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SOME NEW INEQUALITIES FOR CONVEX FUNCTIONS
WITH APPLICATIONS IN NORMED SPACES

N. S. BARNETT AND S. S. DRAGOMIR

(communicated by L.-E. Persson)

Abstract. Some new inequalities for convex functions defined on convex subsets in linear spaces
with applications for the p-mean absolute deviation of a sequence of vectors are given, in a
normed linear space.

1. Introduction

Jensen’s inequality is pivotal in the Theory of Inequalities because it implies at
once many other classical inequalities including the Holder, Minkowski, Beckenbach-
Dresher and Young inequalities, the arithmetic mean — geometric mean inequality, the
generalised triangle inequality.

Let C be a convex subset of the real linear space X and f : C — R a convex
function on C. If x; € C and p; € (0,1) with > .. ,p; = 1, then the following
well-known form of Jensen’s discrete inequality holds:

f (me) <D pf (). (1.1)
i=1 i=1

In [2], the authors proved, amongst other results, the following refinement of
Jensen’s inequality in the general setting of linear spaces:

iz:pif (xi) = f (émn) (1.2)
> max {pif (x;) +pif (x5) = (i +p)) f (M)} > 0.

1<i<j<n pit D
As a natural and important application of the above result (1.2), the authors of [2]
considered the case of normed linear spaces (X, ||-||) and the convex function f (x) =
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668 N. S. BARNETT AND S. S. DRAGOMIR

lx||”, r > 1, obtaining refinements of the generalised triangle inequality:

n
> pillll” ~
i=1

> max {pill 4+ py bl = (i +p)' " llpess + ppsll "} > 0
1<i<j<n

X

More recently, the second author [1] has proved the following result:

1n<1?<xn{g} qu %) Z‘bxz =D pf () =1 | Dopry | (14)
RIS j=1 j=1

qi )

: Di
> in {3} | S w1 (Law ) |

qi )

provided f : C — R is convex on the convex subset C of the linear space X and p;, g;,
i € {1,...,n} are probability sequences with ¢; > 0 foreach i € {1,...,n}.

In particular, from (1.4) the following is obtained that compares the weighted and
unweighted Jensen differences:

wmax (pih | 7300 )= (230w ) | = onf ) —f | S| (19)
j=1 j=1 j=1 =1

IR IR
> _ ) — _ .
n min {pi} | - ’Elf(xj) 132 =
Jj= j=

The above inequalities (1.4) and (1.5) have some nice applications for the generalised
triangle inequality in normed linear spaces:

I r
n n n n
.,
max {2015 gl (S | = Xl - [ Lo 00
sisn L4 j=1 j=1 j=1 j=1
r

n
> i (5} Sl =[S as) |20

and

p

14
n n n n
max {pi} Sl = > Sl | =D el = (D pi (L.7)
=1 =1 =1 =1

1<i<n

p
n n
> min {pi} [ >l —n"7|> x| | (=0),
=1 =1
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respectively.
For some classical results on convex functions and their inequalities, see [4], while

for a contemporary approach on these subjects, see [3] and the references therein.

In this paper some new inequalities for convex functions defined on linear spaces
that complement the results from (1.2) and (1.4) are given. Applications for the p-
mean absolute deviation of a sequence of vectors in a normed linear space with given

probabilities are also provided.

2. The Main Results

THEOREM 1. Let C be a convex subset in the linear space X, f : C — R a
convex functionon C, x; € C, p; € (0,1), je{l,...,n}, n>2 and Z]'?:lpj =1.

If Z;:lpjxj =0, then,

ke{l,...,n} Pk — 1

jz::l’jf () > max |:I7kf (xk)+(1pk)f( b ~xk>} (2.1)

> min |:Pkf (k) + (1 —pe) f (pkpkl 'xkﬂ

ke{l,...,n}
> f(0)
In particular, if ZJ 1% =0, then
LS = L max Jr o+ o nr (L (22)
— X — X, n— - X,
nj:1 I n ke{l,..n} k n—1 k
> L min )t -ns (2
> - X n— - X
n ke{l,..n} k n—1 k
> f(0)
Proof. Since > | pjx; = 0, we have,
- =1 O
PiXE ==Y D= i > DX
PR LI
Jj7k
foreach k € {1,...,n}, which implies,
1 n
Pk Xk = . ijxj eC (23)
Pl >Ypi T
= s
J7k
for each k € {1,...,n}, since in the right hand side of (2.3) we have a convex

combination of elements from C.
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Applying the Jensen inequality, we have from (2.3) that,

f(p—k-xk) =f %-ijxj

pe—1 .
JZ:;I’] "
Jj#k
>_pif (%)
1 n
< f;{k . Zj:lpjf (xj) —pif (xx)
X n - 1 _ )
ij Pk
J=1
Jj#k
from which it is obvious that,
pk n
pif () + (1= po) f (pk - ) <> pf () (2.4)
=1
foreach k € {1,...,n}.
Taking the maximum in (2.4) over k € {1,...,n}, we deduce the first part of
(2.1).
Now, since C is convex and x;, pkp—fl -xg € C for k € {1,...,n}, then by the

convexity of f,

Dk
Pif () + (1= pi)f (pk_l -xk> > (0)
foreach k € {1,...,n}, which proves the last part of (2.1). O

