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ON THE MATRIX NORMS OF A GCD RELATED MATRIX
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(communicated by J. Sándor)

Abstract. In this paper we investigate the matrix norms of a GCD related matrix, i.e., (Sf ) =(
f (i, j)/(irjr)

)
for multiplicative arithmetical functions f . In particular, we obtain upper

bounds for the �p norms of (Sf ) for f = ϕ , σα , and ψ in terms of infinite prime products.
Furthermore, we give lower and upper bounds for these infinite prime products by using particular
norm inequalities.

1. Introduction

Let S = {x1, x2, . . . , xn } be a set of distinct positive integers. Let (S) be the
n × n matrix of which the ij -entry is sij = (xi, xj) , the greatest common divisor of
xi and xj . In 1876 H. J. S. Smith [16] calculated the determinant of the matrix (S)
when S is factor closed. In 1989 Beslin and Ligh [4] called the matrix (S) the greatest
common divisor (GCD) matrix on S and triggered the study of GCD matrices. Since
Smith’s paper a large number of results on GCD matrices and many generalizations of
them have been presented in the literature. For general accounts see e.g. [2, 8].

In the study of GCD matrices, the structures of these matrices are investigated, and
some particular properties are tried to be presented in terms of some number-theoretical
tools. Recently, some authors have investigated the matrix norms and eigenvalues of
the GCD and related matrices. It is the first time that Taşcı [19] gave a lower bound for
the Perron root of the GCD matrix defined on S = {1, 2, . . . , n} . Lindqvist and Seip

[12] obtained sharp lower and upper bounds for the eigenvalues of the matrix
( (i,j)2s

isjs
)
.

In [6, 17, 18, 20] some inequalities for the �p norms of the GCD matrix and some
particular related matrices by the help of similar techniques were presented. Altınışık,
Tug̃lu and Haukkanen [1] gave a sharp upper bound for the �p norm of the n×n matrix

( (i,j)r

ir jr ) , that is

lim
n→∞

∥∥∥∥
(

(i, j)r

irjr

)
n×n

∥∥∥∥
p

=
ζ(rp)3/p

ζ(2rp)1/p
. (1.1)
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In [10] Haukkanen generalized the result in (1.1) as follow:

lim
n→∞

∥∥∥∥
(

(i, j)s

[i, j]r

)
n×n

∥∥∥∥
p

=
ζ(rp)2/pζ(rp − ps)1/p

ζ(2rp)1/p
. (1.2)

He also presented some estimates of the �p norm of the matrix
( (i,j)s

[i,j]r
)

in another paper
[9].

Let f be an arithmetical function and r a positive real number. Consider the n×n
matrix (

Sf
)

=
(

f
(
(i, j)

)
irjr

)
, (1.3)

where f
(
(i, j)

)
denotes the value of f evaluated at the greatest common divisor of i and

j . In this paper we mainly investigate some certain matrix norms of the matrix
(
Sf

)
.

We generalize all results given in (1.1) and (1.2) which were presented in [1, 9, 10].
The structure of the paper is as follows. In Section 2, we summarize some basic tools
from number theory and matrix theory we need throughout the paper. In Section 3, we
give the main theorem of the paper and sharp upper bounds for �p norms of the matrices(
Sϕ

)
,

(
Sσα

)
, and

(
Sψ

)
in terms of some infinite prime products. In Section 4, we

study on the reverse direction. Namely, we present some lower and upper bounds for
infinite prime products obtained in Section 3. In the last section discuss the intersection
some different tools of mathematics which are used in the study of GCD matrices.

2. Preliminaries

We firstly review the basic tools of arithmetical functions and Dirichlet series in
the light of the text of Apostol [3]. For general and detailed accounts the reader can see
e.g. [3, 7, 13, 14, 15].

Let f and g be arithmetical functions. The Dirichlet convolution f ∗ g of f and
g is defined by

(f ∗ g)(n) =
∑
d|n

f (d)g(n/d).

