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Abstract. Since for q > 1, q -Bernstein polynomials are not positive linear operators on C[0, 1],
the investigation of their convergence properties turns out to be much more difficult than that in
the case 0 < q < 1.

It is known that, in the case q > 1, the q -Bernstein polynomials approximate the entire
functions and, in particular, polynomials uniformly on any compact set in C. In this paper, the
possibility of the approximation for the function (z + a)α , a � 0, with a non-integer α > −1
is studied. It is proved that for a > 0, the function is uniformly approximated on any compact
set in {z : |z| < a}, while on any Jordan arc in {z : |z| > a}, the uniform approximation
is impossible. In the case a = 0, the results of the paper reveal the following interesting
phenomenon: the power function zα , α > 0, is approximated by its q -Bernstein polynomials
either on any (when α ∈ N ) or no (when α /∈ N) Jordan arc in C.

1. Introduction

The importance of Bernstein polynomials gave rise to further studies of their
different generalizations and related topics. Due to the intensive development of q -
Calculus, some generalizations involving q -integers have emerged. In 1987, a q -
analogue of the Bernstein operator was introduced by A. Lupaş [7]. Note that the
operators defined by A. Lupaş are given by rational functions rather than polynomials.
In 1997, another generalizationof Bernstein polynomialsbased on the q -integers, called
q -Bernstein polynomials, was introduced by G. M. Phillips [14]. These polynomials
have recently been brought to the spotlight and studied from different angles by a
number of researchers. Reviews of the results on the q -Bernstein polynomials along
with extensive bibliography on this matter are given in [15], Ch. 7 (results obtained in
1997–1999)and [10] (results obtained in 2000–2004). More recent results can be found,
for example, in [11], [12], [13], [17]–[22]. A generalization of the Bernstein-Durrmeyer
operator related to q -Bernstein polynomials has been considered in [3].

For the sequel, we need the following definitions (cf., e.g. [15], Ch. 8, §8.1):
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Let q > 0. For any n ∈ Z+, the q-integer [n]q is defined by

[n]q := 1 + q + · · · + qn−1 (n ∈ N), [0]q := 0;

and the q-factorial [n]q! by

[n]q! := [1]q[2]q . . . [n]q (n ∈ N), [0]q! := 1.

For integers 0 � k � n, the q-binomial coefficient is defined by[n
k

]
q

:=
[n]q!

[k]q![n − k]q!
.

Clearly, for q = 1,

[n]1 = n, [n]1! = n!,
[n
k

]
1

=
(n

k

)
.

DEFINITION 1.1. Let f : [0, 1] → C. The q-Bernstein polynomials of f are
defined by:

Bn,q(f ; z) =
n∑

k=0

f

(
[k]q
[n]q

)
pnk(q; z), n ∈ N,

where

pnk(q; z) :=
[n
k

]
q
zk

n−k−1∏
j=0

(
1 − qjz

)
, k = 0, 1, . . .n. (1.1)

Note that for q = 1, we recover the classical Bernstein polynomials.
It has been shown by G. M. Phillips et. al. (see [15], Ch. 7) that some properties

of the classical Bernstein polynomials are taken after by the q -Bernstein polynomials.
For example, the q -Bernstein polynomials possess the end-point interpolation property,
leave invariant linear functions, admit representation with the help of q -differences,
and they are degree-reducing on polynomials. Apart from that, basic q -Bernstein
polynomials (1.1) admit a probabilistic interpretation via q -binomial distribution, see
[1] and [4].

In the case 0 < q < 1, the resemblance between the classical Bernstein and
q -Bernstein polynomials goes even further. In this case, q -Bernstein polynomials
are positive linear operators on C[0, 1] with ‖Bn,q‖ = 1. Moreover, if a function f
is increasing (decreasing) on [0,1], then Bn,q(f ; x) (0 < q < 1) is also increasing
(decreasing) on [0,1]; and if f is convex (concave) on [0, 1], then so is Bn,q(f ; x) (0 <
q < 1). In addition, q -Bernstein polynomials of a convex function f in the case
0 < q < 1 have the same monotonicity properties as those of the classical Bernstein
polynomials, namely, Bn−1,q(f ; x) � Bn,q(f ; x) � f (x), x ∈ [0, 1], n = 2, 3, . . . . A
quantitative estimate of the difference between Bn,q(f ; x), 0 < q < 1, and Bn,1(f ; x)
is given by V. S. Videnskii in [18].

