athematical
nequalities
& Papplications
Volume 11, Number 3 (2008), 585-597

THE APPROXIMATION OF POWER FUNCTION BY THE
q-BERNSTEIN POLYNOMIALS IN THE CASE g > 1

SOFIYA OSTROVSKA

Dedicated to
Professor Viktor Solomonovich Videnskii
on the occasion of his 85-th birthday

(communicated by Z. Ditzian)

Abstract. Since for ¢ > 1, g -Bernstein polynomials are not positive linear operators on C[0, 1],
the investigation of their convergence properties turns out to be much more difficult than that in
the case 0 < g < 1.

It is known that, in the case g > 1, the g -Bernstein polynomials approximate the entire
functions and, in particular, polynomials uniformly on any compact set in C. In this paper, the
possibility of the approximation for the function (z+ @)%, a > 0, with a non-integer o > —1
is studied. It is proved that for a > 0, the function is uniformly approximated on any compact
set in {z : |z| < a}, while on any Jordan arc in {z : |z| > a}, the uniform approximation
is impossible. In the case a = 0, the results of the paper reveal the following interesting
phenomenon: the power function z*, o > 0, is approximated by its g-Bernstein polynomials
either on any (when o € N) orno (when o ¢ N) Jordan arc in C.

1. Introduction

The importance of Bernstein polynomials gave rise to further studies of their
different generalizations and related topics. Due to the intensive development of ¢-
Calculus, some generalizations involving g-integers have emerged. In 1987, a ¢-
analogue of the Bernstein operator was introduced by A. Lupas [7]. Note that the
operators defined by A. Lupas are given by rational functions rather than polynomials.
In 1997, another generalization of Bernstein polynomials based on the ¢ -integers, called
q -Bernstein polynomials, was introduced by G. M. Phillips [14]. These polynomials
have recently been brought to the spotlight and studied from different angles by a
number of researchers. Reviews of the results on the g-Bernstein polynomials along
with extensive bibliography on this matter are given in [15], Ch. 7 (results obtained in
1997-1999) and [10] (results obtained in 2000-2004). More recent results can be found,
for example, in [11], [12], [13], [17]-[22]. A generalization of the Bernstein-Durrmeyer
operator related to g -Bernstein polynomials has been considered in [3].

For the sequel, we need the following definitions (cf., e.g. [15], Ch. 8, §8.1):
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Key words and phrases: q-integers, ¢-binomial coefficients, ¢-Bernstein polynomials, uniform
convergence.
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Let g > 0. Forany n € Z., the g-integer [n], is defined by
Mly=1+q+--+¢"" (neN), [0],:=0;
and the g-factorial [n],! by
gt = [1g[2ly . Il (0 € N), [0],1e= 1.

For integers 0 < k < n, the g-binomial coefficient is defined by
{”} o [n]4!
klg™ [Kg!n— kgt

[l =n, [a)i! =n!, [ZL = (Z)

DEFINITION 1.1.  Let f : [0,1] — C. The g-Bernstein polynomials of f are
defined by:

Clearly, for g =1,

n [k}q
B, (f:2) =) f| =) pulg;:z), neN,
- Z (Mq)”"“

where
n—k—1

pulain) =7 | # [[ (1-d2), k=0.1,...n (1.1)
klg Py

Note that for ¢ = 1, we recover the classical Bernstein polynomials.

It has been shown by G. M. Phillips et. al. (see [15], Ch. 7) that some properties
of the classical Bernstein polynomials are taken after by the g-Bernstein polynomials.
For example, the g -Bernstein polynomials possess the end-point interpolation property,
leave invariant linear functions, admit representation with the help of g-differences,
and they are degree-reducing on polynomials. Apart from that, basic g-Bernstein
polynomials (1.1) admit a probabilistic interpretation via g -binomial distribution, see
[1] and [4].

In the case 0 < g < 1, the resemblance between the classical Bernstein and
g -Bernstein polynomials goes even further. In this case, g-Bernstein polynomials
are positive linear operators on C[0, 1] with ||B,4|| = 1. Moreover, if a function f
is increasing (decreasing) on [0,1], then B,,(f;x) (0 < g < 1) is also increasing
(decreasing) on [0,1]; and if f is convex (concave) on [0, 1], thensois B, 4(f;x) (0 <
q < 1). In addition, g-Bernstein polynomials of a convex function f in the case
0 < g < 1 have the same monotonicity properties as those of the classical Bernstein
polynomials, namely, B,—14(f;x) = Bug(f;x) > f(x), x€[0,1], n=2,3,.... A
quantitative estimate of the difference between B, 4(f;x), 0 < ¢ < 1, and B, (f;x)
is given by V. S. Videnskii in [18].

