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Abstract. We consider two geometric constants, f (X) and E(X) , introduced by Gao recently.
An estimate concerning the James and Gao’s constants is obtained. This estimate therefore allow
us to get: (1) A Banach space X is uniformly non-square if and only if f (X) > 2 or E(X) < 8 ;
(2) X has uniform normal structure provided f (X) > 4(3 −√

5) or E(X) < 3 +
√

5 .

1. Introduction

We shall assume throughout this paper that X is a real Banach space. The non-
trivial space will mean later on that X is a real space with dimX � 2. Denote by SX, BX

the unit sphere and the unit ball of X , respectively.
There are two geometric properties of Banach spaces which are widely studied

recently. One is normal structure. A Banach space X is said to have (weak) nor-
mal structure if whenever C is a (weak compact) bounded convex subset of X with
diamC > 0 , then radC < diamC, where diamC = sup{‖x − y‖ : x, y ∈ C} and
radC = inf{sup{‖x − y‖ : x ∈ C} : y ∈ C} are the diameter and radius of the set
C . X is said to have uniform normal structure if inf{diamC/radC} > 1 , where the
infimum is taken over all bounded closed convex subsets C of X with diamC > 0.
Another is uniform non-squareness. A Banach space X is called uniformly non-square
if for any x, y ∈ SX there exists a δ > 0 , such that either ‖x − y‖/2 � 1 − δ , or
‖x + y‖/2 � 1 − δ.

Based on the famous work of James concerning the non-square spaces, the James
constant

J(X) = sup{‖x + y‖ ∧ ‖x − y‖ : x, y ∈ SX}
= sup{‖x + y‖ ∧ ‖x − y‖ : x, y ∈ BX},

was studied by several authors (see for example [2, 5, 7]). It is worth noting that
the second equality above only holds when X is non-trivial. The James constant is
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also called non-square constant because its extreme value characterize uniform non-
squareness, i.e., X is uniformly non-square if and only if J(X) < 2 .

From Pythagorean theorem, Gao [4] introduced two quadratic constants

E(X) = sup{‖x + y‖2 + ‖x − y‖2 : x, y ∈ SX}
and

f (X) = inf{‖x + y‖2 + ‖x − y‖2 : x, y ∈ SX}.
In this paper, we will state two inequalities between the James and Gao’s constants and
therefore get some useful information from Gao’s constants.

2. Equivalent forms

We begin this section with a modulus

γX(t) = sup

{‖x + ty‖2 + ‖x − ty‖2

2
: x, y ∈ SX

}
(t � 0),

originally introduced concerning the von Neumann-Jordan constant. By Proposition
2.2 in [11], one can easily get

E(X) = sup{‖x + y‖2 + ‖x − y‖2 : x, y ∈ BX}.
By the convexity of γX(t) and Krein-Milman Theorem, it has been shown that the
supremum in the definition of γX(t) may as well be taken from the extreme sets of the
unit ball provided X is finite dimensional (see [11, Corollary 2.4]). This fact enable us
to deduce that if X is a Banach space with a finite dimension, then

E(X) = sup{‖x + y‖2 + ‖x − y‖2 : x, y ∈ ex(BX)},
where ex(BX) denotes the set of the extreme points of BX.

PROPOSITION 1. Let X be a Banach space. Then

f (X) = inf{‖x + y‖2 + ‖x − y‖2 : x ∈ SX, ‖y‖ � 1}
= inf{‖x + y‖2 + ‖x − y‖2 : ‖x‖, ‖y‖ � 1}.

Proof. Write f 1(X) = inf{‖x + y‖2 + ‖x − y‖2 : x ∈ SX, ‖y‖ � 1} and f 2(X) =
inf{‖x + y‖2 + ‖x − y‖2 : ‖x‖, ‖y‖ � 1}, respectively. Obviously, f (X) � f 1(X) �
f 2(X). To show the converse inequalities, assume that x ∈ SX, ‖y‖ � 1 . Let z =
y/‖y‖, t = ‖y‖, then z ∈ SX, t � 1 and also that

‖x + y‖2 + ‖x − y‖2 = ‖x + tz‖2 + ‖x − tz‖2.