The approximation with q -Bernstein polynomials has been studied in quite a few
papers, starting from [14], see also [5], [9], [12], [15], [17]–[22]. The study reveals that
the convergence properties of the q -Bernstein polynomials are basically different from
those of the classical ones. Moreover, the behavior of the q -Bernstein polynomials in
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terms of convergence for 0 < q < 1 is quite different from that for q > 1. In the case
of 0 < q < 1, the q -Bernstein polynomials are positive linear operators on C[0, 1],
while, for q > 1, the positivity does not persist any longer. This appears to be vital
for the investigation of convergence. We notice here that despite being positive linear
operators for 0 < q < 1, q -Bernstein polynomials do not satisfy the conditions of
Korovkin’s Theorem, because

Bn,q(t2; x) = x2 +
x(1 − x)

[n]q
→ x2 + (1 − q)x(1 − x) �= x2, n → ∞.

However, they satisfy the conditions of H. Wang’s Korovkin-type Theorem ([19], The-
orem 2) and serve as a model for this theorem. H. Wang’s theorem guarantees the
existence of the limit operator B∞,q for the sequence {Bn,q} which, unlike the situation
in the classical case, is not the identity operator. Results related to the properties of
B∞,q may be found in the references listed above.

For the time being, contrary to a large number of papers dedicated to the investi-
gation of convergence in the case 0 < q < 1, there are only two papers, namely [9]
and [22], treating systematically the case q > 1. However, the results of [9] show that,
for q > 1, the approximation with the q -Bernstein polynomials may be faster than
with the classical ones (see [9], Theorem 6). For instance, the rate of approximation in
C[0, 1] for functions analytic in {z : |z| < q + ε} is q−n versus 1/n for the classical
Bernstein polynomials. On the other hand, for some infinitely differentiable functions
and even analytic on [0, 1] , their sequences of q -Bernstein polynomials (q > 1) may
be divergent (see [9], Theorem 2). This situation is totally impossible for 0 < q � 1. In
general, the problem to describe the class of functions in C[0, 1] which are uniformly
approximated by their q -Bernstein polynomials in the case q > 1 is yet to be solved.

It is exactly an unexpected behavior of q -Bernstein polynomials with respect to
convergence that makes the study of their convergence properties interesting.

It is known (see [9], Theorem1) that entire functions and, in particular, polynomials
are uniformly approximated by their q -Bernstein polynomials (q > 1) on any compact
set in C. The aim of this paper is to examine the possibility of the uniform approximation
for the function f (z) = (z + a)α , a > 0 with a non-integer α > −1. It has been
shown that the uniform approximation occurs on any compact set in {z : |z| < a},
while on any Jordan arc lying in {z : |z| > a}, the sequence {Bn,q(f ; z)} is not even
uniformly bounded. In particular, our results imply that the approximation of (x + a)α

in C[0, 1] takes place if and only if a � 1. At the same time, it is proven that zα with a
non-integer α > 0 cannot be uniformly approximated by its q -Bernstein polynomials
(q > 1) on any interval.

We discover, therefore, the following phenomenon worthy of note: if the function
(z+a)α , with a � 0,α > 0 is uniformly approximated by its q -Bernstein polynomials
(q > 1) on some interval in C, then this function is approximated on any interval that
is closer to the origin. In particular, for zα ,α > 0, we observe an interesting polarity in
the range of possibilities for the uniform approximation: zα , α > 0, is approximated
either on each (in the case α ∈ N ) or no (in the case α /∈ N ) Jordan arc in C.
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2. Statement of results

We start with the following lemma, which gives explicitly higher coefficients of
the q -Bernstein polynomials of the function (z + a)α . From here on, whenever we
consider the function f (z) = (z+a)α , we assume that a � 0, α > −1, and the branch
of f (z) analytic in C \ (−∞,−a] so that f (x) > 0 for x > −a is chosen.

LEMMA 2.1. Let f (z) = (z + a)α and

Bn,q(f ; z) =
n∑

k=0

cknz
k.

Then, for k > α, we have:

ckn =
(−1)k+1λkn sin πα

π

∫ ∞

a

(x − a)αdx

x
(
x + 1

[n]q

)(
x + [2]q

[n]q

)
. . .