The following result can be useful for applications.
COROLLARY 1. Let f : C — R be a convex function on the convex set C and
g €0, 1), je{l,...,n} with 377 q;= 1. If vi € X, i € {1,...,n} are such that,
vk—queC foreach ke {l,...,n}, (2.5)
=1

then,

Z qif (Vj - Z qm) (2.6)
=1

j=1
n q n
o (v ) - g2 (o)

Vi — Zn:qwl> + 0 —a)f [1 quk (i qvi — Vk)] }
=1
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In particular, if

n

1
ka—g vi€C foreach k€ {l,...,n}, (2.7)
n
=1

then
l 1 <&
Ly ( - Zw) 28)
j=1 =1

1 n l

> - - —1)f ~S -
s (i) e [ (G5 )
>1 min v——Zv (n=1)f " lZn:v—v
/nke{l ..... n} k ! n—1 n = ! k

The proof follows by Theorem 1 on choosing x; = v; — > _,_, ¢/vi and p; = g;,
je{l,...,n}.

COROLLARY 2. Let f : C — R be a convex function on the convex set C and
xi € X, i € {l,...,n} such that, for y1 := X1 — Xy, Y2 = X2 — X1, .., Yn—1 :=

Xn—1—Xn—2,Yn := Xy —Xn—1, we have y; € C foreach k € {1,...,n}. It follows that,

% [f ('xl _xn) +f ()C2 _xl) + - +f (-xn—l _xn—Z) +f (xn _xn—l)]
T (x1 xn)} e

n

=)+ 0= f [ x|}

> L max {f (1 = x) + (n—1)f {

> %min{f (1 —x) + (n—1)f {

= 5ae) + = 0F | x|}
>f(0).

”l(xl—x,,)},...,

The proof is obvious by the second part of Theorem 1.
A different result is incorporated in the following.

THEOREM 2. Let C be a convex set in the linear space X and f : C — R be a
convex functionon C. If x; € C, p; € (0,1), j € {1,...,n} aresuchthat 37 p; =1
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and —xi € C foreach k€ {l,...,n}, then,

J 2

Pk Pk PiXk
> The(_ 1
//m?ﬁﬁg{zf('“)+<l 2)f‘(2pk)}

;e Pr i
BB

i}{ﬁ@iLL@} (2.9)

j=1

>1(0).
In particular,
1 n f (X) +f (7)() 1 1 oy
n ; % > max {Ef (=x¢) + (2n— 1)f <2n — 1)} (2.10)
11 5
> P ke?}i?,n} {Ef (—x)+(2n=1)f <2nnx1<1) }
> f(0).

Proof. Forany k € {1,...,n} we have,
n n
Zpixi = PkXk + ijxp
i=1 =
i
which gives,
n n
PiXe = Zpixi + ZPJ (—x7)
— —
’ i
n n
> pixi + 3 pi (—x)
i=1 j=1 n n
7k
.l D2 9
J=1

n n
. 4 i—1 j
;Pz ;pj Ik
J#k
n n
dopixi + Y pi(—x))
i=1 1
= A (1+1—py).

n n
Y.Pit+ 2D
i=1 Jj=1

i#
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This obviously implies,

> pixi+ 20 (—x)
= J=1

i=1
Y ec (2.11)
b 2 Pi+2pi
i=1 =1
i
foreach k € {1,...,n}, sincein the right side of (2.11) we have a convex combination

of elements from C.
Applying Jensen’s inequality, we have from (2.11) that,

n n
Z%Pixi + i (—x)
iz pan

DXk J#k
) m
2_Pit 2D
=
Y pif (x) + 3 pf (—x)
- a
= 1+ 1—px
zp I () +f (=x)] = pif ()
- 2 —px ’

which is clearly equivalent to,

B (-5 (£25) <on [ e

2 i=1

foreach k € {1,...,n}.

Taking the supremum over k € {1,...,n} in (2.12) produces the first inequality
in (2.9).
By the convexity of f we also have:

Pk Pk PiXk
3f<xw+(1§)f<2_m>

~

WV

2 o) (122 2

(0),

f
f

and the last part of (2.9) is also established. O
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3. Applications for Normed Spaces

Let (X, ||||) be a normed space over the real or complex number field K.

