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AN APPROACH TO KY FAN TYPE INEQUALITIES

FROM BINOMIAL EXPANSIONS

JAMAL ROOIN

(communicated by J. Pečarić)

Abstract. In this article, using binomial expansions, we get some interesting recursive identities
concerning arithmetic, geometric and harmonic means of positive numbers, from which, the most
important Ky Fan type inequalities are handled by induction at once.

1. Introduction

Throughout this article, let λ1, λ2, . . . , λn > 0 with
∑n

i=1 λi = 1 , and An , Gn and
Hn be the arithmetic, geometric and harmonic means of x1, . . . , xn > 0 respectively,
i.e.

An =
n∑

i=1

λixi, Gn =
n∏

i=1

xλi
i , Hn =

1∑n
i=1 λi

1
xi

. (1)

Also, if xi ∈
(
0, 1

2

]
, we denote by A′

n , G′
n , and H′

n the arithmetic, geometric and
harmonic means of 1 − x1, . . . , 1 − xn respectively, i.e.

A′
n =

n∑
i=1

λi(1 − xi), G′
n =

n∏
i=1

(1 − xi)λi , H′
n =

1∑n
i=1 λi

1
1−xi

. (2)

When emphasizing, we write An(x1, . . . , xn) instead of An , and so on.
The following inequalities are the most important inequalities concerning these

means:

Gn � An, (3)
A′

n

G′
n

� An

Gn
, (4)

A′
n − G′

n � An − Gn, (5)
G′

n

H′
n

� Gn

Hn
, (6)
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and

1
H′

n
− 1

G′
n

� 1
Hn

− 1
Gn

. (7)

In (3), all xi ’s are positive, and in the others all belong to
(
0, 1

2

]
. Moreover,

equality holds in each of them if and only if x1 = . . . = xn .
In literature, (3) and (4) are known as AGM and Ky Fan inequalities respectively, and
all inequalities above and from the above kinds are referred as Ky Fan type inequalities.
There are several interesting proofs for the AGM inequality (3) and more than fifty of
them have been mentioned in [5] in order of their appearances.

The Ky Fan inequality (4), was published for the first time in the well-known
book Inequalities by Beckenbach and Bellman [4, p. 5], and from then it has evoked
the interest of several mathematicians and in numerous articles new proofs, extensions,
refinements and various related results have been published; see the survey paper [2] and
the references therein. Among these remarkable results, the additive analogue of Ky
Fan’s inequality (5) and also the inequality (7) are due to H. Alzer, and the inequality
(6) is due to Wang-Wang; see [3], [1] and [9] respectively, and see also [2].

The aim of this paper is to establish the above inequalities via binomial expansions.
This shows the power of binomial expansions on the one hand and the close relations
between these inequalities on the other hand. In the following sections, we introduce
two different binomial methods, which work in the cases of equal and arbitrary weights.
Although the methods are similar to each other, but they are quite independent.

2. The Case of Equal Weights

In this section, we consider only the case of equal weights λ1 = λ2 = . . . = λn =
1
n . In [7] and [8], using the binomial theorem, we proved AGM and Ky Fan inequalities
respectively. Now, we are going to establish the other inequalities by the same method.
Unfortunately, this method is not so straight forward for inequality (5) which remains
a challenging problem. The following trivial lemma is the heart of this method. With
the aid of this lemma, first we get some recursive identities concerning arithmetic,
geometric and harmonic means of positive numbers in the case of equal weights, and
then using these identities, we prove (6) and (7) by induction on n .

LEMMA 2.1. If a, b � 0 , then for each n = 1, 2, . . . , we have

(n − 1)a + b
n

= a
n−1

n b
1
n +

1
n

n∑
k=2

(
n
k

)
a

n−k
n

(
b

1
n − a

1
n

)k
. (8)

Proof. We can write

b =
(
b

1
n − a

1
n + a

1
n

)n
= a + na

n−1
n

(
b

1
n − a

1
n

)
+

n∑
k=2

(
n
k

)
a

n−k
n

(
b

1
n − a

1
n

)k
,

and (8) is obtained. �
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COROLLARY 2.2.

An

Gn
=
(

An−1

Gn−1

) n−1
n

+
1
n

n∑
k=2

(
n
k

)(
An−1

Gn−1

) n−k
n

(
x

1
n
n − A

1
n
n−1

)k

G
k−1

n
n−1x

1
n
n

, (9)

and

An − Gn =
(

A
n−1

n
n−1 − G

n−1
n

n−1

)
x

1
n
n +

1
n

n∑
k=2

(
n
k

)
A

n−k
n

n−1

(
x

1
n
n − A

1
n
n−1

)k
. (10)

Proof. The identities (9) and (10) follow from (8) by taking a = An−1, b = xn ,

and considering An = n−1
n An−1 + 1

n xn and Gn = G
n−1

n
n−1x

1
n
n . �

COROLLARY 2.3.

