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BASIC INDEXES AND ALUTHGE

TRANSFORMATION FOR 2 BY 2 MATRICES
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(communicated by T. Furuta)

Abstract. For 2×2 matrices we provide precise forms of their basic properties such as norms, po-
lar decompositions and singular decompositions. Using these facts, then, we show the exact form
of the Aluthge transform Δ(A) of a matrix A and give an alternative proof of Ando-Yamazaki’s
result of the convergence of iterations {Δn(A)} . In case |λ | = |μ| for the eigenvalues λ , μ
of A we determine the precise forms of their limits (Theorem 3).

1. Introduction

The first noncommutative linear system with topologies is the algebra of all 2× 2
matrices, M2 . Therefore, in many fields of mathematics, particularly in those fields
connectedwith linear operators and their operator algebras, we often make experimental
investigations in this system for the problems as our first trials. Among them, we notice
that there are even results which are remained only at the level of 2 by 2 matrices
such as the convergence problem of the iterations of Aluthge transforms {Δn(A)} of
A (Ando-Yamazaki). Thus it would be of some importance to show precise forms of
those basic items mentioned above.

In this paper, by using these results, we show first the precise form of the Aluthge
transform Δ(A) and give an alternative proof of the above Ando-Yamazaki’s conver-
gence theorem. We furthermore show the precise forms of their limiting point when
|λ | = |μ| for the eigenvalues λ , μ of A .

2. Exact forms of polar decompositions and singular values

Write a 2 × 2 matrix as A =
(

a b
c d

)
and put

α = |a|2 + |b|2 + |c|2 + |d|2 + 2 |ad − bc| , β = |a|2 + |b|2 + |c|2 + |d|2 − 2 |ad − bc| .
THEOREM 1. Let A = V |A| be the polar decomposition of A .
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Then the absolute value |A| is written as

|A| =
1√
α

(A∗A + |ad − bc| I)

and if A is invertible, i.e. if ad−bc �= 0 , the unique partial isometry (in fact a unitary)
V is written as

V =
1√
α

(
A + |ad − bc| (A∗)−1

)
.

If A is not invertible, then V =
1√
α

A . Moreover if we put

V
′
=

1√
α

(
d̄ −c̄
−b̄ ā

)
,

then V ′ is a partial isometry from ker(A) onto (ran(A))⊥ , and Z = V + V ′ becomes
a unitary with A = Z|A| .

Proof. We have

A∗A =
( |a|2 + |c|2 āb + c̄d

ab̄ + cd̄ |b|2 + |d|2
)

.

Hence, a straightforward calculation shows that

AA∗A =
(
|a|2 + |b|2 + |c|2 + |d|2

)
A − (ad − bc)

(
d̄ −c̄
−b̄ ā

)

= αA − 2 |ad − bc|A − (ad − bc)
(

d̄ −c̄
−b̄ ā

)
.

Therefore if A is invertible, we have

AA∗A = αA − 2 |ad − bc|A − |ad − bc|2 (A∗)−1
.

Now put

H =
1√
α

(A∗A + |ad − bc| I) ,

then H is positive and the above equality simply leads us that

H2 = A∗A.

Hence, H is the absolute value of A , that is, H = |A| . Moreover putting

V =
1√
α

(
A + |ad − bc| (A∗)−1

)
,

we have that

V |A| =
1
α

(
AA∗A + 2 |ad − bc|A + |ad − bc|2 (A∗)−1

)
=

1
α

(
αA−2 |ad−bc|A− |ad−bc|2 (A∗)−1 +2 |ad−bc|A+ |ad−bc|2 (A∗)−1

)
= A.
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Since A is invertible, V is the unique unitarymatrix, and this is the polar decomposition
of A .

If A is not invertible, we have the equalities AA∗A = αA , and H =
1√
α

A∗A .

Moreover, putting V =
1√
α

A , we see that V|A| = A .

Now by the equalities V∗V =
1
α

A∗A and

(V∗V)2 =
1
α2

A∗AA∗A =
1
α2

A∗(AA∗A) =
1
α2

A∗αA =
1
α

A∗A = V∗V,

V∗V is a projection on ran (|A|) . Therefore, V is a partial isometry from ran (|A|)
onto ran (A) .

