α ∈ R , the vertical half-spaces can be written
as

{(x, r) ∈ X × R : x#(x) � α} = {(x, r) : h(x) � 0}
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and the upper half-spaces as

{(x, r) ∈ X × R : x#(x) − α � r} = epi (h),

respectively.

The following two results are quite natural if we take into consideration a geometric
argument.

LEMMA 5. Let H be a vertical or an upper half-space in X×R. If for some x ∈ X
and r ∈ R we have (x, r + ε) ∈ H ∀ε > 0 , then (x, r) ∈ H.

Proof. If H is a vertical half-space, the result is trivial. Now let H = {(x, r) ∈
X × R : x#(x) − α � r} , with x# ∈ X# and α ∈ R , be an upper half-space. By the
hypothesis,

x#(x) − α � r + ε ∀ε > 0.

Taking the limit when ε ↘ 0 , we obtain x#(x) − α � r , that is (x, r) ∈ H . �

LEMMA 6. Let f : X → R be such that dom (f ) �= ∅. Then there exists no lower
half-space H such that epi (f ) ⊆ H.

Proof. Assume that there exists a lower half-space H = {(x, r) ∈ X × R :
x#(x)− α � r} with x# ∈ X# and α ∈ R , such that epi (f ) ⊆ H. Take y0 ∈ dom (f ).
Then one can find an r0 ∈ R such that

r0 > max{f (y0), x#(y0) − α} ⇔ f (y0) < r0 and x#(y0) − α < r0

⇔ (y0, r0) ∈ epi (f ) \ H,

which is a contradiction. �

The next proposition says that in order to obtain the c-convex hull of the epigraph of
a given function having at least one affine minorant and nonempty domain, it is enough
to take the intersection of the family of upper half-spaces which contain epi (f ) .

PROPOSITION 4. Let f : X → R be such that {g : g affine, g � f } �= ∅ and
dom (f ) �= ∅ . Then

cc
(
epi (f )

)
=

⋂{
H : H is an upper half-space,epi (f ) ⊆ H

}
.

Proof. By Lemma 6, there exist no lower half-space H such that epi (f ) ⊆ H. So

cc
(
epi (f )

)
=

⋂{
H : H is a c-half-space, epi (f ) ⊆ H

}

=
⋂{

H : H is an upper half-space, epi (f ) ⊆ H
}

⋂{
H : H is a vertical half-space, epi (f ) ⊆ H

}
. (8)
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Let V = {(x, r) : h1(x) � 0} be a vertical half-space such that epi (f ) ⊆ V, where
h1 : X → R is an affine function. We show that

(X × R) \ V ⊆ (X × R) \
( ⋂

h∈A (X,f )

epi (h)
)

. (9)

Let (x0, r0) �∈ V , so h1(x0) > 0. By the assumptions, there exists an affine minorant
h2 : X → R of f . For all λ � 0 and x ∈ X we have

λh1(x) + h2(x) � f (x). (10)

Indeed, if x �∈ dom (f ) , (10) is trivial. For x ∈ dom (f ) , one must have f (x) ∈ R .
Otherwise, if f (x) = −∞, by Proposition 1(a), we have that cc (f )(x) = −∞ and
thus, by Lemma 2, there exists no affine minorant of f . So (x, f (x)) ∈ epi (f ) ⊆ V ,
hence h1(x) � 0 and so the inequality (10) is true. Because of h1(x0) > 0, there exists
a sufficiently large λ0 such that

λ0h1(x0) + h2(x0) > r0.

Defining h : X → R by h(x) = λ0h1(x) + h2(x), ∀x ∈ X , we have that h is an
affine minorant of f and (x0, r0) /∈ epi (h), showing that (9) is true. This implies that⋂

h∈A (X,f ) epi (h) ⊆ V. V being arbitrary, we get

⋂{
H : H is an upper half-space, epi (f ) ⊆ H

}
⊆

⋂{
H : H is a vertical half-space, epi (f ) ⊆ H

}
and by (8) the result follows. �

As we have seen in Remark 3, in the hypotheses of Proposition 4 the c-convex hull
of the epigraph of f can be further written as

cc
(
epi (f )

)
=

⋂
h∈A (X,f )

{
epi (h) : epi (f ) ⊆ epi (h)

}
.

THEOREM 3. Let f : X → R be such that {g : g affine, g � f } �= ∅. Then
(a) epi (cc (f )) = cc

(
epi (f )

)
,

(b) f ∈ Γ(X) ⇔ epi (f ) ⊆ X × R is c-convex.

Proof. (a) By Proposition 1(a) we have cc (f ) � f and so

epi (f ) ⊆ epi (cc (f )). (11)

We consider the following two cases.
(1) dom (f ) = ∅. Then f ≡ +∞, epi (f ) = ∅ and thus cc

(
epi (f )

)
= ∅ . Then,

by Lemma 2, cc (f ) = sup{g : g affine, g � f } = sup{g : g affine} = +∞, and as
epi (cc (f )) = ∅ , the equality holds.

(2) dom (f ) �= ∅. By (11), we have cc
(
epi (f )

) ⊆ cc
(
epi (cc (f ))

)
.