(
x + [k]q

[n]q

) , (2.1)

where

λ0n = λ1n = 1, λkn =
k−1∏
j=1

(
1 − [j]q

[n]q

)
, k = 2, . . . , n. (2.2)

REMARK 2.1. If q = 1, then λkn (k = 0, 1, . . . , n) are eigenvalues of the classical
Bernstein operator, whose eigenstructure together with applications had been studied in
[2]. Some results of [2] have been extended to q -Bernstein polynomials in [9].

The next theorem addresses the possibility of the uniform approximation for the
power function by its q -Bernstein polynomials in the case q > 1.

THEOREM 2.2. Let q > 1, a > 0, and f (z) = (z + a)α . Then, for any compact
set K ⊂ {z : |z| < a},

Bn,q(f ; z) → f (z), n → ∞,

uniformly on K.

COROLLARY 2.3. If q > 1, a > 0, then for any 0 < c < a,

Bn,q ((t + a)α ; x) → (x + a)α , n → ∞,

uniformly on [0, c].
In particular, we obtain the following result which also can be derived from Theo-

rem 7 of [9]:
If q > 1, a > 1, then

Bn,q ((t + a)α ; x) → (x + a)α , n → ∞,

uniformly on [0, 1].
The following statement shows that Theorem 2.2 is sharp in the following sense:

the function (x + a)α cannot be approximated by its q -Bernstein polynomials on any
interval beyond [−a, a]. More precisely, the following assertion is true.
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THEOREM 2.4. Let q > 1, a > 0. If α > −1 is not an integer, then for any
Jordan arc J ⊂ {z : |z| > a}, the sequence {Bn,q(f ; z)} is not uniformly bounded on
J.

COROLLARY 2.5. Let q > 1, 0 < a < 1. If α > −1 is not an integer, then
(x + a)α cannot be uniformly approximated by its q -Bernstein polynomials in C[0, 1].

To investigate the approximation of (x + a)α with a = 1, we use the following
general statement.

THEOREM 2.6. If f (x) =
∞∑
k=0

(−1)kakx
k, ak � 0, where ak → 0 and ak+1 � ak

for k � k0, then
Bn,q(f ; x) → f (x), n → ∞,

uniformly on [0, 1].

COROLLARY 2.7. Let q > 1. Then for any α > −1,

Bn,q((t + 1)α ; x) → (x + 1)α , n → ∞,

uniformly on [0, 1].

REMARK 2.2. For α > 0,

Bn,q ((t + 1)α ; z) → (z + 1)α , n → ∞,

uniformly in {z : |z| � 1}.
Theorems 2.2 and 2.4 show that as a decreases the interval where the function (x+

a)α , a > 0, 0 < α /∈ N, is uniformly approximated by its q -Bernstein polynomials
(q > 1) gets narrower. What happens if a = 0 ? Theorem 2.8 demonstrates that
xα with a non-integer α is not approximated by its q -Bernstein polynomials on any
interval.

THEOREM 2.8. Let q > 1,

f (z) = A1z
α1 + · · · + Amzαm , Ai ∈ C, αi � 0 (i = 1, . . . , m). (2.3)

If at least one of αi is not an integer, then the sequence {Bn,q(f ; z)} is not uniformly
bounded on any Jordan arc.

COROLLARY 2.9. If f (x) = A1xα1 + . . . Amxαm , Ai ∈ C, αi � 0 (i = 1, . . . , m),
is not a polynomial, then in the case q > 1, it cannot be uniformly approximated by its
q -Bernstein polynomials on any interval.

We conclude, therefore, that a function of the form (2.3) can be uniformly ap-
proximated by its q -Bernstein (q > 1) polynomials on a Jordan arc if and only if f
is a polynomial, in which case the uniform approximation occurs on any compact set
in C. This is an astonishing fact to observe that a function of the form (2.3) can be
approximated by its q -Bernstein polynomials either on any or no Jordan arc in C.
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3. Proofs of the theorems

Proof of Lemma 2.1. We need the following representation of the q -Bernstein
polynomials given in [9], formulae (6) and (7):

Bn,q(f ; z) =
n∑

k=0

λknf

[
0;

1
[n]q

; . . . ;
[k]q
[n]q

]
zk, (3.1)

where f [x0; x1; . . . ; xk] denotes the divided differences of f , that is

f [x0] = f (x0), f [x0; x1] =
f (x1) − f (x0)

x1 − x0
, . . . ,

f [x0; x1; . . . ; xk] =
f [x1; . . . ; xk] − f [x0; . . . ; xk−1]

xk − x0
,

and λkn are given by (2.2).
If f is analytic on [0, 1], then by ([6], §2.7, page 44) the divided differences of

can be expressed as follows:

f

[
0;

1
[n]q

; . . . ;
[k]q
[n]q

]
=

1
2πi

∮
L

f (ζ) dζ

ζ
(
ζ − 1

[n]q

)
. . .

