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Abstract. An inequality of the Cauchy—Schwarz type is proved for triples of vectors, and inter-
preted geometrically in terms of the vertex angles of a tetrahedron. The results are illustrated by
3 x 3 correlation matrices.

1. Introduction

Let R” denote the real n—dimensional vector space, with the standard inner product
denoted by x-y. Given vectors a,b € R", their Gram matrix is

a-a ab
<b-a b~b> ’ (1)
and its determinant, called the Gramian of a,b, is denoted by G(a,b). The nonnega-
tivity of G(a,b) is equivalent to the Cauchy-Schwarz inequality

(a-b)* < (a-a)(b-b), 2)

where equality holds if and only if the vectors a, b are linearly dependent,i.e. G(a,b) =
0, see, e.g., [2, Chapter IX, Section 5.
The inequality (2) can be restated as

coszy <1, 3)

where v is the angle between the vectors a and b, denoted by y = £{a,b}.

Hardy et al, [3, Section 2.4], noted that the nonnegativity of the Gramian allows
generalizing the Cauchy—Schwarz inequality to more than two vectors. This idea is
used in Section 2 to obtain a simple Cauchy—Schwarz inequality for three vectors, see
Theorem 1. A geometric interpretation in terms of vertex angles in a tetrahedron is
given in Section 3, Corollaries 1-2. The above results shed light on correlation matrices
for three variables, and allow a natural characterization of such matrices, see Section 4.
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2. A Cauchy-Schwarz inequality

THEOREM 1. If a,b, ¢ are nonzero vectors in R", n > 3, then

(a-b)? (a-c)? (b-c)? < ab b-c
@a)bb)  (@a)ce  bbce S~ (aa)bb)ec)

with equality if, and only if, the vectors a,b, ¢ are linearly dependent.
Proof. Consider the Gram matrix of a,b,c,

a-a a'b a-c
b-a b-b b-c (5)
ca ¢b cc

and its Gramian
G(a,b,c) = (aa)(bb)(cc) +2 (ab)(ac)(bec) — (aa)(be)’ — (bb)(ac)’ - (cc)(ab)’.
The nonnegativity of G(a, b, ¢) is equivalent to

(c-¢)(a-b)’> + (b-b)(a-c)* + (a-a)(b-c)’ < (a-a)(b-b)(c-¢) + 2 (a-b)(a-c)(b-c), (6)
and (4) follows by dividing both sides of (6) by (a-a)(b-b)(c-¢).

Equality holds in (6), and in (4), if and only if G(a,b,¢) = 0, i.e., the vectors
a, b, ¢ are linearly dependent. ]

If the vector ¢ is orthogonal to both a and b, then (4) reduces to the Cauchy-
Schwarz inequality (2). However, the inequality (4) is stronger than (2) in the following
sense: applying (2) separately to each term on the left side of (4) gives

(b-c)? (a-c)? (a-b)?
b-b)(cc) | (@a)ce)  (aa)(bb)

<3,

which is weaker than (4) since, by (2) again, the right side of (4) is also < 3.

REMARKS.

1. For other generalizations of the Cauchy—Schwarz inequality to 3 vectors see,
e.g., [5, Exercises 1.3, 1.14].

2. An inequality analogous to (4), for more than 3 vectors, can be obtained from
the Gramian as in Theorem 1, but is more complicated than it is worth, even for 4
vectors.



A CAUCHY-SCHWARZ INEQUALITY FOR TRIPLES OF VECTORS 631

3. Angles

The following corollary is a geometric statement of (4), analogous to (3).

COROLLARY 1. Let a,b, ¢ be nonzero vectors in R", n > 3, and let
o= «£L{b,c}, B = 4«{a,c}, y = £{a,b} (7)
be the corresponding angles. Then
cos’ o +cos’ B+ cos’y < 1+ 2 cosacosfcosy , (8)

with equality if and only if the vectors a,b, ¢ are linearly dependent.

The angles a, 3,y in (8) are not arbitrary, since they are the angles between pairs
of given vectors {a,b,c}, and therefore,

o+p+y<2m. 9)

We call such angles vertex angles (considering the vectors {a,b,c} as edges of a
tetrahedron with vertex at 0, see Figure 1 and assume they are ordered to satisfy

O<a<pBgy<nm. (10)
The right part of Figure 1 shows three vertex angles in the plane. This picture is obtained

by cutting the “surface” of the tetrahedron along the vector a, and laying it flat, which
is why the vector a appears twice.

b
iéisg
0 a

Figure 1. The tetrahedron T(0,a,b, ) and the vertex angles at 0

b

Va

A necessary and sufficient condition for three angles satisfying (9)—(10) to be
vertex angles is:

Any one of the three angles is no greater than the sum of the other two angles, (11)

or, by (10),
y<a+p. (12)

The converse of Corollary 1 holds.