Moreover, since ker(V) = ker(A) = ker(|A|) , V is the unique partial isometry of
the polar decomposition of A .

Next, let

V
′
=

1√
α

(
d̄ −c̄
−b̄ ā

)
,

then we see that

V
′∗V

′
=

1
α

( |b|2 + |d|2 −(āb + c̄d)
−(ab̄ + cd̄) |a|2 + |c|2

)
= I − V∗V.

Hence, V
′∗V

′
is a projection on ker(A) , and V

′
is a partial isometry from ker(A) onto

(ran(A))⊥ .
Thus putting Z = V + V ′ we obtain a unitary operator Z such that Z|A| = A .

This completes the proof. �

The above arguments are done by almost bare hand. There is however another
a little sophiscated way to find the form of the absolute value of A by using the
Cayley-Hamilton theorem. In fact, from the equation

(A∗A)2 − tr(A∗A)A∗A + |ad − bc|2I = 0

we have
|A|4 + 2|ad − bc||A|2 + |ad − bc|2I = α|A|2,

hence √
α|A| = A∗A + |ad − bc|I,

and we have the form of |A| .
Here since the case det(A) = 0 means that A is a degenerate matrix becoming a

one dimensional operator, in what follows we shall mainly assume that A is invertible.
The following theorem shows precise forms of the singular value decomposition of

2×2 matrices. Here unitary matrices U and W in the theorem have however naturally
many choices. We denote the singular values of A by s1(A) and s2(A) .

THEOREM 2. Keep the same notations as above.
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(1) Then we have that

s1(A) =
√
α +

√
β

2
and s2(A) =

√
α −√β

2
.

Hence, the norm of A is written as

‖A‖ = s1(A) =
√
α +

√
β

2
.

(2) An exact form of the singular value decomposition of A is

A = W

⎛
⎜⎝

√
α +

√
β

2
0

0

√
α −√β

2

⎞
⎟⎠U∗,

where W and U are unitary such that

U =
1√

2α 1
4 β 1

4

⎛
⎜⎜⎝

√√
α
√
β + (|a|2 + |c|2 − |b|2 − |d|2)

ab̄ + cd̄∣∣ab̄ + cd̄
∣∣
√√

α
√
β − (|a|2 + |c|2 − |b|2 − |d|2)

− āb + c̄d
|āb + c̄d|

√√
α
√
β − (|a|2 + |c|2 − |b|2 − |d|2)√√

α
√
β + (|a|2 + |c|2 − |b|2 − |d|2)

⎞
⎟⎠

W =
1

√
2α 1

4 β 1
4

√√
α
√
β + (|a|2 + |c|2 − |b|2 − |d|2)

×

⎛
⎜⎝ a (

√
α +

√
β ) − ad − bc

|ad − bc| d̄ (
√
α −√β )

c (
√
α +

√
β ) +

ad − bc
|ad − bc| b̄ (

√
α −√β )

− ad − bc
|ad − bc| c̄ (

√
α +

√
β ) − b (

√
α −√β )

ad − bc
|ad − bc| ā (

√
α +

√
β ) − d (

√
α −√β )

⎞
⎟⎠

if A is invertible, and āb + c̄d �= 0 .
If āb + c̄d = 0 ,

U =
(

1 0
0 1

)
, W =

1√
α

⎛
⎜⎝ a +

ad − bc
|ad − bc| d̄ b − ad − bc

|ad − bc| c̄

c − ad − bc
|ad − bc| b̄ d +

ad − bc
|ad − bc| ā

⎞
⎟⎠
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in case |a|2 + |c|2 � |b|2 + |d|2 , and

U =
(

0 −1
1 0

)
, W =

1√
α

⎛
⎜⎝ b − ad − bc

|ad − bc| c̄ −a − ad − bc
|ad − bc| d̄

d +
ad − bc
|ad − bc| ā −c +

ad − bc
|ad − bc| b̄

⎞
⎟⎠

in case |a|2 + |c|2 < |b|2 + |d|2 .

Since singular values of A are just ordered square roots of the eigenvalues of A∗A ,
the following diagonalization process for a selfadjoint matrix B leads us to the assertion
of the theorem. Thus we state the exact form of the diagonalization in the following.

Proof of this proposition is however a series of routine calculi, andwe leave detailed
checkes to the readers.

