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L’HOSPITAL–TYPE RULES FOR MONOTONICITY: DISCRETE CASE

IOSIF PINELIS

Abstract. Let f := (f n) and g := (gn) be two sequences, and let r := f
g and ρ := δ f

δg ,

where (δ f )n := δ f n := f n − f n−1 . In particular, it is shown that, if r is monotonic, then the
monotonicity pattern of ρ may switch at most once (from increase to decrease or vice versa).
“Continuous” versions of such results were obtained earlier by the author.
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