(
ζ − [k]q

[n]q

) , (3.2)

where L is a contour encircling [0, 1] so that f is analytic on and within L. Therefore,
for f (z) = (z + a)α , we have:

f

[
0;

1
[n]q

; . . . ;
[k]q
[n]q

]
=

1
2πi

∮
L

(ζ + a)α dζ

ζ
(
ζ − 1

[n]q

)
. . .

(
ζ − [k]q

[n]q

) .

Taking into account that (z + a)α is analytic in C \ (−∞,−a], and for k > α, the
integrand in (3.2) is o(|ζ |−1) as ζ → ∞, k � 1, we obtain by the Cauchy Theorem:∮

L

(ζ + a)α dζ

ζ
(
ζ − 1

[n]q

)
. . .

(
ζ − [k]q

[n]q

)

= (−1)k+1eiπα
∫ ∞

a

(x − a)α dx

x

(
x +

1
[n]q

)
. . .

(
x +

[k]q
[n]q

)

− (−1)k+1e−iπα
∫ ∞

a

(x − a)α dx

x

(
x +

1
[n]q

)
. . .

(
x +

[k]q
[n]q

)

= (−1)k+12i sin(πα)
∫ ∞

a

(x − a)α dx

x

(
x +

1
[n]q

)
. . .

(
x +

[k]q
[n]q

) . �
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Proof of Theorem 2.2. First, we prove that the coefficients ckn satisfy the following
estimates:

|ckn| � C
ak

, k = 0, 1, . . . , n, n = 1, 2, . . . (3.3)

where C is a positive constant independent from both k and n.
Indeed, for k � α, we have:

|ckn| = λknf

[
0;

1
[n]q

; . . . ;
[k]q
[n]q

]

� f

[
0;

1
[n]q

; . . . ;
[k]q
[n]q

]
=

f (k)(ξ)
k!

, ξ ∈
(

0,
[k]q
[n]q

)
.

Since, for k � α,

f (k)(ξ) � f (k)(1) = α(α − 1) . . . (α − k + 1)(1 + a)α−k,

we obtain:
|ckn| �

(α
k

)
(1 + a)α .

We set
C1 = C1(a,α) := max

0�k�α

(α
k

)
ak(1 + a)α

and derive

|ckn| � C1

ak
, k � α, n = 1, 2, . . . (3.4)

For k > α, formula (2.1) implies:

|ckn| � | sin(πα)|
π

∫ ∞

a

(x − a)α

xk+1
dx =

| sin(πα)|aα
πak

∫ 1

0
tα(1 − t)k−α−1 dt

� | sin(πα)|aα
πak(k − α)

Γ(α + 1) � C2

ak
. (3.5)

Combining (3.4) and (3.5), we conclude that

|ckn| � C
ak

, k = 0, 1, . . . , n; n = 1, 2, . . .

with C = max{C1, C2}.
It follows that the sequence {Bn,q(f ; z)} is uniformly bounded in any disc {z :

|z| � ρ} with ρ < a. Indeed, in virtue of (3.3), we have:

|Bn,q(f ; z)| �
n∑

k=0

|ckn|ρk � C
1 − ρ/a

, |z| � ρ.

Apart from that, Lemma 1 of [9] shows that the sequence {Bn,q(f ; z)} converges to
f (z) on the set {q−j}∞j=0.

The statement now follows from theVitali Theorem (cf.,e.g., [16], Ch.V, §5.2). �
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Proof of Theorem2.4. Assume that the sequence {Bn,q(f ; z)} is uniformly bounded
on a Jordan arc J ⊂ {z : |z| > a}, that is for some M > 0,

|Bn,q(f ; z)| � M, z ∈ J. (3.6)

We denote
c := min{|z| : z ∈ J}, d := max{|z| : z ∈ J}.