Let I and u be the arithmetical functions defined as I(n) = [ 1
n ] and u(n) = 1 for all

n ∈ Z+, respectively. Under the Dirichlet convolution the inverse of u is the Möbius
function μ . Let Nα be the arithmetical function defined as Nα(n) = nα for a given
α ∈ R and all n ∈ Z+ . Jordan’s totient function Jα is defined as

Jα(n) = (Nα ∗ μ)(n) =
∑
d|n

dαμ(n/d) = nα
∏
p|n

(1 − 1
pα

)

for a given α ∈ R . Then it is obvious that

nα =
∑
d|n

Jα(d)

for all n ∈ Z+ . In particular, J1 = ϕ is Euler’s totient function.
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For α ∈ R , the arithmetical function σα defined as

σα(n) =
∑
d|n

dα , (2.1)

the sum of the α th powers of the divisors of n , is called divisor functions. It is clear
that σα = u ∗ Nα . Dedekind’s ψ -function is defined by

ψ(n) = n
∏
p|n

(
1 +

1
p

)
. (2.2)

An arithmetical function f is said to be multiplicative if f is not identically zero
and if f (mn) = f (m)f (n) whenever (m, n) = 1 . It is clear that f (1) = 1 if f is
multiplicative. If f (mn) = f (m)f (n) for all m and n , then f is said to be completely
multiplicative. All the functions given above are multiplicative functions but only I ,
u , and Nα are completely multiplicative functions among them.

Let s be a complex number, and let f be an arithmetical function. The Dirichlet
series corresponding to f is the series

Lf (s) =
∞∑

n=1

f (n)
ns

. (2.3)

When we take f = u in (2.3) we obtain the so-famous Dirichlet series ( s > 1 )

Lu(s) = ζ(s) =
∞∑
n=1

1
ns

,

the Riemann zeta function. Since we will deal with the Dirichlet series with real s
throughout the paper we assume s ∈ R . Let the Dirichlet series Lf (s) and Lg(s)
be convergent absolutely for s > s0 . Then we have Lf (s)Lg(s) = Lf ∗g(s) and also
Lf ∗g(s) converges absolutely for s > s0 . Moreover, Lf −1(s) = (Lf (s))−1 , where
f −1 is the inverse of f under the Dirichlet convolution, and Lf −1(s) converges for
s > s0 . On the other hand, if f is multiplicative the Dirichlet series corresponding to
f can be rewritten as

Lf (s) =
∏
℘

{
1 +

f (℘)
℘s

+
f (℘2)
℘2s

+
f (℘3)
℘3s

+ · · ·
}

. (2.4)

We now give some tools of matrix theory, in particular matrix norms, in the light
of the text of Horn and Johnson [11]. Let Mn(C) denote the set of the n × n matrices
with entries from C , and 1 � p < ∞ . The �p norm of a matrix A ∈ Mn(C) is defined
as

‖A‖p =
( n∑

i=1

n∑
j=1

|aij|p
) 1

p

.
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The maximum column sum matrix norm and the maximum row sum matrix norm of A
are defined as

‖|A‖|1 = max
1�j�n

n∑
i=1

|aij|

and

‖|A‖|∞ = max
1�i�n

n∑
j=1

|aij|,

respectively. For a A ∈ Mn(C) we have the inequality

‖|A‖|1 � ‖A‖1 and ‖|A‖|∞ � ‖A‖1. (2.5)

The spectral norm of A is

‖|A|‖2 = max{
√
λ : λ is an eigenvalue of A∗A},

where A∗ is the conjugate transpose of A . Let A ∈ Mn(C) and λ1, λ2, . . . , λn denote
the eigenvalues of A . The spectral radius ρ(A) of A is defined as

ρ(A) = max
1�i�n

|λi|.

For any matrix norm |‖ · ‖| , we have

ρ(A) � |‖A‖|. (2.6)

3. Matrix Norms of The Matrix
(
Sf

)

Let f be an arithmetical function and
(
Sf

)
denote the n×n matrix which is given

in (1.3). We will use the notation f p(n) for
(
f (n)

)p
for the sake of simplicity. We

now present the main theorem of the paper.