We show that epi (cc (f )) is c-convex. If we suppose that there exists (x0, r0) ∈
cc

(
epi (cc (f ))

) \ epi (cc (f )), then cc (f )(x0) > r0, which implies by Lemma 2 that
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there exists an affine minorant g0 of f such that g0(x0) > r0. Also by Lemma 2 we
have g0 � cc (f ) , so epi (cc (f )) ⊆ epi (g0). But epi (g0) defines an upper half-space
which contains epi (cc (f )) , thus (x0, r0) ∈ epi (g0) , but this is a contradiction. Hence
epi (cc (f )) is c-convex, so cc

(
epi (f )

) ⊆ epi (cc (f )) .
It remains to prove the reverse inclusion, namely epi (cc (f )) ⊆ cc

(
epi (f )

)
.

Take an arbitrary (x1, r1) ∈ epi (cc (f )). Then cc (f )(x1) � r1 ⇔ h(x1) � r1, for
every affine minorant h of f , so (x1, r1) ∈ ⋂

h∈A (X,f ) epi (h) = cc
(
epi (f )

)
, where

the last equality follows by Proposition 4.
(b) Using (a) and Proposition 1(b) we obtain

f ∈ Γ(X) ⇔ f = cc (f ) ⇔ epi (f ) = epi (cc (f ))
⇔ epi (f ) = cc

(
epi (f )

) ⇔ epi (f ) is c-convex.

�

REMARK 4. The direct implication in (b) is true even if {g : g affine, g � f } =
∅. In this case, by Definition 1, f ≡ −∞, epi (f ) = X × R and thus epi (f ) =
cc

(
epi (f )

)
= X × R.

The reverse implication does not hold in general if the function f has no affine
minorants. For f : R → R ,

f (x) =
{ −∞, if x ∈ (−∞, 0],

+∞, otherwise,

we have epi (f ) = (−∞, 0] × R and this is a c-convex set. It is easy to see that f is
not c-convex. Moreover, f is an example of a function which is lower semicontinuous
and convex, but not c-convex.

In a locally convex space X , if f : X → R is convex, lower semicontinuous and
f (x) > −∞ ∀x ∈ X , then f is c-convex. Indeed, the properties of the function f
guarantee the existence of at least one affine minorant of f and epi (f ) is a convex
and closed set. This shows (see Remark 2) that epi (f ) is a c-convex set, implying by
Theorem 3(b) that f is c-convex.

Next we give another characterization of the c-convex hull of a function which has
at least one affine minorant.

COROLLARY 1. Let f : X → R be such that {g : g affine, g � f } �= ∅. Then

cc (f ) = inf
{
t : (x, t) ∈ cc

(
epi (f )

)}
.

Proof. This is an easy consequence of the above theorem, since for every function
f : X → R one has f (x) = inf

{
t : (x, t) ∈ epi (f )

}
. �



582 RADU IOAN BOŢ, ERNÖ ROBERT CSETNEK AND GERT WANKA

LEMMA 7. If f : X → R is c-convex, then the level set

{x ∈ X : f (x) � a}
is c-convex ∀a ∈ R.

Proof. Since f is c-convex, we have f (x) = sup{g(x) : g affine, g � f } . Let
a ∈ R be arbitrary. Then {x ∈ X : f (x) � a} =

⋂
g∈A (X,f )

{x ∈ X : g(x) � a} . By

Lemma 3, {x ∈ X : g(x) � a} is c-convex, for every affine function g , so the level set
{x ∈ X : f (x) � a} will be also c-convex, being the intersection of an arbitrary family
of c-convex sets. �

THEOREM 4. Let A be a subset of X. Then

δA ∈ Γ(X), i.e. δA is c-convex, if and only if A is c-convex.

Proof. We have epi (δA) = A × [0, +∞). By Proposition 3

cc (A × [0, +∞)) = cc (A) × [0, +∞).

Obviously, h ≡ 0 is an affine minorant of δA , hence by Theorem 3(b) we obtain

δA ∈ Γ(X) ⇔ epi (δA) is c-convex ⇔ A × [0, +∞) is c-convex

⇔ A × [0, +∞) = cc
(
A × [0, +∞)

) ⇔ A × [0, +∞) = cc (A) × [0, +∞)

⇔ A = cc (A) ⇔ A is c-convex.

�

REMARK 5. Working in a locally convex space X , A ⊆ X is closed and convex
if and only if the indicator function δA is lower semicontinuous and convex. Using
Theorem 4, we can construct a convex function defined on X which is c-convex but not
lower semicontinuous. Let M be the set considered in Remark 2

M := ker(x#
0) = {x ∈ X : x#

0(x) = 0}.
Because M is c-convex and not topologically closed, we get that δM is a c-convex
function which is not lower semicontinuous.

REMARK 6. The approach which we describe below gives a connection between the
theory established in real linear spaces and the one existing in separated locally convex
spaces. If we consider P the set of all seminorms defined on the real linear space X ,
then (X, P) becomes a separated locally convex space. The topological notions referred
below are with respect to this topology, known in the literature as the "core topology".
The topological dual of X is X# . Further, a c-convex function is closed and convex,
which means, a function which is identical −∞ or identical +∞ or a proper lower
semicontinuous convex function. Moreover, the c-convex hull of a subset M of X is
nothing else than the closed convex hull of M .
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