By the conditions of the theorem, we have 0 < a < c < d < ∞. Consider the auxiliary
polynomials:

Qn(f ; z) := znBn,q(f ; a/z) =
n∑

k=0

cn−k,na
n−kzk. (3.7)

We set:
J1 := {z : z = a/w, w ∈ J}.

Clearly,

J1 ⊂
{

z :
a
d

� |z| � a
c

}
and (3.6) implies:

|Qn(f ; z)| � M ·
(a

c

)n
for z ∈ J1.

On the other hand, estimate (3.3) indicates that

|Qn(f ; z)| � C
1 − ρ

=: C1 for |z| � ρ < 1.

We fix ρ ∈ (a/c, 1) and apply the Two-constants Theorem (cf., e.g., [8], p. 41) to arrive
at an estimate for Qn(f ; z) in {z : |z| < ρ}. As a result, we obtain:

|Qn(f ; z)| �
[
M

(a
c

)n]ω(z)
· C1−ω(z)

1 , z ∈ {z : |z| < ρ} \ J1, (3.8)

where ω(z) is the harmonic measure of J1 with respect to {z : |z| < ρ} \ J1. We note
that 0 ∈ {z : |z| < a/d} ⊂ {z : |z| < ρ} \ J1. Therefore, ω(0) > 0 and (3.8) implies
that

|Qn(f ; 0)| � C1−ω(0)
1 · Mω(0)

(a
c

)nω(0)
=: M1

(a
c

)nω(0)
. (3.9)

Also, it follows directly from (3.7) that

|Qn(f ; 0)| = |cnn|an.

For n > α, Lemma 2.1 yields:

|cnn| � λnn| sin(πα)|
π

(
1 +

1
a[n]q

) (
1 +

[2]q
a[n]q

)
. . .

(
1 +

[n]q
a[n]q

) ∫ ∞

a

(x − a)α dx

xn+1 .

Since the sequence λnn is decreasing and

lim
n→∞ λnn =

∞∏
j=1

(
1 − 1

qj

)
=: λ > 0,
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we have
λnn > λ > 0 for all n ∈ N. (3.10)

Taking into account that
[n − j]q

[n]q
� 1

qj
,

we conclude:
n∏

j=1

(
1 +

[j]q
a[n]q

)
�

∞∏
j=0

(
1 +

1
aqj

)
=: C2 > 0. (3.11)

Therefore,

|cnn| � λ | sin(πα)|
πC2

∫ ∞

a

(x − a)α

xn+1
dx

=: C3a
α−n

∫ 1

0
tα(1 − t)n−α−1dt = C3a

α−nB(α + 1, n − α) � C4

ann1+α

with C4 := C3aαΓ(α + 1). We note that C4 �= 0, because α /∈ Z. Consequently, we
obtain:

|Qn(f ; 0)| = |cnn|an � C4

n1+α ,

contrary to (3.9). �

Proof of Theorem 2.6. Without loss of generality,we may take k0 = 0 and consider

f (x) =
∞∑
k=0

(−1)kakx
k, where ak ↓ 0, ak+1 � ak, k = 0, 1, . . . (3.12)

The series in (3.12) converges uniformly on [0, 1] and∣∣∣∣∣
∞∑
k=n

(−1)kakx
k

∣∣∣∣∣ � an, x ∈ [0, 1], n = 0, 1, . . .

Since for each fixed n, the operator Bn,q is bounded in C[0, 1], we have:

Bn,q(f ; x) =
∞∑
k=0

(−1)kakBn,q(tk; x). (3.13)

Formula (3.1) implies that all Bn,q(tk; x) are polynomials with non-negative coefficients
and hence

0 � Bn,q(tk; x) � 1 for x ∈ [0, 1], n = 1, 2, . . . , k = 0, 1, . . .

In addition, Videnskii’s recurrence formula ([17], formula (3.1)) shows that for each
n = 1, 2, . . . , we have:

Bn,q(tk+1; x) � Bn,q(tk; x), x ∈ [0, 1], k = 0, 1, . . .
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Therefore, ∣∣∣∣∣
∞∑
k=n

(−1)kakBn,q(tk; x)

∣∣∣∣∣ � an, x ∈ [0, 1].

Given ε > 0, we choose N so that aN < ε. Then

|Bn,q(f ; x) − f (x)| �
N∑

k=0

ak

∣∣Bn,q(tk; x) − xk
∣∣ + 2ε, n > N.

