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L’HOSPITAL–TYPE RULES FOR MONOTONICITY: DISCRETE CASE

IOSIF PINELIS

(communicated by N. Elezović)

Abstract. Let f := (f n) and g := (gn) be two sequences, and let r := f
g and ρ := δ f

δg ,

where (δ f )n := δ f n := f n − f n−1 . In particular, it is shown that, if r is monotonic, then the
monotonicity pattern of ρ may switch at most once (from increase to decrease or vice versa).
“Continuous” versions of such results were obtained earlier by the author.

1. Introduction

Let −∞ � a < b � ∞ , let f and g be continuously differentiable functions
defined on the interval (a, b) , and let r = f /g and ρ = f ′/g′ . In [15], general
“rules” for monotonicity patterns, resembling the usual l’Hospital rules for limits, were
given. For example, according to Proposition 1.9 in [15], one has the following: if ρ
is increasing and gg′ > 0 on (a, b) , then r ↘↗ , which means that there is some c
in [a, b] such that r is decreasing on (a, c) and increasing on (c, b) . In particular, if
c is either a or b , the result is that r is either increasing or decreasing on the entire
interval (a, b) . If one also knows whether r is increasing or decreasing in a right
neighborhood of a and in a left neighborhood of b , then one can discriminate with
certainty between these three patterns. Using such rules, one can generally determine
([15, 18]) the monotonicity pattern of r given that of ρ , however complicated the latter
might be.

Clearly, these l’Hospital-type rules for monotonicity patterns are helpful wherever
the l’Hospital rules for limits are. Moreover, the monotonicity rules apply even outside
such contexts, because they do not require that both f and g (or either of them) tend to
0 or ∞ at any point. (In the special case when both f and g vanish at an endpoint of the
interval (a, b) , l’Hospital-type rules for monotonicity can be found, in different forms
and with different proofs, in [1]–[4], [8]–[10], [12], and [14]–[17].) Thus, it should not be
surprising that awide variety of applications of the l’Hospital-type rules formonotonicity
patternswere given: in areas of analytic inequalities [5, 14, 15, 18]; approximation theory
[16]; differential geometry [8, 9, 10, 19], information theory [14, 15]; (quasi)conformal
mappings [1, 2, 3, 4]; probability and statistics [12, 15, 16, 17, 21, 22, 23, 24], including
the very recent papers [21, 22, 23, 24], where these mononicity rules have become a
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standard tool. In the present note, discrete analogues of l’Hospital-type rules both for
monotonicity and limits are given.

2. Rules

Let f := (f n: n ∈ a, b ) and g := (gn: n ∈ a, b ) be two real sequences or,

equivalently, functions defined on an interval a, b := {n ∈ Z: a � n � b} of integers,

where a and b are in Z ∪ {−∞,∞} (so that a, b = ∅ if a > b , and no infinite

endpoint belongs to a, b ). Let

r :=
f
g

and ρ :=
Δf
Δg

,

where (Δf )n := Δf n := f n − f n−1 for n ∈ a + 1, b , so that the function Δf is defined

on a + 1, b (with ±∞ + 1 := ±∞ ). It is assumed throughout that g and Δg do not
take on the zero value and do not change their respective signs.

THEOREM 1. Suppose that ρ is either nondecreasing or nonincreasing. Then the
dependence of the monotonicity pattern of r on that of ρ (and also on the sign of gΔg )
is given by the following table:

ρ gΔg r

↗ > 0 ↘↗
↘ > 0 ↗↘
↗ < 0 ↗↘
↘ < 0 ↘↗

Table 1.

Here, for instance, the statement r ↘↗ can be taken to mean that there is some

k in a, b ∪ {a, b} such that r is nonincreasing ( ↘ ) on a, k and nondecreasing (↗ )

on k, b . In particular, if k = a then r ↘↗ will imply r ↗ on the entire interval a, b ;

similarly, if k = b then r ↘↗ will imply r ↘ on a, b .