PROPOSITION 1. Write

B =
(

u v
v̄ w

)
and put

γ = (u − w)2 + 4|v|2.
Then a diagonalizing form of B is written as follows with a unitary U .
Here we may naturally assume that v �= 0 for a non-trivial case.

B = U

⎛
⎜⎝

u + w +
√γ

2
0

0
u + w −√γ

2

⎞
⎟⎠U∗

where

U =
1√
2 γ 1

4

⎛
⎜⎝

√√γ + (u − w) − v
|v|
√√γ − (u − w)

v̄
|v|
√√γ − (u − w)

√√γ + (u − w)

⎞
⎟⎠ .

Proof of Theorem 2. For a given matrix A we know the entries of A∗A as before,
and we see that

γ = (|a|2 + |c|2 − |b|2 − |d|2)2 + 4 |āb + c̄d|2
= (|a|2 + |c|2 + |b|2 + |d|2)2 − 4 |ad − bc|2
= αβ .

Therefore, we have the eigenvalues of A∗A as

(u + w) ±√γ
2

=

α + β
2

±√αβ

2

=
α + β ± 2

√
αβ

4
=

(√
α ±√β

2

)2

.
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Hence, by the above proposition, if v = āb + c̄d �= 0 we obtain the precise form of a
diagonalization unitary U for A∗A such that

A∗A = U

⎛
⎜⎜⎝
( √

α +
√
β

2

)2

0

0

( √
α −√β

2

)2

⎞
⎟⎟⎠U∗.

Therefore the eigenvalues of |A| are

√
α ±√β

2
and we heve

|A| = U

⎛
⎜⎝

√
α +

√
β

2
0

0

√
α −√β

2

⎞
⎟⎠U∗.

Now put

V =
1√
α

⎛
⎜⎝ a +

ad − bc
|ad − bc| d̄ b − ad − bc

|ad − bc| c̄

c − ad − bc
|ad − bc| b̄ d +

ad − bc
|ad − bc| ā

⎞
⎟⎠ ,

assuming that A is invertible. Then, by Theorem1 V becomes a unitarywith A = V |A| .
Hence, putting W = VU , we obtain a precise form of the singular value decomposition
of A , that is,

A = W

⎛
⎜⎝

√
α +

√
β

2
0

0

√
α −√β

2

⎞
⎟⎠U∗,

where the unitaries U and W have matrix expressions stated in the theorem. This
completes the proof. �

We shall make use of these forms in the proof of our main result, Theorem 3.

3. Exact forms of Aluthge transformation and its iterations

For a given matrix A , its Aluthge transform is defined as

Δ(A) = |A| 1
2 V|A| 1

2 .

This transformation is playing an important role in the operator theory, and among those
problems related to this transformation the problem of convergence of iterations is only
known for the case of 2 by 2 matrices [3, P.300]. Moreover the precise form of their
limit points is not known. In this section we shall first show the exact form of Δ(A) , and
then give another proof of the convergence theorem making use of this exact form of the
transformation. Furthermore, we shall show the precise form of limit points provided
that |λ | = |μ| where λ and μ are eigenvalues of A . So far, we have been unable to
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find a general answer for the precise form, but we believe that our method would bring
up a new insight for further investigation.

To beginwith, note thatwe may assume det(A) = 1 because Δ(ξA) = ξΔ(A) , and
the case det(A) = 0 is treated rather easily. Thus we keep this assumption throughout
our arguments.

PROPOSITION 2. With the assumption that det(A) = 1 the Aluthge transformation
of A is written as

Δ(A) =
(
√
α + 1)tr(A) + tr(A∗)(√

α + 2
)
α

A∗A +
1√
α

(A − A∗) +
(
√
α + 1)tr(A∗) + tr(A)(√

α + 2
)
α

I.

Proof. Now put the eigenvalues of |A| 1
2

σ =

√√
α +

√
β

√
2

and τ =

√√
α −√β
√

2
,

then we have
στ =

√
|ad − bc| = 1

and
σ2 + τ2 =

√
α.

Recall that in our case

|A| =
1√
α

(A∗A + I), V =
1√
α

(A + (A∗)−1) =
1√
α

(A + tr(A∗)I − A∗).

