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THE APPROXIMATION OF POWER FUNCTION BY THE

q –BERNSTEIN POLYNOMIALS IN THE CASE q > 1

SOFIYA OSTROVSKA

Abstract. Since for q > 1, q -Bernstein polynomials are not positive linear operators on C[0, 1],
the investigation of their convergence properties turns out to be much more difficult than that in
the case 0 < q < 1.

It is known that, in the case q > 1, the q -Bernstein polynomials approximate the entire
functions and, in particular, polynomials uniformly on any compact set in C. In this paper, the
possibility of the approximation for the function (z + a)α , a � 0, with a non-integer α > −1
is studied. It is proved that for a > 0, the function is uniformly approximated on any compact
set in {z : |z| < a}, while on any Jordan arc in {z : |z| > a}, the uniform approximation
is impossible. In the case a = 0, the results of the paper reveal the following interesting
phenomenon: the power function zα , α > 0, is approximated by its q -Bernstein polynomials
either on any (when α ∈ N ) or no (when α /∈ N) Jordan arc in C.
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