COROLLARY 2. Let a, B,y satisfy (9)—(10). Then the inequality (8) is necessary
and sufficient for {a, B,y} to be vertex angles.
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Proof. Necessity follows from Corollary 1. To prove sufficiency, write (8) as a
quadratic inequality in cos 7V,

cos®y — (2 cos arcos B) cosy + (cos® o — sin* B) < 0. (13)

The corresponding quadratic equation has two roots that can be written after simplifi-

cation as
cosy = cos o cos B £ 4/sin? asin? f = cos(f + o) .

Inequality (13) therefore implies
p-a<y<oa+p, (14)
where the left inequality is redundant, by (10). O

REMARKS.

1. The Cauchy—Schwarz inequality (4) has a different geometric interpretation
than the classical inequality (2): For any two vectors a, b, (2) states that the length
|]a-b|/v/b-b of the projection of a on b is not greater than \/a-a, the length of a.
Inequality (4) states, for any three vectors a, b, ¢ and the corresponding angles (7), that
no angle is greater than the sum of the other two angles, a sort of triangle inequality for
vertex angles.

2. The inequality (8) is related to the volume of a tetrahedron. Let a,b,c be
nonzero vectors in R*. Consider the tetrahedron T(0,a,b,¢) with vertices at the
origin 0, and at the endpoints of the vectors a, b, ¢. Its volume is given by the formula

Volume 7'(0,a, b, ¢)
(15)

al|||b]||lc
= w /142 cos o cos B cos Y — cos? o— cos? f— cos? }

and is positive, by Corollary 1, if and only if the vectors a, b, ¢ are not coplanar.

4. Correlations

The above results yield a simple and natural characterization of 3 x 3 correlation
matrices in terms of the underlying angles.

Let X,Y denote random variables. We denote by

EX the expected value of X,

var(X) its variance, var(X) := E((X — EX)?),

cov(X,Y) the covariance of X, Y, cov(X,Y) := E(X—EX)(Y —EY)), and

cor(X,Y) the correlation of X,Y,cor(X,Y) := cov(X,Y)/+/var(X)/var(Y).

The correlation matrix of a set of random variables {X;,X,...,X,} isthe p xp
matrix R = (r;), where r; = cor(X;,X;). Since cov(X,Y) is an inner product, it
follows that R is symmetric and, by the Cauchy—Schwarz inequality,

ry < landr; =1, foralli,j. (16)

Moreover, R is positive semidefinite.
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Conversely, givena p x p real matrix R = (r;;) with diagonal elements all equal to
1, and the off diagonal elements r;; such that rl-zj < 1, whenis R a correlation matrix?
Such a matrix R is a correlation matrix if and only if it is positive semidefinite.

The case p = 3 is of special interest, see [4, Example 10.1, p. 109], where the
following question is posed:

“Consider a 3 x 3 symmetric matrix

I r2 ris
R= 1 1 3 , (17)
3 oran 1
where all rl-zj < 1. When is this matrix R a proper correlation matrix, that is, such a
correlation matrix which could be obtained from some real data?”’
This question is equivalent to: “When is R positive semidefinite?”

The determinant of R in (17) is

> 2 2
det(R) = 1 +2riari3723 — 1y — I3 — 13-

Because of (16), all the principal 2 x 2 minors are nonnegative. Therefore the
answer depends on the sign of the determinant of R, i.e., R is a correlation matrix if
and only if,

14+ 2rr3rms —1rh —1h —13, 20, (18)
which is inequality (8) with correlations interpreted as cosines. It follows from Corol-
lary 2 that R is a correlation matrix if and only if the angles

a=cos 'ry, B=cos r3, ¥ =cos ' rp (19)
are vertex angles, i.e., satisfy (11).

REMARK. Several equivalent conditions are given in [4, Example 10.1, p. 109],
such as

r3rs — \/(1 —riz) (1 =133) <ra < rizrs + \/(1 —r3)(1 = 13) .
This can be rewritten, by (19), as

cosf3 cosa —sinf3 sina < cosy < cos 3 cos o + sin B sin o
. cos(B+ o) <cosy < cos(f— o)
LB <Y< (Bta),

which is (14), see also [1].
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