THEOREM 1. [THE MAIN THEOREM] Let r and 1 � p < ∞ be reals, and let
rp > 1 . If f is multiplicative then

lim
n→∞

∥∥(
Sf

)∥∥
p

=
ζ(rp)2/p

ζ(2rp)1/p

( ∞∑
i=1

f p(i)
i2rp

)1/p

=
ζ(rp)2/p

ζ(2rp)1/p

(
Lf p(2rp)

)1/p
.

Moreover, if Lf (rp) is convergent then limn→∞
∥∥(

Sf
)∥∥

p
< ∞ .

Proof. For the �p norm of the matrix
(
Sf

)
, we have

lim
n→∞

∥∥(
Sf

)∥∥p

p
=

∞∑
i=1

∞∑
j=1

f p(i, j)
irpjrp

=
∞∑
i=1

1
irp

∞∑
j=1

1
jrp

∑
d|i
d|j

F(d),
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where f p = F ∗ u . By an easy manipulation between the indices d and j , we have

lim
n→∞

∥∥(
Sf

)∥∥p

p
=

∞∑
i=1

1
irp

∑
d|i

F(d)
∞∑
j=1

1
(dj)rp

= ζ(rp)
∞∑
i=1

1
irp

∑
d|i

F(d)
drp

= ζ(rp)
∞∑
i=1

(
F ∗ Nrp

)
(i)

i2rp

= ζ(rp)
∞∑
i=1

F(i)
i2rp

∞∑
i=1

Nrp(i)
i2rp

= ζ(rp)2
∞∑
i=1

(
f p ∗ μ)

(i)
i2rp

=
ζ(rp)2

ζ(2rp)

∞∑
i=1

f p(i)
i2rp

=
ζ(rp)2

ζ(2rp)
Lf p(2rp).

This is the first part of the theorem. We now consider Lf p(2rp) . If Lf (rp) is
convergent then by the comparison test Lf p(2rp) converges. Thus the �p norm of(
Sf

)
is bounded above by

(
ζ(rp)2

ζ(2rp)
Lf p(2rp)

)1/p

.

�
The series Lf p(2rp) in Theorem 1 can be nicely factored in terms of the Riemann

zeta function when f is a completely multiplicative function. It should be noted that
there are no general methods for such a factorization when f is not completely multi-
plicative. In the literature, there are some elegant formulae for particular multiplicative
arithmetical functions and particular exponents p . We will discuss such formulae in
the last section.

In [1, 10] using this nice factorization the authors obtained sharp upper bounds for
some GCD related matrices. As a consequence of Theorem 1 we can give the upper
bound in (1.2) (Theorem 3.1 in [10]) and the upper bound in (1.1) (Theorem 3 in [1]).
Let f = N(r+s) in Theorem 1. Then we have

lim
n→∞

∥∥(
Sf

)∥∥p

p
=

ζ(rp)2

ζ(2rp)
L(N(r+s))p(2rp)

=
ζ(rp)2

ζ(2rp)

∞∑
i=1

1
i(rp−sp)
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=
ζ(rp)2 ζ(rp − sp)

ζ(2rp)

Taking s = 0 in the last equality we have the upper bound in (1.1).
We continue with the following theorems as corollaries of the main theorem. We

will give sharp upper bounds for the �p norms of
(
Sf

)
for f being Euler’s totient ϕ ,

the divisor functions σα , and Dedekind’s totient ψ , respectively.

THEOREM 2. Let ϕ be Euler’s totient. Then we have

lim
n→∞

∥∥(
Sϕ

)∥∥
p

=
ζ(rp)2/p

ζ(2rp)1/p

∏
℘

(
1 +

(℘ − 1)p

℘2rp − ℘p

)1/p

,

where the product is over all the primes ℘ .

Proof. Take f = ϕ in Theorem 1. By the fact that ϕ is multiplicative and the
identity (2.4) we have

Lϕp(2rp) =
∏
℘

{
1 +

ϕp(℘)
℘2rp

+
ϕp(℘2)
℘4rp

+
ϕp(℘3)
℘6rp

+ · · ·
}

=
∏
℘

{
1 +

(℘ − 1)p

℘2rp
+

℘p(℘ − 1)p

℘4rp
+

℘2p(℘ − 1)p

℘6rp
+ · · ·

}

=
∏
℘

{
1 +

(℘ − 1)p

℘2rp
+

(℘ − 1)p

℘(4r−1)p +
(℘ − 1)p

℘(6r−2)p + · · ·
}

=
∏
℘

{
1 +

(℘ − 1)p

℘2rp

1

1 − 1
℘(2rp−1)p

}

=
∏
℘

{
1 +

(℘ − 1)p

℘2rp − ℘p

}
.