For the probability sequence p = (p1,...,pn), i € {l,...,n}, the sequence
of vectors x = (x1,...,x,) € X" and a real number p > 1, we define the p— mean
absolute deviation of x with probability p by:

n n P
x):=> pilly—> p (3.1)
=1 =1
For the uniform probability u = (1,..., 1) we have K, (u,x) = K, (x), where,
1< 1< P
K, (x) = ;Z X — ;le (3.2)
=1 =1

The following result concerning upper and lower bounds for the p-mean absolute
deviation can be stated:

PROPOSITION 1. With the above, we have,

max Xk — pixi / p, 33
ke{l,...,n} ; ) ( )
> ma [ 1 p} _ 7
kE{l,“)in} { P+ Pk (1= pi) X szxl }
forany x € X", p > 1 and p a probability sequence.
In particular,
max |x— - x| =K, (x) 34
ke{l,..n} lzl: Ky (3.4)
n p
> 1 - 1
- [1 +(n-1) p} max | — =Y x
n ke{l,..n} n 4=

forall x € X" and p > 1

Proof. The first inequality in (3.3) is obvious, the second follows by Corollary 1
applied for the convex function f : X — R, f (x) = ||x||” . The details are omitted.

]

REMARK 1. The case p = 1 produces the inequalities,
> p, 35
XX me X) (3:5)

}

> 2 max
ke{l,...n} {pk

n
Xi — E pix
=1
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and
1 n
- — > K 3.6
kG?}??ﬁn} Y n;jq (X) ( )
2 1 —
> — max ||xx — — X,
n ke{l,..n} k ng !

where K (p,x) = K; (p,x) and K (x) = K; (x).
If 02 (p,x) = K> (p,x), where % (p,x) denotes the variance of x with the
probability p, then we have,

n
Xk — E Pixi
=1

2

max > o (p,x) (3.7)

ke{l,...n}

2

> max Pk
ke{l,..n} | Pk — 1

)

n
Xi — E pixi
=1

forany x € X" and p a probability density.
Also, if 62 (x) = K; (x),

n
1
X — — E X1
n
=1

> 0% (x) (3.8)

ke{l,...n}
2

n
1
Xk — — E Xi
n
=1

We notice that if X = H, H an inner product space, then o (p,x) and o (x) can
be represented as,

n—1ke{l,.n}

2\ 2
n n
2
o(px)=| > pilxl* =D ;
=1 =1
while
2\ 2
l N
o(x) = ZZH’CJ’” - ;ij
=1 =1

Since the lower bound for K, (p,x) may be difficult to use in applications, we provide
the following coarser but perhaps more useful bound.

COROLLARY 3. If py := ) ?nn }pk, Pm € (0,1), then
c{l,...n

n
Xk — E Pixi

=1

P

KP (p,X) > |:pm +P51 (1 - pm)lip} ke?}aXn}

forall x € X".
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Proof. For p > 1, consider the function A, : [0,1) — R, h,(1) = t +
# (1 —¢)'" . The function hy, is differentiable on [0, 1) and

W()=1+pt ' (1-0)"+p-1)F1-1)">0,

forany r € [0, 1), showing that &, is strictly increasing on [0, 1). It follows that,

min | px +1’%(1*1%)17[) = Pm +P51(1*l’m)17pa
ke{l,...n}

which together with (3.3) provides the desired bound (3.9). O

REMARK 2. In particular, we have,

K (p,Xx) = 2p,, max ||x; — Zplxz (3.10)
ke{l,...,n} pam
and
n 2
2 Pm
o° (p,x) > max ||xx — DiXi 3.11
(p,x) 1 — pm ke{l,..n} ; ( )

From a different perspective, we can state the following inequalities as well.

PROPOSITION 2. Let (X,||-||) be a normed linear space, x = (xi,...,x,) € X",
p>=1andp; € (0,1) with Y7 p; =1, then,

44444

n 1 N
p » »
;pinz'H > Eker{l}axﬂ}{{pk +pL (2= pi) } A }7 (3.12)

forany x,p and p as above.
In particular,

l b1 I

- P >=[1+02n-1"" r 3.13

2 2 2 g [ @n = )7 max (3.13)
forany x € X".

The proof is obvious by Theorem 2 applied for the convex function f : X — R,
f (x) = |||l . The details are omitted.
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REMARK 3. The case p = 2 gives the simple inequalities:

7777 2 - |} (3.14)

and

— X; 1
Zn P2 5 max el (3.15)

44444

Aspointed out before, for applications, the lower bound for the quantity >, p; [|x; II?
may not be as useful as one where the p; ’s and x; ’s are separate. This can be achieved,
however, by the following coarser result:

COROLLARY 4. If p,, := ?11n }pk, pm € (0,1), then,
e{l,...,n
1—
Ejpl lel? > 5 [pn+2h 2= pa)' ] max . (316)
ke{l,...,n}

forany x € X".

Proof. Consider the function g, : [0,1) = R, g, (1) =t +# (2 — )" " which is
differentiable on [0, 1) and

O =1+pr2=0""+@p-1rQ2-0">0

forany r € [0, 1), showing that g, is strictly increasing on [0, 1). Therefore,

pk+pp(2 pk)l -’ —P»H‘P%(z pm) p7
kG{l ..... n}

which, together with (3.12), provides the desired result (3.16). O

REMARK 4. In particular,

2
i ||Xi ) 3.17
Zp ol > 52 max s (3.17)

forany x € X".
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