REMARK 1. To discriminate between these three possibilities ( k = a , k = b ,
and a < k < b ) in the case when (say) a and b are finite, it suffices to know whether
ra+1 � ra and rb−1 � rb ; if (say) b = ∞ , then one may instead want to know the
monotocity pattern of r in a neighborhood of ∞ . ♦

Proof of Theorem 1. Without loss of generality, a and b are finite. In view of
the “horizontal” and “vertical” reflections Z 	 n ↔ (−n) and f ↔ (−f ) , it suffices
to consider only the first line of Table 1, with ρ ↗ and gΔg > 0 . Next, it suffices

to show that there is some k ∈ a, b such that Δr � 0 on a + 1, k and Δr > 0 on

k + 1, b .
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Let now k := sup{n ∈ a + 1, b:Δrn � 0} (here, sup ∅ := a ). Then Δr > 0 on

k + 1, b . If Δr � 0 on a + 1, k , the proof is completed. To obtain a contradiction,

assume the contrary, that Δrn > 0 for some n ∈ a + 1, k (so that k �= a ). Hence, there

exists m := max{n ∈ a + 1, k:Δrn > 0} . Then in fact m ∈ a + 1, k − 1 ; this follows
because k �= a and hence, by the definition of k , one has Δrk � 0 , while Δrm > 0 .
Now it also follows from the definition of m that Δrm+1 � 0 .

The key observation is that for all n ∈ a + 1, b

gngn−1 Δrn = (ρn − rn) gn Δgn = (ρn − rn−1) gn−1 Δgn. (1)

Using these identities (with n = m and n = m + 1 ) together with the obtained above
inequalities Δrm > 0 and Δrm+1 � 0 , one concludes that ρm > rm � ρm+1 , which
contradicts the condition that ρ is nondecreasing. �

REMARK 2. (i) For the case given by the first line of Table 1, when ρ ↗ and

gΔg > 0 , the above proof shows that there is some k ∈ a, b such that Δr � 0 on

a + 1, k and Δr > 0 on k + 1, b . Using the horizontal reflection Z 	 n ↔ (−n) , one

can then see that there also exists some � ∈ a, b such that Δr < 0 on a + 1, � and

Δr � 0 on � + 1, b . Hence, the conclusion r ↘↗ for this first-line case in Table 1
can actually be understood in a slightly stronger sense: that there are some k and � in

a, b ∪{a, b} such that r is (strictly) decreasing on a, � , constant on �, k , and increasing

on k, b . Moreover, identities (1) show that r equals a constant C on an interval �, k of

integers only if ρ = C on � + 1, k (indeed, if r = C on �, k , then Δr = 0 on � + 1, k ,

and so, ρn = rn = C for all n ∈ � + 1, k , because of the requirement that neither g
nor Δg vanish at any point).

(ii) It follows that, if ρ is (strictly) increasing or decreasing, then the statement

r ↘↗ can be taken to mean that there is some k in a, b ∪ {a, b} such that r is

decreasing on a, k and increasing on k + 1, b . For further details on this point, see the
example at the end of this note.

(iii) Similar comments are valid for the other three cases given by the Table 1. ♦
A “continuous” counterpart of Remark 2 is developed in [25].

Proposition 1.9 in [15], mentioned earlier, was in fact a corollary of a general result,
Proposition 1.2 in [15], which also contains the special case when both f and g vanish
at an endpoint of the interval (a, b) (as pointed out in Remark 1.5 in [15]). Here, we
shall treat the discrete analogue of that special case separately, as follows.

PROPOSITION 1. Suppose that either (i) b = ∞ , f∞ := limn→∞ f n = 0 , and
g∞ = 0 or (ii) a = −∞ , f−∞ := limn→−∞ f n = 0 , and g−∞ = 0 . Suppose also
that ρ is nondecreasing or nonincreasing or increasing or decreasing; then r is so,
respectively.
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Proof. Consider the case when b = ∞ , f∞ = 0 , and g∞ = 0 . Then the result
follows immediately from the identity

gngn−1 Δrn =
∞∑
j=n

Δgn Δgj (ρj − ρn)

for all n ∈ a + 1,∞ . The other case can now be proved by the horizontal reflection;
compare with the proof of Theorem 1. �

“Discrete” analogues of l’Hospital’s rules for limits are well known – see e.g. [7].
We present a version of such rules here, along with a proof, for the sake of completeness
and for the readers’ convenience:

PROPOSITION 2. Suppose that b = ∞ , and either (i) |g∞| = ∞ or (ii) f∞ =
g∞ = 0 . Then r∞ = ρ∞ provided that the latter limit, ρ∞ , exists.