This completes the proof of the theorem. �

THEOREM 3. Let α > 1 , rp > 1 , and let σα be the divisor functions defined in
(2.1). Then we have

lim
n→∞

∥∥(
Sσα

)∥∥
p

=
ζ(rp)2/p ζ(α)
ζ(2rp)1/p

{∏
℘

∞∑
m=0

(
℘αm − ℘−α

℘2rm

)p}1/p

where the product is over all the primes ℘ .
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Proof. Take f = σα in Theorem1. Recall that σα is multiplicative and σα(℘m) =∑m
k=0 ℘αk for all α > 1 . By the identity (2.4) we have

Lσp
α
(2rp) =

∞∑
i=1

σp
α(i)
i2rp

=
∏
℘

∞∑
m=0

(
1 − ℘α(m+1)

1 − ℘α

)p 1
℘2rpm

=
( ∏

℘

1

1 − 1
℘α

)p

·
{∏

℘

1
℘αp

∞∑
m=0

(
℘α(m+1) − 1

℘2rm

)p}

= ζ(α)p ·
∏
℘

∞∑
m=0

(
℘αm − ℘−α

℘2rm

)p

.

Since α > 1 and rp > 1 Lσp
α
(2rp) is convergent. Then by Theorem 1, the proof is

complete. �

THEOREM 4. Let ψ be Dedekind’s totient defined in (2.2) and rp > 1 . Then we
have

lim
n→∞

∥∥(
Sψ

)∥∥
p

=
ζ(rp)2/p

ζ(2rp)1/p

∏
℘

{
℘2rp − ℘p + (℘ + 1)p

℘2rp − ℘p

}1/p

where the product is over all the primes ℘ .

Proof. Take f = ψ in Theorem 1. Since ψ is multiplicative we have by the
identity (2.4)

Lψp(2rp) =
∞∑
i=1

ψp(i)
i2rp

=
∏
℘

{
1 +

(℘ + 1)p

℘2rp
+

℘p(℘ + 1)p

℘4rp
+

℘2p(℘ + 1)p

℘6rp
+ · · ·

}

=
∏
℘

{
1 +

(℘ + 1)p

℘2rp

1

1 − ℘p

℘2rp

}

=
∏
℘

{
1 +

(℘ + 1)p

℘2rp − ℘p

}
.

By Theorem 1, the proof is complete. �
Define the class of multiplicative arithmetical functions

C = {f : f (℘) � ℘2r − ℘r + 1 for every prime ℘ and r > 1}.

The following theorem gives the maximum row sum matrix norm of
(
Sf

)
when f ∈ C .
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THEOREM 5. Let f ∈ C and
(
Sf

)
be the n × n matrix given in (1.3). Then we

have ∥∥∣∣(Sf
)∣∣∥∥

∞ =
n∑

j=1

1
jr

.

Proof. Let Ri be the i− th row sum of
(
Sf

)
. Then

Ri =
n∑

j=1

f (i, j)
irjr

=
1
ir

n∑
j=1

1
jr

∑
d|i
d|j

(f ∗ μ)(d)

=
1
ir

∑
d|i

(f ∗ μ)(d)
dr

n∑
j=1

1
jr

=
1
i2r

(
(f ∗ μ) ∗ Nr

)
(i)

n∑
j=1

1
jr

=
1
i2r

(f ∗ Jr)(i)
n∑

j=1

1
jr

.

f and Jr is multiplicative so is f ∗ Jr . Thus it is sufficient to consider the difference
between R1 and R℘ for a prime ℘ . Then we have

R1 − R℘ =
1
i2r

(
1 − 1

℘2r
(f ∗ Jr)(℘)

)

=
1
i2r

f (℘) + ℘2r − ℘r + 1
℘2r

.