The approximation with g -Bernstein polynomials has been studied in quite a few
papers, starting from [14], see also [5], [9], [12], [15], [17]-[22]. The study reveals that
the convergence properties of the g -Bernstein polynomials are basically different from
those of the classical ones. Moreover, the behavior of the g-Bernstein polynomials in
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terms of convergence for 0 < g < 1 is quite different from that for ¢ > 1. In the case
of 0 < g < 1, the g-Bernstein polynomials are positive linear operators on CJ0, 1],
while, for g > 1, the positivity does not persist any longer. This appears to be vital
for the investigation of convergence. We notice here that despite being positive linear
operators for 0 < g < 1, g-Bernstein polynomials do not satisfy the conditions of
Korovkin’s Theorem, because

(1—x)

B, 4(1*;x) e A — x>+ (1 —g)x(1 —x) #x*, n— oo.
q

However, they satisfy the conditions of H. Wang’s Korovkin-type Theorem ([19], The-
orem 2) and serve as a model for this theorem. H. Wang’s theorem guarantees the
existence of the limit operator B, 4, for the sequence {B,,ﬁq} which, unlike the situation
in the classical case, is not the identity operator. Results related to the properties of
B 4 may be found in the references listed above.

For the time being, contrary to a large number of papers dedicated to the investi-
gation of convergence in the case 0 < ¢ < 1, there are only two papers, namely [9]
and [22], treating systematically the case ¢ > 1. However, the results of [9] show that,
for g > 1, the approximation with the g-Bernstein polynomials may be faster than
with the classical ones (see [9], Theorem 6). For instance, the rate of approximation in
C[0, 1] for functions analytic in {z: |z| < g+ €} is g~" versus 1/n for the classical
Bernstein polynomials. On the other hand, for some infinitely differentiable functions
and even analytic on [0, 1], their sequences of ¢-Bernstein polynomials (¢ > 1) may
be divergent (see [9], Theorem 2). This situation is totally impossible for 0 < g < 1. In
general, the problem to describe the class of functions in C|0, 1] which are uniformly
approximated by their g-Bernstein polynomials in the case g > 1 is yet to be solved.

It is exactly an unexpected behavior of g-Bernstein polynomials with respect to
convergence that makes the study of their convergence properties interesting.

Itis known (see [9], Theorem 1) that entire functions and, in particular, polynomials
are uniformly approximated by their g -Bernstein polynomials (¢ > 1) on any compact
setin C. The aim of this paper is to examine the possibility of the uniform approximation
for the function f(z) = (z + a)%*, a > 0 with a non-integer o« > —1. It has been
shown that the uniform approximation occurs on any compact set in {z : |z] < a},
while on any Jordan arc lying in {z : |z| > a}, the sequence {B,,(f;z)} is not even
uniformly bounded. In particular, our results imply that the approximation of (x + a)*
in C[0, 1] takes place if and only if a > 1. At the same time, it is proven that z* with a
non-integer ¢ > 0 cannot be uniformly approximated by its g-Bernstein polynomials
(g > 1) on any interval.

We discover, therefore, the following phenomenon worthy of note: if the function
(z+a)*, with @ > 0, o > 0 is uniformly approximated by its g -Bernstein polynomials
(¢ > 1) on some interval in C, then this function is approximated on any interval that
is closer to the origin. In particular, for z%, o > 0, we observe an interesting polarity in
the range of possibilities for the uniform approximation: z*, o > 0, is approximated
either on each (in the case o € N) or no (in the case o ¢ N) Jordan arc in C.
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2. Statement of results

We start with the following lemma, which gives explicitly higher coefficients of
the g-Bernstein polynomials of the function (z + a)®. From here on, whenever we
consider the function f (z) = (z+a)*, we assume that a > 0, oo > —1, and the branch
of f(z) analyticin C\ (—oo, —a] so that f (x) > 0 for x > —a is chosen.