Consider the even convex function g(t) := ‖x + tz‖2 + ‖x − tz‖2 . Hence,

‖x + tz‖2 + ‖x − tz‖2 = g(t) =
t + 1
2t

g(t) +
t − 1
2t

g(−t)

� g(1) = ‖x + z‖2 + ‖x − z‖2

� f (X),

which implies that f (X) � f 1(X).
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To show f 1(X) � f 2(X), we may assume ‖y‖ � ‖x‖ � 1 without loss generality.
Hence,

‖x + y‖2 + ‖x − y‖2 = ‖x‖2

(∥∥∥∥ x
‖x‖ +

y
‖x‖
∥∥∥∥2

+
∥∥∥∥ x
‖x‖ − y

‖x‖
∥∥∥∥2
)

�
∥∥∥∥ x
‖x‖ +

y
‖x‖
∥∥∥∥2

+
∥∥∥∥ x
‖x‖ − y

‖x‖
∥∥∥∥2

� f 1(X),

which implies f 1(X) � f 2(X). �
COROLLARY 1. Let X be a Banach space. Then

E(X) = sup

{‖x + y‖2 + ‖x − y‖2

max(‖x‖2, ‖y‖2)
: x, y ∈ X, ‖x‖ + ‖y‖ �= 0

}
(2.1)

and

f (X) = inf

{‖x + y‖2 + ‖x − y‖2

min(‖x‖2, ‖y‖2)
: x, y ∈ X, ‖x‖ + ‖y‖ �= 0

}
. (2.2)

Proof. Let x, y ∈ X, (x, y) �= (0, 0) , and assume that max(‖x‖, ‖y‖) = ‖x‖ > 0 .
Thus,

E(X) �
∥∥∥∥ x
‖x‖ +

y
‖x‖
∥∥∥∥2

+
∥∥∥∥ x
‖x‖ − y

‖x‖
∥∥∥∥2

=
‖x + y‖2 + ‖x − y‖2

max(‖x‖2, ‖y‖2)
.

Since the opposite inequality holds obviously, we get (2.1). The proof of (2.2) is similar
to that of (2.1). �

THEOREM 1. Let X be the Lp[0, 1] space, p, q � 1 and 1/p + 1/q = 1 . Then

E(X) = 21+2/r and f (X) = 21+2/r′ ,

where r = min(p, q), r′ = max(p, q).
Proof. We only consider E(Lp) for p ∈ [1, 2] and f (Lp) for p � 2, since the rest

cases were discussed by Gao in [4]. Recall Clarkson’s inequalities (cf. [8, 9]):

(‖x + y‖q + ‖x − y‖q)1/q � 21/q(‖x‖p + ‖y‖p)1/p (1 � p � 2)

and

(‖x + y‖q + ‖x − y‖q)1/q � 21/q(‖x‖p + ‖y‖p)1/p (p � 2).

Let x, y ∈ X with (x, y) �= (0, 0) in the rest proof and consider two cases for p � 1.
(1) 1 � p � 2. By Hölder and Clarkson inequalities,

‖x + y‖2 + ‖x − y‖2

max(‖x‖2, ‖y‖2)
� 21−2/q(‖x + y‖q + ‖x − y‖q)2/q

2−2/p(‖x‖p + ‖y‖p)2/p
� 21+2/p,
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which implies that E(X) � 21+2/p. To show the converse inequality, let

x(t) =

{
21/p, t ∈ [0, 1/2]
0, t ∈ [1/2, 1]

, y(t) =

{
0, t ∈ [0, 1/2]
21/p, t ∈ [1/2, 1]

,

then ‖x(t) + y(t)‖2 + ‖x(t) − y(t)‖2 = 21+2/p.
(2) p � 2. Similarly, we have

‖x + y‖2 + ‖x − y‖2

min(‖x‖2, ‖y‖2)
� 21−2/q(‖x + y‖q + ‖x − y‖q)2/q

2−2/p(‖x‖p + ‖y‖p)2/p
� 21+2/p,

which implies f (X) � 21+2/p. Put x(t), y(t) as above, and so f (X) = 21+2/p . �

REMARK 1. Note that Clarkson’s inequalities play import role in the above proof.
It is well-known that Clarkson’s inequalities hold in various Banach spaces, such as
�p , Lp(Lq) , Sobolev and Logarithmic spaces (see for example [8, 10]). So we can also
obtain E(X) and f (X) in such spaces using the same method.

3. Some properties

In this section, we will investigate some geometric concepts, such like uniform
non-squareness, reflexivity and uniform normal structure, in terms of E(X) and f (X) .
Let us begin with some inequalities between the James and Gao’s constants. The idea
for these estimates partly comes from Theorem 3 in [7].