Since f ∈ C it is clear that R1 − R℘ � 0 . Thus the maximum row sum matrix norm
of

(
Sf

)
is R1 , namely

∥∥∣∣(Sf

)∣∣∥∥
∞ = R1 =

n∑
j=1

1
jr

.

�
It should be noted that the multiplicative arithmetical functions ϕ , σα and ψ are

in C . Thus Theorem 5 holds for ϕ , σα and ψ . Moreover, we have obtained a sharp
upper bound for the maximum row sum matrix norm of

(
Sf

)
, that is,

lim
n→∞

∥∥∣∣(Sf

)∣∣∥∥
∞ = ζ(r) (3.1)

for a f ∈ C and r > 1 .
It may be said that our results are direct consequences of known facts. On the other

hand, it should be said that we have taken a few steps in the study of matrix norms of
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GCD matrices. We will also present a different viewpoint for bounds of infinite prime
products we have obtained in Theorem 2-4 by a new method. In the following section,
we will discuss this viewpoint.

4. Inequalities For Some Infinite Prime Products

In this section we present some inequalities for some infinite prime products which
we have obtained in the previous section.

Let
(
Sf

)
be the matrix defined in (1.3). and let f = ϕ . Consider the double sum

for the �p norm of
(
Sf

)
∞∑
i=1

∞∑
j=1

ϕp(i, j)
irpjrp

. (4.1)

The p− th root of the double sum in (4.1) is a sharp upper bound for the �p norm of(
Sϕ

)
. On the other hand, the double sum is a sharp upper bound for �1 norm of the

n × n matrix (
Sp

f

)
=

(
ϕp(i, j)
irpjrp

)
.

By (2.5) and Theorem 5 we have

∞∑
i=1

∞∑
j=1

ϕp(i, j)
irpjrp

� ζ(rp)2.

Then by Theorem 2 we have the following inequality

∏
℘

(
1 +

(℘ − 1)p

℘2rp − ℘p

)
� ζ(2rp). (4.2)

On the other hand, from the proof of Theorem 2 we have

Lϕp(2rp) =
∏
℘

{
1 +

(℘ − 1)p

℘2rp − ℘p

}

=
∞∑
i=1

ϕ(i)p

i2rp

�
∞∑
i=1

ϕ(i)
i2r

=
ζ(2r − 1)
ζ(2r)

.

Recall that if r > 1 then
∑∞

i=1
ϕ(i)
i2r converges. From the last two inequalities we have

ζ(2rp) �
∏
℘

(
1 +

(℘ − 1)p

℘2rp − ℘p

)
� ζ(2r − 1)

ζ(2r)
. (4.3)
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The lower and upper bounds given in (4.3) for the infinite prime product in (4.2) are
not the best ones. It should be noted that these bounds can be improved. To check
these bounds consider the following computer calculations by the aid of Maple 9. For
p = r = 2 we have

1.004077357 �
∏
℘

(
1 +

(℘ − 1)p

℘2rp − ℘p

)
� 1.110626535.

For example, for the first 1000 primes the value of the infinite prime product in (4.2)
is 1.004629313 . It can be easily seen that the inequalities in (4.3) will be sharper for
larger value of r and p .

We now consider the following infinite prime product in Theorem 3

∏
℘

∞∑
m=0

(
℘αm − ℘−α

℘2rm

)p}
.

Briefly, using similar procedure above we have the following bounds

ζ(r)p ζ(2rp)
ζ(rp)2 ζ(α)p

�
∏
℘

∞∑
m=0

(
℘αm − 1

℘2rm

)p

� ζ(2r) ζ(2r − α)
ζ(α)p

. (4.4)

Similarly, we obtain the following inequalities for the infinite prime product in Theo-
rem 4

ζ(r)p ζ(2rp)
ζ(rp)2

�
∏
℘

℘2rp − ℘p + (℘ + 1)p

℘2rp − ℘p
� ζ(2rp) ζ(2r) ζ(2r − 1)

ζ(rp)2 ζ(4r)
. (4.5)