LEMMA 2.1. Let f(z) = (z+ a)* and

n

Bn,q(f; Z) = Z Cknzk-

k=0

Then, for k > a, we have:

- (*l)kJrl/}rkn sin 7@ /°° : (X*g“d’f @D
a = il g
X (” wq) (” wq) (” [n]q)
where
(U

Aon = A = 1, )tkn:H(l——q>, k=2,...,n. (2.2)

=1 [n]q
REMARK 2.1. If ¢ = 1, then Ay, (k =0, 1,...,n) are eigenvalues of the classical

Bernstein operator, whose eigenstructure together with applications had been studied in
[2]. Some results of [2] have been extended to g -Bernstein polynomials in [9].

The next theorem addresses the possibility of the uniform approximation for the
power function by its g-Bernstein polynomials in the case g > 1.
THEOREM 2.2. Let g > 1,a > 0, and f(z) = (z + a)*. Then, for any compact
set K C {z: 7] < a},
Buy(fi2) = f(2), n— oo,

uniformly on K.
COROLLARY 2.3. If g > 1,a > 0, then for any 0 < ¢ < a,
Bug (14 a)*x) = (x+a)*, n— oo,

uniformly on [0, c].

In particular, we obtain the following result which also can be derived from Theo-
rem 7 of [9]:

If g > 1,a> 1, then

Bug ((t+a)%:x) = (x+a)%, n— oo,

uniformly on [0, 1].

The following statement shows that Theorem 2.2 is sharp in the following sense:
the function (x + a)* cannot be approximated by its g-Bernstein polynomials on any
interval beyond [—a, a]. More precisely, the following assertion is true.
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THEOREM 2.4. Let g > 1, a > 0. If o« > —1 is not an integer; then for any
Jordan arc J C {z: |z| > a}, the sequence {B, ,(f;z)} is not uniformly bounded on
J.

COROLLARY 2.5. Let ¢ > 1, 0 < a < 1. If o« > —1 is not an integer, then
(x+a)* cannot be uniformly approximated by its q-Bernstein polynomialsin C[0,1].

To investigate the approximation of (x + a)* with a = 1, we use the following
general statement.

THEOREM 2.6. If f (x) = Z(—l)kakxk, ax = 0, where ay — 0 and a4 < ag

k=0
for k > ko, then

Bug(f3x) = [ (x), n — o0,
uniformly on [0, 1].

COROLLARY 2.7. Let q > 1. Then for any o > —1,
Bug((t+1)%x) — (x+1)%, n— oo,
uniformly on [0, 1].
REMARK 2.2. For o > 0,
By ((t+1)%2) = (z+1)% n— oo,

uniformly in {z: |z] < 1}.

Theorems 2.2 and 2.4 show that as a decreases the interval where the function (x+
a)*, a>0, 0< a ¢ N, is uniformly approximated by its g-Bernstein polynomials
(g > 1) gets narrower. What happens if @ = 0? Theorem 2.8 demonstrates that
x* with a non-integer o/ is not approximated by its g-Bernstein polynomials on any
interval.

THEOREM 2.8. Let g > 1,
f(Z) :Alzal + - +AmZam, A,‘ € (C, o 2 0 (l = 1,...,7’}1). (23)

If at least one of o; is not an integer, then the sequence {B,4(f;2)} is not uniformly
bounded on any Jordan arc.

COROLLARY 2.9. If f(x) = Apx™ 4+ ... Ax% A, €C, 020((=1,...,m),
is not a polynomial, then in the case q > 1, it cannot be uniformly approximated by its
q -Bernstein polynomials on any interval.

We conclude, therefore, that a function of the form (2.3) can be uniformly ap-
proximated by its g-Bernstein (¢ > 1) polynomials on a Jordan arc if and only if f
is a polynomial, in which case the uniform approximation occurs on any compact set
in C. This is an astonishing fact to observe that a function of the form (2.3) can be
approximated by its g -Bernstein polynomials either on any or no Jordan arc in C.
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3. Proofs of the theorems

Proof of Lemma 2.1. We need the following representation of the ¢g-Bernstein
polynomials given in [9], formulae (6) and (7):

Buy(f:2) Z/bmf { L @] Z, (3.1)
[ [”]q
where f [xp;x1; . ..;xx] denotes the divided differences of f, that is
f [.X'()] :f(x0)7 f [x();-xl] :Ma ey
1 — Xo
P f s xd] —f [xo; .- ;xk,l]’
Xk — X0

and Ay, are given by (2.2).
If f is analytic on [0, 1], then by ([6], §2.7, page 44) the divided differences of
can be expressed as follows:

[n],

where L is a contour encircling [0, 1] so that f is analytic on and within L. Therefore,
for f(z) = (z + a)*, we have:

[,

f {0;@;...;%} - 2%}{ g( 1f3€').%€(§ [k]q) (3.2)

[n],

Taking into account that (z 4+ a)* is analytic in C\ (—oo, —al, and for k > o, the
integrand in (3.2) is o(|{|7!) as { — oo, k > 1, we obtain by the Cauchy Theorem:

(E+a)*dg
) ()

[,

Flopr g _%ig( (fs)zz Y

o il
e
(1) /uwx(H %)%%ﬂ)
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Proof of Theorem 2.2. First, we prove that the coefficients cy, satisfy the following
estimates:

C
el < —, k=0,1,...,n, n=1,2,... (3.3)
a

where C is a positive constant independent from both k and n.
Indeed, for k£ < o, we have:

el = o [0
<f {oﬁ %] :f(k/ifg)’ £ e <0%)

Since, for k < o

O <Y =ala—1).. (0 —k+ 1)1 +a)*

we obtain: o
el < () (1 + @)

k

We set o
C) = Ci(a, o) :== max ( )ak(l +a)*

0<k<a

and derive c
lew| < —p, k<o, n=1,2,... (3.4)
a

For k > o, formula (2.1) implies:

| sin(7or) |/ (x—a)*  |sin(ra)|a® /1 o P
2 < = (1—1 dt
|kl p pran] ak ) ( )
| sin(mar)|a® G
< o@D (3:3)

Combining (3.4) and (3.5), we conclude that

C
el < =, k=0,1,...,n; n=12,...
a
with C = max{C;, C,}.
It follows that the sequence {B, ,(f;z)} is uniformly bounded in any disc {z :

|z| < p} with p < a. Indeed, in virtue of (3.3), we have:

‘Bn,q(f Z |Ckn|p X

—z<p
p/a i

Apart from that, Lemma 1 of [9] shows that the sequence {B,,(f:z)} converges to
f(z) onthe set {77}
The statement now follows from the Vitali Theorem (cf.,e.g., [16],Ch. V,§5.2). O
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Proof of Theorem 2.4. Assume that the sequence {B,, 4(f;z)} is uniformly bounded
on aJordan arc J C {z: |z] > a}, thatis for some M > 0,

Bg(f32)| <M, z€J. (3.6)
We denote
c:=min{lz| : z€J}, d:=max{|z]:z€J}.

By the conditions of the theorem, we have 0 < a < ¢ < d < oco. Consider the auxiliary

polynomials:

On(f:2) == 2'"Bug(fia/2) = > cngnd" 2. (3.7)
k=0
We set:
Jii={z:z=a/w,we J}.
Clearly,

a a
JIC{Z:3<|Z\<—}
and (3.6) implies:
a n
|Qn(st)|<M(E) for ZEJI.
On the other hand, estimate (3.3) indicates that

C
‘Qn(f§Z)| < E =: C; for |Z‘ <p< 1.

We fix p € (a/c,1) and apply the Two-constants Theorem (cf., e.g., [8], p. 41) to arrive
at an estimate for Q,(f;z) in {z: |z| < p}. As aresult, we obtain:

10.(f52)| < [M (g)n}w@ . C}fw(Z), z€{z: |zl < p}\ Ji, (3.8)

where ®(z) is the harmonic measure of J; with respectto {z: |z] < p}\ J;. We note
that 0 € {z: |z] < a/d} C {z: |z] < p} \ Ji. Therefore, w(0) > 0 and (3.8) implies
that

-~ a nw(0) a nw(0)

Q0 <@ (2)T —omn (5) (3:9)

Also, it follows directly from (3.7) that
10u(f:0) = [cm|a".
For n > o/, Lemma 2.1 yields:
—
n<1+ )<1+ q)...<1+ q) “
alnlg alnlg alnlg

Since the sequence A, is decreasing and

oo

lim/l,m:H<1—%> =1 >0,

J=1
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we have
A > A >0 for all n € N. (3.10)
Taking into account that
[n —Jjlq 1
["]q qﬂ
we conclude:
- [ilq ) = < 1 )
1+ < 1+ — | =:C, > 0. 3.11
g( ) <L a1y

Therefore,
A|sin(zor)| (x —a)
‘c""‘ nC, il

=: C3a*~ "/ (1 —0)"*ldt = C3a* "B(a + 1,n — ) >
0

Cy

annlJroc

with Cy4 := C3a”T(a + 1). We note that Cy4 # 0, because a ¢ Z. Consequently, we
obtain: c
n 4
|0a(f30) = [cunla" > nlt+a’

contrary to (3.9). O

Proof of Theorem 2.6. Without loss of generality, we may take ky = 0 and consider

=Y (—D'a*, where ax | 0, a1 <ar, k=0,1,... (3.12)
k=0

The series in (3.12) converges uniformly on [0, 1] and

o0

Y (Dradt| <

k=n

<ay,, x€[0,1], n=0,1,...

