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A CAUCHY–SCHWARZ INEQUALITY FOR TRIPLES OF VECTORS
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Abstract. An inequality of the Cauchy–Schwarz type is proved for triples of vectors, and inter-
preted geometrically in terms of the vertex angles of a tetrahedron. The results are illustrated by
3 × 3 correlation matrices.

1. Introduction

Let R
n denote the real n –dimensional vector space,with the standard inner product

denoted by x·y . Given vectors a, b ∈ R
n , their Gram matrix is

(
a·a a·b
b·a b·b

)
, (1)

and its determinant, called the Gramian of a, b , is denoted by G(a, b) . The nonnega-
tivity of G(a, b) is equivalent to the Cauchy–Schwarz inequality

(a·b)2 � (a·a)(b·b) , (2)

where equality holds if and only if the vectors a, b are linearly dependent, i.e. G(a, b) =
0, see, e.g., [2, Chapter IX, Section 5].

The inequality (2) can be restated as

cos2 γ � 1 , (3)

where γ is the angle between the vectors a and b , denoted by γ = �{a, b} .
Hardy et al, [3, Section 2.4], noted that the nonnegativity of the Gramian allows

generalizing the Cauchy–Schwarz inequality to more than two vectors. This idea is
used in Section 2 to obtain a simple Cauchy–Schwarz inequality for three vectors, see
Theorem 1. A geometric interpretation in terms of vertex angles in a tetrahedron is
given in Section 3, Corollaries 1–2. The above results shed light on correlation matrices
for three variables, and allow a natural characterization of such matrices, see Section 4.
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2. A Cauchy-Schwarz inequality

THEOREM 1. If a, b, c are nonzero vectors in R
n , n � 3 , then

(a·b)2

(a·a)(b·b)
+

(a·c)2

(a·a)(c·c) +
(b·c)2

(b·b)(c·c) � 1 + 2
(a·b)(a·c)(b·c)
(a·a)(b·b)(c·c) (4)

with equality if, and only if, the vectors a, b, c are linearly dependent.

Proof. Consider the Gram matrix of a, b, c ,

⎛
⎝ a·a a·b a·c

b·a b·b b·c
c·a c·b c·c

⎞
⎠ (5)

and its Gramian

G(a, b, c) = (a·a)(b·b)(c·c)+2 (a·b)(a·c)(b·c)−(a·a)(b·c)2 −(b·b)(a·c)2−(c·c)(a·b)2.

The nonnegativity of G(a, b, c) is equivalent to

(c·c)(a·b)2 + (b·b)(a·c)2 + (a·a)(b·c)2 � (a·a)(b·b)(c·c) + 2 (a·b)(a·c)(b·c), (6)

and (4) follows by dividing both sides of (6) by (a·a)(b·b)(c·c) .
Equality holds in (6), and in (4), if and only if G(a, b, c) = 0 , i.e., the vectors

a, b, c are linearly dependent. �
If the vector c is orthogonal to both a and b , then (4) reduces to the Cauchy–

Schwarz inequality (2). However, the inequality (4) is stronger than (2) in the following
sense: applying (2) separately to each term on the left side of (4) gives

(b·c)2

(b·b)(c·c) +
(a·c)2

(a·a)(c·c) +
(a·b)2

(a·a)(b·b)
� 3 ,

which is weaker than (4) since, by (2) again, the right side of (4) is also � 3 .

REMARKS.
1. For other generalizations of the Cauchy–Schwarz inequality to 3 vectors see,

e.g., [5, Exercises 1.3, 1.14].
2. An inequality analogous to (4), for more than 3 vectors, can be obtained from

the Gramian as in Theorem 1, but is more complicated than it is worth, even for 4
vectors.
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3. Angles

The following corollary is a geometric statement of (4), analogous to (3).

COROLLARY 1. Let a, b, c be nonzero vectors in R
n , n � 3 , and let

α = �{b, c}, β = �{a, c}, γ = �{a, b} (7)

be the corresponding angles. Then

cos2 α + cos2 β + cos2 γ � 1 + 2 cosα cosβ cos γ , (8)

with equality if and only if the vectors a, b, c are linearly dependent.

The angles α, β , γ in (8) are not arbitrary, since they are the angles between pairs
of given vectors {a, b, c} , and therefore,

α + β + γ � 2 π . (9)

We call such angles vertex angles (considering the vectors {a, b, c} as edges of a
tetrahedron with vertex at 0 , see Figure 1 and assume they are ordered to satisfy

0 � α � β � γ � π . (10)

The right part of Figure 1 shows three vertex angles in the plane. This picture is obtained
by cutting the “surface” of the tetrahedron along the vector a , and laying it flat, which
is why the vector a appears twice.