THEOREM 2. Let X be a non-trivial Banach space. Then

2[J(X)]2 � E(X) � [J(X)]2 + 4 (3.1)

and
[J(X)]2 − 2J(X) + 2

[J(X)]2
� f (X)

4
� 2

[J(X)]2
. (3.2)

Proof. Note that the following inequalities

2(min(a, b))2 � a2 + b2 � (min(a, b))2 + 4,

hold for any 0 � a, b � 2 , so (3.1) is trivial.
Now let us prove (3.2). Fix ε > 0 sufficiently small and choose x, y ∈ SX such

that ‖x + y‖, ‖x− y‖ > J(X) − ε. Hence

f (X) � ‖u + v‖2 + ‖u − v‖2

min(‖u‖2, ‖v‖2)
� 4(‖x‖2 + ‖y‖2)

min(‖x + y‖2, ‖x − y‖2)
<

8
[J(X) − ε]2

,

where u = (x + y)/2, v = (x − y)/2. Letting ε → 0 , we get the right side of (3.2).
To show the left side of (3.2), put t0 = 2(J(X) − 1)/J(X) ∈ [2 − √

2, 2]. We
consider two cases for any x, y ∈ SX in the following.
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CASE 1. min(‖x + y‖, ‖x− y‖) = t ∈ [0, t0]. Hence

‖x + y‖2 + ‖x − y‖2 = (‖x + y‖ + ‖x − y‖ − t)2 + t2

� (2 − t)2 + t2 � (2 − t0)2 + t20

=
4[J(X)2 − 2J(X) + 2]

[J(X)]2
.

CASE 2. min(‖x + y‖, ‖x− y‖) = t ∈ [t0, 2]. We first observe that

max(‖x + y‖, ‖x − y‖) � 2/J(X), (3.3)

for any x, y ∈ SX. Indeed, we may assume without loss of generality that x, y ∈ SX, x �=
±y and ‖x + y‖ � ‖x − y‖. Put u = (x + y)/2, v = (x − y)/2 , then ‖u‖ � ‖v‖ and

J(X) � 1
‖u‖ min(‖u + v‖, ‖u− v‖) =

min(‖u + v‖, ‖u− v‖)
max(‖u‖, ‖v‖)

=
2 min(‖x‖, ‖y‖)

max(‖x + y‖, ‖x− y‖) =
2

max(‖x + y‖, ‖x− y‖) ,

which implies the inequality (3.3). Thus,

‖x + y‖2 + ‖x − y‖2 = min(‖x + y‖2, ‖x − y‖2) + max(‖x + y‖2, ‖x − y‖2)

� t20 + [J(X)/2]2 =
4[J(X)2 − 2J(X) + 2]

[J(X)]2
.

Therefore, from both cases, we get (3.2). �
REMARK 2. If X = (R, | · |), then J(X) = 0, f (X) = E(X) = 4. So the above

inequalities hold only for X being non-trivial.
It is well-known that uniform non-squareness, as well as uniform normal structure,

has been proved very useful in Metric Fixed Point Theory (see for example [6]). In a
recent paper [4], Gao proved that X is uniformly non-square if f (X) > 2 or E(X) < 8 ;
X has normal structure if f (X) > 32/9 or E(X) < 5. The above estimates therefore
allow us to clearly obtain the following.

COROLLARY 2. A Banach space X is uniformly non-square if and only if E(X) < 8
or f (X) > 2.

COROLLARY 3. A Banach space X has uniform normal structure if E(X) < 3+
√

5
or f (X) > 4(3 −√

5).
Proof. To verify this assertion, it suffices to note that the above assumption implies

J(X) < (1 +
√

5)/2, which in turn implies X having uniform normal structure from
Theorem 2.1 in [2]. �

REMARK 3. Obviously, Corollary 2 and 3 extend the corresponding results in [4].
Next, let us discuss Gao’s constant for its dual space. It follows from Theorem

1 that E(X) = E(X∗) for X being the Lp space. This conclusion for general case
however is not true. There is a simple example which shows that E(X) �= E(X∗).
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EXAMPLE 1. ([7], Example 2) Consider �2 − �1 space i.e., X = R
2 with the norm

‖x‖ =

{
‖x‖2 x1x2 � 0,
‖x‖1 x1x2 � 0.

Its dual is �2 − �∞ space i.e., X = R
2 with the norm

‖x‖ =

{
‖x‖2 x1x2 � 0,
‖x‖∞ x1x2 � 0.

Then E(�2 − �1) = 6 > 3 + 2
√

2 = E(�2 − �∞).
In fact, the equality E(�2 − �1) = 6 follows from the fact γ�2−�1(t) = 1 + t + t2

(cf. [11]). Note that ex(B�2−�∞) = {(x, y); x2 + y2 = 1, xy � 0} ∪ (−1, 1) ∪ (1,−1).
Elementary computation shows

‖x + y‖2 + ‖x − y‖2 � 3 + 2
√

2,

for any x, y ∈ ex(B�2−�∞). Put x = (1/
√

2, 1/
√

2) and y = (−1, 1). Then x, y ∈
ex(B�2−�∞), ‖x + y‖2 + ‖x − y‖2 = 3 + 2

√
2 and the second equality follows.