Moreover, by Cayley-Hamilton Theorem

(|A| 1
2 − σI)(|A| 1

2 − τI) = |A| − (σ + τ) |A| 1
2 + I = 0

and

|A| 1
2 =

1
σ + τ

(|A| + I).

Then we have that

Δ(A) = |A| 1
2 V|A| 1

2

=
1

(σ + τ)2 (|A| + I)V(|A| + I)

=
1(√
α + 2

)(|A| + I)(A + V).

Replacing |A| and V by the above expressions, this is written as

1(√
α+2

)
α
{(√α+1)A∗A2+tr(A∗)A∗A−A∗AA∗+(

√
α+1)2A

+tr(A∗)(
√
α+1)I−(

√
α+1)A∗}.
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Here
A2 = tr(A)A − I

and
A∗AA∗ = (α − 2)A∗ − tr(A)I + A

by the same arguments as in the proof of Theorem 1.
Therefore it follows that

Δ(A) =
(
√
α+1)tr(A)+tr(A∗)(√

α+2
)
α

A∗A+
1√
α

(A−A∗) +
(
√
α+1)tr(A∗)+tr(A)(√

α+2
)
α

I.

This completes the proof. �

By the above proposition we can check that A is normal if Δ(A) = A , using the
concrete form of A .

COROLLARY 1. If tr(A) = −tr(A∗) in particular when tr(A) = 0 , Δ(A) becomes
normal. i.e.

Δ(A) =
tr(A)(√

α + 2
)√

α
(A∗A − I) +

1√
α

(A − A∗) .

Hence
lim

n→∞Δn(A) = Δ(A).

With this result we shall show next an alternative proof of Ando-Yamazaki’s
theorem of the convergence of iterations for the Aluthge transformation.

Let r(A) be the spectral radius of A . Write

Δn(A) =
(

an bn

cn dn

)

and note that

αn = |an|2 + |bn|2 + |cn|2 + |dn|2 + 2 = tr {Δn(A)∗Δn(A)} + 2

because det(Δn(A)) = det(A) = 1 .

LEMMA 1. tr {Δn(A)∗Δn(A)} � tr
{
Δn+1(A)∗Δn+1(A)

}
� · · · � 2 and

lim
n→∞ tr {Δn(A)∗Δn(A)} = r(A)2 +

1
r(A)2

.

Proof. By Theorem 2

‖ Δn(A) ‖=
√

tr {Δn(A)∗Δn(A)} + 2 +
√

tr {Δn(A)∗Δn(A)} − 2
2

,

which converges to r(A) by [4, Theorem 1]. Now since ‖ Δn(A) ‖�‖ Δn+1(A) ‖ , we
obtain that

tr {Δn(A)∗Δn(A)} � tr
{
Δn+1(A)∗Δn+1(A)

}
� · · · � 2.
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Therefore we finally see that

lim
n→∞ tr {Δn(A)∗Δn(A)} = r(A)2 +

1
r(A)2

.

This completes the proof. �

By the above lemma we see that
√
α �

√
α1 � · · · � √

αn � √
αn+1 � · · · � 2.

Let α∞ be the limit point of the sequence {αn} , then we have

√
α∞ = lim

n→∞
√
αn = r(A) +

1
r(A)

.

LEMMA 2. For a 2 × 2 complex matrix A =
(

a b
c d

)
, we have an estimation of

the norm

‖ Δ(A) − Δ2(A) ‖� 2√
α∞

‖ A − Δ(A) ‖ .

Proof. We recall that exact form of the singular value decomposition of A in
Theorem 2

A = W

(
s1(A) 0

0 s2(A)

)
U∗.

Hence

U∗AU = U∗W
(

s1(A) 0
0 s2(A)

)
.

Put Z = U∗W , then Z is a unitary and by the construction of U and W det(U∗) =
det(W) = 1 , hence det(Z) = det(U∗) det(W) = 1 . Therefore we can write

Z =
(

u −v̄
v ū

)
such that |u|2 + |v|2 = 1 .

Put B = U∗AU , then

B = Z

(
s1(A) 0

0 s2(A)

)
is its polar decompositin and

B =
(

us1(A) −v̄s2(A)
vs1(A) ūs2(A)

)
.