0 a

b
c

γ
a

c

b

a

β
α

γ

Figure 1. The tetrahedron T(0, a, b, c) and the vertex angles at 0

A necessary and sufficient condition for three angles satisfying (9)–(10) to be
vertex angles is:

Any one of the three angles is no greater than the sum of the other two angles, (11)

or, by (10),
γ � α + β . (12)

The converse of Corollary 1 holds.

COROLLARY 2. Let α, β , γ satisfy (9)–(10). Then the inequality (8) is necessary
and sufficient for {α, β , γ } to be vertex angles.
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Proof. Necessity follows from Corollary 1. To prove sufficiency, write (8) as a
quadratic inequality in cos γ ,

cos2 γ − (2 cosα cos β) cos γ + (cos2 α − sin2 β) � 0 . (13)

The corresponding quadratic equation has two roots that can be written after simplifi-
cation as

cos γ = cosα cos β ±
√

sin2 α sin2 β = cos(β ± α) .

Inequality (13) therefore implies

β − α � γ � α + β , (14)

where the left inequality is redundant, by (10). �

REMARKS.
1. The Cauchy–Schwarz inequality (4) has a different geometric interpretation

than the classical inequality (2): For any two vectors a, b , (2) states that the length
|a ·b|/√b·b of the projection of a on b is not greater than

√
a·a , the length of a .

Inequality (4) states, for any three vectors a, b, c and the corresponding angles (7), that
no angle is greater than the sum of the other two angles, a sort of triangle inequality for
vertex angles.

2. The inequality (8) is related to the volume of a tetrahedron. Let a, b, c be
nonzero vectors in R

3 . Consider the tetrahedron T(0, a, b, c) with vertices at the
origin 0 , and at the endpoints of the vectors a, b, c . Its volume is given by the formula

VolumeT(0, a, b, c)

=
‖a‖‖b‖‖c‖

6

√
1+2 cosα cosβ cos γ− cos2 α− cos2 β− cos2 γ ,

(15)

and is positive, by Corollary 1, if and only if the vectors a, b, c are not coplanar.

4. Correlations

The above results yield a simple and natural characterization of 3 × 3 correlation
matrices in terms of the underlying angles.

Let X, Y denote random variables. We denote by
E X the expected value of X ,
var(X) its variance, var(X) := E((X − E X)2) ,
cov(X, Y) the covariance of X, Y , cov(X, Y) := E((X − E X)(Y − E Y)) , and
cor(X, Y) the correlation of X, Y , cor(X, Y) := cov(X, Y)/

√
var(X)

√
var(Y) .

The correlation matrix of a set of random variables {X1, X2, . . . , Xp} is the p× p
matrix R = (rij) , where rij = cor(Xi, Xj) . Since cov(X, Y) is an inner product, it
follows that R is symmetric and, by the Cauchy–Schwarz inequality,

r2
ij � 1 and rii = 1, for all i, j. (16)

Moreover, R is positive semidefinite.
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Conversely, given a p×p real matrix R = (rij) with diagonal elements all equal to
1 , and the off diagonal elements rij such that r2

ij � 1 , when is R a correlation matrix?
Such a matrix R is a correlation matrix if and only if it is positive semidefinite.

The case p = 3 is of special interest, see [4, Example 10.1, p. 109], where the
following question is posed:

“Consider a 3 × 3 symmetric matrix

R =

⎛
⎝ 1 r12 r13

r21 1 r23

r31 r32 1

⎞
⎠ , (17)

where all r2
ij � 1 . When is this matrix R a proper correlation matrix, that is, such a

correlation matrix which could be obtained from some real data?”

This question is equivalent to: “When is R positive semidefinite?”

The determinant of R in (17) is

det(R) = 1 + 2 r12 r13 r23 − r2
12 − r2

13 − r2
23.

Because of (16), all the principal 2 × 2 minors are nonnegative. Therefore the
answer depends on the sign of the determinant of R , i.e., R is a correlation matrix if
and only if,

1 + 2 r12 r13 r23 − r2
12 − r2

13 − r2
23 � 0 , (18)

which is inequality (8) with correlations interpreted as cosines. It follows from Corol-
lary 2 that R is a correlation matrix if and only if the angles

α = cos−1 r23, β = cos−1 r13, γ = cos−1 r12 (19)

are vertex angles, i.e., satisfy (11).

REMARK. Several equivalent conditions are given in [4, Example 10.1, p. 109],
such as

r13 r23 −
√

(1 − r2
13)(1 − r2

23) � r12 � r13 r23 +
√

(1 − r2
13)(1 − r2

23) .

This can be rewritten, by (19), as

cosβ cosα − sinβ sinα � cos γ � cos β cosα + sin β sinα
∴ cos(β + α) � cos γ � cos(β − α)

∴ (β − α) � γ � (β + α) ,

which is (14), see also [1].
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