5. Discussion and Further Studies

While studying matrix norms of GCD and related matrices, we have tried to tackle
the problem about factorization of the Dirichlet series

Lf p(2rp) =
∞∑
i=1

f p(i)
i2rp

.

in terms of the Riemann zeta function. In the literature, there are some remarkable
examples of such a factorization for particular arithmetical functions f and particular
exponents p . One of them is due to Ramanujan [5, 7]

∞∑
i=1

σα(i) σβ(i)
is

=
ζ(s) ζ(s − α) ζ(s − β) ζ(s − α − β)

ζ(2s − α − β)

for Re s > max{1,α + 1, β + 1,α + β + 1} . Borwein and Choi [5] generalized the
above result. Indeed, they proved that if f i and gi are completely multiplicative then

∞∑
i=1

(f 1 ∗ g1)(i) · (f 2 ∗ g2)(i)
is

=
Lf 1f 2(s)Lg1g2(s)Lf 1g2(s)Lg1f 2(s)

Lf 1f 2g1g2(2s)
.
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If we focus on our problem in the above sense we can say that we have taken a few
steps about such a factorization. Indeed, we only give the Dirichlet series Lf p(s) for
a multiplicative function f as a product of primes. On the other hand, for example,
taking p = 2 and r = s/4 in the proof of Theorem 3 we obtain a particular version of
Ramanujan’s beautiful result, that is,

Lf p(s) =
∞∑
i=1

σ2
α(i)
is

= ζ(α)2
∏
℘

∞∑
m=0

(
℘αm − ℘−α

℘sm/2

)2

=
ζ(s) ζ(s − α)2 ζ(s − 2α)

ζ(2s − 2α)
.

Moreover, we present some upper and lower bounds for some particular infinite prime
products. In further studies these bounds can be improved.

Another interesting viewpoint of the study of GCD matrices is the eigenvalues of
these matrices. Lindqvist and Seip [12] obtained the best lower bound and upper bound
of an n × n GCD related matrix

(
SN2

)
=

(
(i, j)2s/(isjs)

)
. Indeed, they proved that if

λ
(
SN2

)
is an eigenvalue of

(
SN2

)
then

ζ(2s)
ζ(s)2

� λ
(
SN2

)
� ζ(s)2

ζ(2s)
.

We are able to obtain upper bounds of the matrices we studied in this paper by using
the inequality in (2.6). Since the matrices

(
Sϕ

)
,
(
Sσα

)
, and

(
Sψ

)
are real, symmetric,

and positive definite all their eigenvalues are positive reals. Thus, the spectral radius,
the spectral norm, and the maximum eigenvalue of

(
Sf

)
coincide for each f = ϕ , σα ,

and ψ . Then, by (4.3) we have

λ
(
Sϕ

)
� ζ(2r − 1)

ζ(2r)
,

where λ
(
Sϕ

)
is an eigenvalue of the matrix

(
Sϕ

)
. By a similar reasoning and the

inequalities in (4.4) and (4.5), respectively, we have

λ
(
Sσα

)
� ζ(2r) ζ(2r − α)

ζ(α)p
,

and

λ
(
Sψ

)
� ζ(2rp) ζ(2r) ζ(2r − 1)

ζ(rp)2 ζ(4r)
.

These upper bounds also hold for spectral norm of these matrices.
Our technique is completely different from Lindqvist and Seip’s. They use the

Riesz bases in the Hilbert space of Dirichlet series. Additionally, our method does not
work for

(
SN2

)
since the �p norms of the matrix

(
SN2

)
are not convergent. On the

other hand, their technique does not seem to work for our matrices. Briefly, one will be



646 ERCAN ALTINIŞIK

able to obtain interesting results in some consolidation of mathematical tools aforesaid
above.
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[1] E. ALTINIŞIK, N. TUG̃LU, P. HAUKKANEN, A note on bounds for norms of the reciprocal Lcm matrix,
Math. Inequal. Appl. 7.4 491–496 (2004).
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[20] R. TÜRKMEN, D. BOZKURT, A note on the norms of the gcd matrix, Math. Comput. Appl. 9(2) 303–308

(2004).

(Received May 1, 2007) Ercan Altınışık
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