Therefore since s1(A) · s2(A) = 1 by definitions,

Δ(B) =
(√

s1(A) 0
0

√
s2(A)

)(
u −v̄
v ū

)(√
s1(A) 0
0

√
s2(A)

)

=
(

us1(A) −v̄
v ūs2(A)

)
.
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It follows that

‖ B − Δ(B) ‖ =
∥∥∥∥
(

0 −v̄(s2(A) − 1)
v(s1(A) − 1) 0

)∥∥∥∥
= Max(|v| (s1(A) − 1), |v| (1 − s2(A))
= |v| (s1(A) − 1)

because s1(A) − 1 > 1 − s2(A) . Hence

‖ A − Δ(A) ‖ = ‖ U∗AU − U∗Δ(A)U ‖
= ‖ B − Δ(B) ‖
= |v| (s1(A) − 1).

Now for Z = U∗W , by the concrete form of U∗ and W if āb + c̄d �= 0

v = −
2
(
ab̄ + cd̄

){
a
(√

α +
√
β
)
− d̄

(√
α −√β

)}
2
√
α
√
β
(√

α
√
β + (|a|2 + |c|2 − |b|2 − |d|2)

)

+
c
(√

α +
√
β
)

+ b̄
(√

α −√β
)

2
√
α
√
β

= −
2
(
ab̄ + cd̄

){
a
(√

α +
√
β
)
− d̄

(√
α −√β

)}
2
√
α
√
β
(√

α
√
β + (|a|2 + |c|2 − |b|2 − |d|2)

)

×
(√

α
√
β − (|a|2 + |c|2 − |b|2 − |d|2)

)
(√

α
√
β − (|a|2 + |c|2 − |b|2 − |d|2)

) +
(c + b̄)

√
α + (c − b̄)

√
β

2
√
α
√
β

= −
(
ab̄+cd̄

){
(a−d̄)

√
α+(a+d̄)

√
β
}(√

α
√
β−(|a|2 + |c|2 − |b|2 − |d|2)

)
4
√
α
√
β
(
ab̄+cd̄

)
(āb+c̄d)

+
(c + b̄)

√
α + (c − b̄)

√
β

2
√
α
√
β

= −
(
ab̄ + cd̄

)
(c̄ + b)

√
α − (ab̄ + cd̄

)
(c̄ − b)

√
β

2
√
α
√
β (āb + c̄d)

+
c + b̄

2
√
β

+
c − b̄

2
√
α

= −ab̄ + cd̄
āb + c̄d

· c̄ + b

2
√
β

+
ab̄ + cd̄
āb + c̄d

· c̄ − b

2
√
α

+
c + b̄

2
√
β

+
c − b̄

2
√
α

.

We apply the above form for the matrix

Δ(B) =
(

us1(A) −v̄
v ūs2(A)

)
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in place of A and obtain the following value of v′ coressponding to v ,

v′ =
−uvs1(A) + uvs2(A)
−ūv̄s1(A) + ūv̄s2(A)

· 2v̄
2
√
α1

+
2v

2
√
α1

=
(u

ū
+ 1
)
· v√

α1
.

When āb + c̄d = 0 , we see that

v =
c − b̄√
α

or =
c̄ − b√
α

.

Hence

v′ =
2v√
α1

or =
2v̄√
α1

.

Thus in any case

|v′| � 2 |v|√
α1

,

we have

‖ Δ(A) − Δ2(A) ‖ = ‖ U∗Δ(A)U − U∗Δ2(A)U ‖
= ‖ Δ(B) − Δ2(B) ‖
= |v′| (s1(Δ(A)) − 1)
� |v′| (s1(A) − 1)

� 2 |v| (s1(A) − 1)√
α1

� 2√
α∞

‖ A − Δ(A) ‖ .

This completes the proof. �

Let λ and μ be the eigenvalues of A .

THEOREM 3. The iterations {Δn(A)} converge for any 2 × 2 matrix A .
In particular when |λ | = |μ| = 1 and det(A) = 1

lim
n→∞Δn(A) =

tr(A)
2

I +

√
4 − {tr(A)}2

2
√
α − {tr(A)}2

(A − A∗),

where α = tr(A∗A) + 2|det(A)| .