By Theorem 5 of [9],
Bn,q(tk; z) → zk, n → ∞

uniformly on any compact set in C. We choose n0 > N in such a way that for n > n0,∣∣Bn,q(tk; x) − xk
∣∣ � ε

N
, x ∈ [0, 1], k = 0, 1, . . . , N.

Then n > n0 implies

|Bn,q(f ; x) − f (x)| < 3ε, x ∈ [0, 1]. �

The proof of Theorem 2.8 is based upon the following observation.

REMARK 3.1. Let P(z) =
n∑

k=0

ckz
k be a polynomial so that for a Jordan arc J,

|P(z)| � M, z ∈ J.

Then there exists a positive constant D depending only on J such that

|cn| � M · Dn.

Indeed, by the Riemann Conformal Mapping Theorem, there exists a conformal
mapping w = ϕ(z) of C \ J on {w : |w| > 1} so that ϕ(∞) = ∞,

lim
z→∞

ϕ(z)
z

=: d �= 0. (3.14)

Consider the function
P(z)

[ϕ(z)]n

analytic in C \ J. In virtue of (3.14), we have:

lim
z→∞

∣∣∣∣ P(z)
[ϕ(z)]n

∣∣∣∣ =
|cn|
Dn

, D := |d|,

and it follows that the function is analytic at ∞ as well. By the condition, its modulus
is bounded by M on J. Applying the Maximum Modulus Principle we obtain that

|cn|
Dn

= lim
z→∞

∣∣∣∣ P(z)
[ϕ(z)]n

∣∣∣∣ � M,
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as mentioned.

Proof of Theorem 2.8. Without loss of generality we assume that

0 < α1 < · · · < αm with αi /∈ N (i = 1, . . . , m).

Suppose that the sequence {Bn,q(f ; z)} is uniformly bounded on a Jordan arc J, that is
for some M > 0,

|Bn,q(f ; z)| � M, z ∈ J.

By the above remark, the coefficients cnn satisfy the following estimate:

|cnn| � M · Dn, n = 1, 2, . . . , (3.15)

where D > 0 depends only on J.
On the other hand, we estimate coefficients cnn, for n > α, with the help of (2.1).

We obtain, for any δ > 0,

|cnn| =
λnn

π

∣∣∣∣∣∣∣∣
m∑

j=1

∫ ∞

0

Aj sin(παj)xαj dx

x

(
x +

1
[n]q

)
. . .

(
x +

[n]q
[n]q

)
∣∣∣∣∣∣∣∣
� λ

π

∣∣∣∣∣∣
m∑

j=1

{∫ δ

0
+

∫ ∞

δ

}∣∣∣∣∣∣ ,

where λ > 0 is the same constant as in (3.10).
Hence

|cnn| � λ
π

∣∣∣∣∣∣
m∑

j=1

∫ δ

0

∣∣∣∣∣∣ −
λ
π

m∑
j=1

∫ ∞

δ

|Aj sin(παj)| xαjdx

x

(
x +

1
[n]q

)
. . .

(
x +

[n]q
[n]q

) =: σ1 − σ2.

First, we choose δ > 0 in such a way that∣∣∣∣∣∣1 +
m∑

j=2

Aj sin(παj)
A1 sin(πα1)

xαj−α1

∣∣∣∣∣∣ � 1
2

for x ∈ [0, δ ].

With this choice of δ, we have, for n large enough:

σ1 � λ |A1 sin(πα1)|
2π

∫ δ

0

xα1dx

x

(
x +

1
[n]q

)
. . .

(
x +

[n]q
[n]q

)

� λ |A1 sin(πα1)|
2π

∫ 1/[n]q

0

xα1dx

x

(
1

[n]q
+

1
[n]q

)
. . .

(
[n]q
[n]q

+
[n]q
[n]q

)

=
λ |A1 sin(πα1)|[n]nq

2π2n[n]q!
· 1
α1[n]α1

q
� C1 · qn(n+1)/22−nq−nα1 � C2 · qn2/3.
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Now we estimate σ2, for n > αm, as follows:

σ2 � λ
π

m∑
j=1

|Aj sin(παj)|
∫ ∞

δ

xαjdx
xn+1

=
λ
π

m∑
j=1

|Aj sin(παj)| · δ
αj−n

n − αj
� C3 δ−n.

As a result, we derive that, for n large enough,

|cnn| � σ1 − σ2 � C4 qn2/4

contrary to (3.15). �
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