Proof. Let us first consider part (i), assuming that |g∞| = ∞ . For m < n , one

has rn =
f m

gn
+ rm,n

(
1 − gm

gn

)
, where rm,n :=

f n − f m

gn − gm
=

n∑
j=m+1

ρj |Δgj|
/ n∑

j=m+1
|Δgj| ,

since Δg is assumed not to change sign. It follows that rm,n is between the minimum

and maximum values of ρ over the interval m + 1, n . To complete the proof of part
(i), it remains to let n → ∞ and then m → ∞ .

Part (ii) is even simpler to prove, since here rm = rm,∞ for all m . �
Note that condition |f∞| = ∞ (which is imposed in [7]) is not in fact needed in part

(i) of Proposition 2. Moreover, the above proof can be obviously adapted (using, say,
the Mean-Value Theorem for the ratio corresponding to rm,n ) to l’Hospital’s original
“differentiable” case, even though the condition |f∞| = ∞ is traditionally included
into the formulation of the corresponding l’Hospital rule for limits.

3. Illustrations

Let p := (pj: j ∈ Z) be a positive sequence. Then p is called log-convexon a, b if

q := ln p is convex on a, b , in the sense that Δq is nondecreasing on a + 1, b , which is

equivalent to the condition that the ratio pn/pn+1 be nonincreasing in n ∈ a, b − 1 . The
log-concavity of a sequence and the strict versions of log-convexity and log-concavity
are defined similarly.

COROLLARY 1. Suppose that p is log-convex or log-concave on a,∞ , and
f n :=

∑∞
j=n pj < ∞ for all n ∈ Z . Then f is, respectively, log-convex or log-concave

on a,∞ . More generally, the same conclusion holds for any natural k if f = Rkp ,
where Rkp is given by the formula

(Rkp)n :=
∞∑
j=n

(
j − n + k − 1

j − n

)
pj for all n ∈ Z .
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Proof. Let gn := f n+1 for all n ∈ Z . Then the first part of Corollary 1 follows
immediately from Proposition 1. In turn, this yields the second part of the corollary,

because it is easy to see that (Rk: k ∈ 1,∞ ) is a semigroup of operators with (R1p)n =∑∞
j=n pj for all n ; cf. Remark 5 in [13]. �

Corollary 1 is essentiallywell-known. For the “log-concave” part, see, for example,
[13] (where k was allowed to be any positive real number) and, for the continuous
counterpart in the case k = 1 , [6] and [11]. The “log-convex” part can also be obtained
from the well-known fact that any linear combination with positive coefficients of log-
convex functions is log-convex, having also in mind that the log-convexity is preserved
under the shift n 
→ n + 1 .

COROLLARY 2. Suppose that p is log-concave on 0,∞ , and f n :=
∑n

j=0 pj for

all n ∈ 0,∞ . Then f is strictly log-concave on 0,∞ . More generally, the same
conclusion holds for any natural k if f = Lkp , where Lkp is given by the formula

(Lkp)n :=
n∑

j=0

(
n − j + k − 1

n − j

)
pj for all n ∈ 0,∞ .

Proof. Let again gn := f n+1 for all n ∈ 0,∞ . Then the first part of Corollary 2
follows immediately from part (i) ofRemark 2 (since g0g1 Δr1 > p2

1−p0 p2 � 0 , and so,

r1 > r0 ). In turn, this yields the second part of the corollary, since (Lk: k ∈ 1,∞ ) is a
semigroup with (L1p)n =

∑n
j=0 pj for all n . (One can note that (Lkp)n = (T−1RkTp)n

for all n ∈ 0,∞ , all natural k , and all p such that p = 0 on −∞,−1 , where
(Tp)n := p−n for all n .) �

However, the “log-convex” analogue of Corollary 2 does not hold. Indeed, if a
sequence p is both log-convexand log-concave (that is, geometric) then, byCorollary 2,
f is strictly log-concave and hence not log-convex. Of course, this observation does not
contradict Theorem 1 or Remark 2, according to which the log-convexity of p implies
that f may switch at most once from log-concavity to log-convexity.