Proof. By Lemma 2

‖ Δ(A) − Δ2(A) ‖� 2√
α∞

‖ A − Δ(A) ‖ .
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Moreover by Lemma 1 |λ | = |μ| = 1 if and only if
2√
α∞

= 1 .

Therefore, if |λ | �= |μ| then
2√
α∞

< 1.

Put k =
2√
α∞

then

‖ Δ(A) − Δ2(A) ‖� k ‖ A − Δ(A) ‖ .

Therefore we have

‖ Δn(A) − Δn+1(A) ‖� k ‖ Δn−1(A) − Δn(A) ‖� · · · � kn ‖ A − Δ(A) ‖ .

For n > m we have

‖ Δm(A) − Δn(A) ‖ �
n−1∑
l=m

‖ Δl(A) − Δl+1(A) ‖

�
n−1∑
l=m

kl ‖ A − Δ(A) ‖

=
km (1 − kn−m)

1 − k
‖ A − Δ(A) ‖

� km

1 − k
‖ A − Δ(A) ‖ .

Therefore {Δn(A)} is a Cauchy sequence, and it converges.
When |λ | = |μ| = 1 , we have that μ = λ̄ , and tr(A) = λ + μ = tr(A∗) i.e. a

real number. Therefore

Δ(A) =
tr(A)
α

(A∗A + I) +
1√
α

(A − A∗),

and

Δn+1(A) =
tr(A)
αn

(Δn(A)∗Δn(A) + I) +
1√
αn

(Δn(A) − Δn(A)∗).

Hence

Δn+1(A) − Δn+1(A)∗ =
2√
αn

(Δn(A) − Δn(A)∗)

=
2√
αn

· 2√αn−1
· · · 2√

α1
· 2√

α
(A − A∗)

= pn(A − A∗).

Here the sequence

pn =
2√
αn

· 2√αn−1
· · · 2√

α1
· 2√

α
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converges because {pn} is positive and decreasing. Let p be the limit of pn . Then the
sequence

{
Δn+1(A) − Δn+1(A)∗

}
converges to p(A − A∗) .

Next we shall show the sequence {Δn(A)∗Δn(A)} converges to the identity.
In fact,

‖ Δn(A)∗Δn(A) − I ‖

=

√
(|an|2 + |cn|2 −1)2+(|bn|2 + |dn|2 −1)2+2 |anbn+cndn|2 +2 |2−tr {Δn(A)∗Δn(A)}|

2

+

√
(|an|2 + |cn|2 −1)2+(|bn|2 + |dn|2 −1)2+2 |anbn+cndn|2 −2 |2−tr {Δn(A)∗Δn(A)}|

2

=

√
{tr {Δn(A)∗Δn(A)}}2 −4+

√
{tr {Δn(A)∗Δn(A)}}2 −4tr {Δn(A)∗Δn(A)}+4

2
→ 0

because
lim

n→∞ tr {Δn(A)∗Δn(A)} = 2

and
|anbn + cndn|2 =

(
|an|2 + |cn|2

)(
|bn|2 + |dn|2

)
− 1.

It follows that

lim
n→∞Δn+1(A) = lim

n→∞

{
tr(A)
αn

(Δn(A)∗Δn(A) + I) +
1√
αn

(Δn(A) − Δn(A)∗)
}

=
tr(A)

4
(I + I) +

1
2
p(A − A∗)

=
tr(A)

2
I +

p
2
(A − A∗).

Since

det

(
tr(A)

2
I +

p
2
(A − A∗)

)
= 1,

it follows that
p2

4

[
α − {tr(A)}2

]
+

{tr(A)}2

4
= 1.

Hence

p =

√
4 − {tr(A)}2√
α − {tr(A)}2

,

and

lim
n→∞Δn(A) =

tr(A)
2

I +

√
4 − {tr(A)}2

2
√
α − {tr(A)}2

(A − A∗).
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This completes the proof. �
By same argument as in the proof of Theorem 3, if λ and μ are distinct real

numbers, it follows that the sequence {Δn(A) − Δn(A)∗} converges to 0 . Therefore
we see that the limit point of iterations {Δn(A)} is selfadjoint. But even in this case we
have been unable to obtain the precise form of the limit point of {Δn(A)} because we
have been unable to find the precise form of the limit point of {Δn(A)∗Δn(A)} .
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