Since for each fixed n, the operator B, is bounded in CJ0, 1], we have:

o0

Bug(fsx) = > (=1 B, 4(t*;x). (3.13)

k=0

Formula (3.1) implies that all B, ,(*; x) are polynomials with non-negative coefficients
and hence

0 < By, (%) <1 for x€[0,1], n=1,2,..., k=0,1,...

In addition, Videnskii’s recurrence formula ([17], formula (3.1)) shows that for each
n=1,2,..., we have:

7

B, (" x) < Buy(f5x), x€[0,1], k=0,1,...
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Therefore,

S (- DB (50| <

k=n
Given € > 0, we choose N so that ay < €. Then

a,, x€10,1].

N
Bug(f:x) = f () < a |Bug(tix) — x| +2¢, n>N.
k=0

By Theorem 5 of [9],
B,Lq(tk;z) -7 n— o0

uniformly on any compact set in C. We choose ng > N in such a way that for n > ny,
|Bug (%) — x| < x €[0,1], k=0,1,...,N.

Then n > ng implies

IB4(f:x) —f(x)] <3¢, xe[0,1]. O
The proof of Theorem 2.8 is based upon the following observation.

REMARK 3.1. Let P(z Z cxZ* be a polynomial so that for a Jordan arc J,
k=0

P(z)] <M, z€J.
Then there exists a positive constant D depending only on J such that
lea| <M -D".

Indeed, by the Riemann Conformal Mapping Theorem, there exists a conformal
mapping w = ¢(z) of C\J on {w:|w| > 1} sothat @(c0) = oo,

lim o) =:d#0. (3.14)
Z— 00 Z
Consider the function
P(z)
[p(2)]"
analytic in C \ J. In virtue of (3.14), we have:
p n
lim ‘ @ | _lal p._ g,
oo |[o(@)]"] D"

and it follows that the function is analytic at oo as well. By the condition, its modulus
is bounded by M on J. Applying the Maximum Modulus Principle we obtain that
n P
€l _ i ‘ (z)
D" =eo|[o(2)]"

~ b
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as mentioned.

Proof of Theorem 2.8. Without loss of generality we assume that
O<oy<---<ay with g ¢ N (i=1,...,m).

Suppose that the sequence {B,,(f;z)} is uniformly bounded on a Jordan arc J, that is
for some M > 0,
Bug(f:2)| <M, zelJ

By the above remark, the coefficients c,, satisfy the following estimate:
lew| <M -D', n=1,2,..., (3.15)

where D > 0 depends only on J.
On the other hand, we estimate coefficients c,,, for n > o, with the help of (2.1).
We obtain, for any & > 0,

SR Y A e vy 2 {17}

x+m x+m

where A > 0 is the same constant as in (3.10).

Hence
A;sin(moy)| x%dx
o] > 2 z/ ——Z/ A4 sin(m;) <=0
<x+ —) (x+ —q)
[n] [n]q
First, we choose § > 0 in such a way that
A;sin(7 1
1 X%TH > < f 0, 6].
+ZAlsm 2 or x € [0, ]
With this choice of §, we have, for n large enough:
A|A1 sin 7TO£1 | x%dx
oz ]
x<x+—> <x+—q>
[n]q nlq
_ AlAusin(zaoy)| /WM X% dx
g x(¢+¢)._,(@+@)
[ng ~ [nlq nlg  [n]g
B A|Aysin(moy )| [n]} 1

2127[nl,! ou[n)¢
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Now we estimate o,, for n > a,, as follows:

A m ) a]dx m §%—n
<2 aysin(reg \/ O LS Wysinnay)|- L SCo
= gy

As a result, we derive that, for n large enough,

2
‘Cnn| O] — O-2 C4 61" /4

contrary to (3.15). O
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