We now establish an inequality between Gao’s constant for a space and for its dual
as the following:

THEOREM 3. Let X be a Banach space and X∗ its dual. Then

2E(X∗) − 8 � E(X) � E(X∗)/2 + 4. (3.4)

Proof. To be convinced that (3.4) is true, consider a constant

A2(X) = sup

{‖x + y‖ + ‖x − y‖
2

: x, y ∈ SX

}
introduced by Baronti et al. in [1] and note that A2(X) = A2(X∗). Observe first that for
any a, b ∈ [0, 2],

(a + b)2

2
� a2 + b2 �

(
a + b

2

)2

+ 4,

which gives that

2[A2(X)]2 � E(X) � [A2(X)]2 + 4.

Thus, on one hand, we have

E(X) � [A2(X)]2 + 4 = [A2(X∗)]2 + 4 � E(X∗)/2 + 4.

On the other hand,

E(X) � 2[A2(X)]2 = 2[A2(X∗)]2 � 2[E(X∗) − 4].

Thus the proof is complete. �
Consequently, from the (3.4), we obtain the following.
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COROLLARY 4. E(X) < 8 ⇔ X∗ is uniformly non-square ⇔ X is uniformly
non-square.

It follows from Corollary 2 that if E(X) < 8 or f (X) > 2, then X is uniformly
non-square and therefore super-reflexive. The converse however is not true from the
following example. The method of computation below is taken from Example 6 in [7].

EXAMPLE 2. ([7], Example 6) Let Xp,λ (1 < p � 2, λ > 1) be the �p′ space with
the norm

‖x‖p,λ = max(‖x‖p′ , λ‖x‖∞) (1/p + 1/p′ = 1),

then E(Xp,λ ) = min(21+2/pλ 2, 8) , f (Xp,λ ) = max(21+2/p′/λ 2, 2) .

Proof. Since the inequalities

‖x‖p′ � ‖x‖p,λ � λ‖x‖p′

hold for any x ∈ Xp,λ , then for any x, y ∈ X with ‖x‖ + ‖y‖ �= 0, we have

‖x + y‖2
p,λ + ‖x − y‖2

p,λ

max(||x‖2
p,λ , ‖y‖2

p,λ )
�

λ 2(‖x + y‖2
p′ + ‖x − y‖2

p′)

max(||x‖2
p′ , ‖y‖2

p′)
� λ 2E(�p).

Thus E(Xp,λ ) � λ 2E(�p) = 21+2/pλ 2. We now consider two cases for λ > 1.

CASE 1. If 1 < λ � 21/p′ , let x = (2−1/p′ , 2−1/p′ , 0, · · · ),
y = (2−1/p′ ,−2−1/p′, 0, · · · ) , then ‖x‖p,λ = ‖y‖p,λ = 1 and ‖x+y‖p,λ = ‖x−y‖p,λ =
21/pλ . Thus E(Xp,λ ) = 21+2/pλ 2 .

CASE 2. If λ � 21/p′ , let x = (1/λ , 1/λ , 0, · · · ), y = (1/λ ,−1/λ , 0, · · · ) , then
‖x‖p,λ = ‖y‖p,λ = 1 and ‖x + y‖p,λ = ‖x − y‖p,λ = 2. Therefore E(Xp,λ ) = 8 .

Similarly, we have f (X) � max(21+2/p′/λ 2, 2). Put x = (1/λ , 0, · · · ), y =
(0, 1/λ , 0, · · · ). Then x, y ∈ SX and also ‖x+y‖2

p,λ +‖x−y‖2
p,λ = max(21+2/p′/λ 2, 2).

�
Finally, let us present a characterization for super-reflexivity. Denote by Ẽ(X)

( f̃ (X) ) the infimum (supremum) of all E(X) ( f (X) ) for the equivalent norms of a
Banach space X .

THEOREM 4. The following conditions are equivalent.

(1) Ẽ(X) < 8; (2) f̃ (X) > 2; (3) X is super − reflexive.

Proof. Since (1) ⇒ (2) and (2) ⇒ (3) are trivial, it suffices to show (3) ⇒ (1).
It’s well-known (see for example [3]) that if X is super-reflexive, then there exists an
equivalent uniformly convex norm ‖ · ‖ on X such that (X, ‖ · ‖) is uniformly convex,
which in turn implies uniform non-squareness, thus E(X) < 8. This completes the
proof since Ẽ(X) � E(X). �
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