Let us conclude this paper with another illustration of presented results and meth-
ods; note the use of Remarks 1 and 2 and identities (1).

EXAMPLE. Let sequences f := f (α) and g on 0,∞ be given by the formulas

f (α)
n := α +

∑n
j=0 pj and gn :=

∑n
j=0 qj for any α � 0 and all n ∈ 0,∞ , where p

and q are positive sequences such that ρ = p/q is increasing on 1,∞ and r(0)
0 < r(0)

1 ,
where in turn r(α) := f (α)/g .(For instance, one can take pj = j! and qj = (j/e)j for

all j ∈ 0,∞ , assuming that 00 = 1 .)
Then, by Theorem 1 (or, rather, by part (ii) of Remark 2; cf. Remark 1), the

sequence r(0) is increasing on the entire interval 0,∞ . Moreover, for every α > 0

there is some kα in 0,∞ ∪ {∞} such that r(α) is decreasing on 0, kα and increasing

on kα + 1,∞ .
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The observed condition that r(0) is increasing on 0,∞ implies Δr(0) > 0 and

hence, by (1), ρ > r(0) on 1,∞ . On the other hand, r(α) = r(0) +α/g . Therefore, for

each k ∈ 1,∞ , the number αk := (ρk − r(0)
k ) gk is positive and satisfies the equation

ρk = r(αk)
k , so that, by (1), (Δr(αk))k = 0 ; that is, r(αk)

k = r(αk)
k−1 . Using again part (ii)

of Remark 2, one sees that r(αk) is decreasing on 0, k − 1 , constant on {k− 1, k} , and

increasing on k,∞ . It follows, in particular, that one cannot replace k + 1, b in part

(ii) of Remark 2 by k, b (keeping the rest unchanged).
In view of (1), observe also that r(α)

k � r(α)
k−1 ⇐⇒ ρk � r(α)

k ⇐⇒ α � αk ,
for all α � 0 , and these equivalences hold if all three non-strict inequalities here are
replaced by the corresponding strict ones. In particular, one has α � αk =⇒ r(α)

k �
r(α)
k−1 =⇒ r(α)

k+1 > r(α)
k =⇒ α < αk+1 ; the second implication here follows again by

part (ii) of Remark 2. Hence, αk is increasing in k . Moreover, if α ∈ (αk,αk+1) then

r(α)
k−1 > r(α)

k < r(α)
k+1 , so that r(α)

n is decreasing in n ∈ 1, k and increasing in n ∈ k,∞ ;
recall that here k was taken to be any natural number.

0 2 4 6 8

To illustrate, here are parts of the graphs of the linear interpolations of the sequences
n 
→ r(αk)

n /r(αk)
k − 0.97 for k = 0, 1, 3, 5, 7 where α0 := 0 and, as above, pj = j! and

qj = (j/e)j with 00 := 1 .
To visualize the idea of this example, one can imagine a tank with the solution

of a liquid in water. Initially, at time n = 0 , the amounts of the liquid and water are
f (α)
0 = α + p0 and g0 = q0 , respectively, so that the initial relative concentration of

the liquid (with respect to water) is r(α)
0 = (α + p0)/q0 . Suppose that, at each of the

time moments n = 1, 2, . . . , the liquid and water are added to the tank in the amounts
of Δf n = pn and Δgn = qn , respectively, so that the relative concentration of the liquid
in the n th addition is ρn = pn/qn and that in the tank at time n is r(α)

n . If α is
large enough, then initially the relative concentration ρ of the liquid in what is added
is less than the relative concentration r(α) of the liquid in the tank, so that r(α) will be
decreasing in time. However, at least in the case when ρ is increasing to ∞ , ρ will
eventually overtake r(α) , and the latter will then be forever increasing. ♦
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