Gn

Hn
=
(

Gn−1

Hn−1

) n−1
n

+
1
n

n∑
k=2

(
n
k

)(
Gn−1

Hn−1

) n−k
n
(

Gn−1

xn

) k−1
n
[
1 −

(
xn

Hn−1

) 1
n
]k

,(11)

and

1
Hn

− 1
Gn

=

⎛
⎝ 1

H
n−1

n
n−1

− 1

G
n−1

n
n−1

⎞
⎠ 1

x
1
n
n

+
1
n

n∑
k=2

(
n
k

)
1

H
n−k

n
n−1 x

k
n
n

[
1 −

(
xn

Hn−1

) 1
n
]k

. (12)

Proof. Clearly,

An

(
1
x1

, . . . ,
1
xn

)
=

1
Hn (x1, . . . , xn)

,

and

Gn

(
1
x1

, . . . ,
1
xn

)
=

1
Gn (x1, . . . , xn)

.

Now, changing the roles of xi ’s by 1
xi

’s, the identities (11) and (12) follow from

Corollary 2.2 by replacing An , Gn, An−1, Gn−1 and xn , by 1
Hn

, 1
Gn

, 1
Hn−1

, 1
Gn−1

and 1
xn

respectively. �
In order to use only discrete methods and so avoid the mean value theorem, the

following lemma and its consequences, are useful in the proof of (7).

LEMMA 2.4. For each x � 0 and n = 2, 3, . . . , we have

1 − xn−1

n − 1
� 1 − xn

n
, (13)

with equality holding if and only if x = 1 .
Consequently, if a, b > 0 , then for each n = 2, 3, . . . ,

n − 1
n

a − b

a
1
n

� a
n−1

n − b
n−1

n � n − 1
n

a − b

b
1
n

, (14)
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and equality holds in each of them if and only if a = b .

Proof. For (13), it is sufficient to consider

n
(
1 − xn−1

)− (n − 1) (1 − xn) = (1 − x)

[
n−2∑
k=0

xk − (n − 1)xn−1

]
.

Now, using (13) with x =
(

b
a

) 1
n and x =

(
a
b

) 1
n , we have

a
n−1

n − b
n−1

n = a
n−1

n

[
1 −

(
b
a

) n−1
n
]

� n − 1
n

a
n−1

n

(
1 − b

a

)
=

n − 1
n

a − b

a
1
n

,

and

a
n−1

n − b
n−1

n = b
n−1

n

[(a
b

) n−1
n − 1

]
� n − 1

n
b

n−1
n

(a
b
− 1
)

=
n − 1

n
a − b

b
1
n

.

Evidently, equality holds in each of inequalities in (14), if and only if a = b . �

Proof of inequalities (6) and (7). We prove (6) and (7) by induction on n . If
n = 1 , there is nothing to prove. Suppose n � 2 and the assertions hold for n − 1 . If
x1 = . . . = xn , then obviously equality holds in each of (6) and (7). Let not all xi ’s
be equal. Arrange xi ’s so that xn = min

1�i�n
xi . Applying Corollary 2.3 for (1 − xi) ’s

instead of xi ’s, the following similar identities hold:

G′
n

H′
n

=
(

G′
n−1

H′
n−1

) n−1
n

+
1
n

n∑
k=2

(
n
k

)(
G′

n−1

H′
n−1

) n−k
n
(

G′
n−1

1 − xn

) k−1
n
[
1 −

(
1 − xn

H′
n−1

) 1
n
]k

,(15)

and

1
H′

n
− 1

G′
n

=

⎛
⎝ 1

H′
n−1

n−1
n

− 1

G′
n−1

n−1
n

⎞
⎠ 1

(1 − xn)
1
n

+
1
n

n∑
k=2

(
n
k

)
1

H′
n−1

n−k
n (1 − xn)

k
n

[
1 −

(
1 − xn

H′
n−1

) 1
n
]k

.

(16)

Clearly,

1 − xn > xn, H′
n−1 � Hn−1,

Gn−1

xn
>

G′
n−1

1 − xn
,

xn

Hn−1
<

1 − xn

H′
n−1

,
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and

1 −
(

xn

Hn−1

) 1
n

=

[
n−1∑
i=0

(
xn

Hn−1

) i
n
]−1(

1 − xn

Hn−1

)

=

[
n−1∑
i=0

(
xn

Hn−1

) i
n
]−1

1
n − 1

n−1∑
i=1

xi − xn

xi

>

[
n−1∑
i=0

(
1 − xn

H′
n−1

) i
n
]−1

1
n − 1

n−1∑
i=1

xi − xn

1 − xi

=

[
n−1∑
i=0

(
1 − xn

H′
n−1

) i
n
]−1(

1 − xn

H′
n−1

− 1

)

=
(

1 − xn

H′
n−1

) 1
n

− 1 > 0.

Now, using the the induction hypothesis

Gn−1

Hn−1
�

G′
n−1

H′
n−1

,

the second terms in the right hand sides of (11) and (12) are strictly greater than the
second terms in the right hand sides of (15) and (16), respectively. Now comparing
(11) with (15), evidently, we have strict inequality in (6).

Finally, using (14) and the induction hypothesis

1
Hn−1

− 1
Gn−1

� 1
H′

n−1
− 1

G′
n−1

� 0,

we have⎛
⎝ 1

H
n−1

n
n−1

− 1

G
n−1

n
n−1

⎞
⎠ 1

x
1
n
n

� n − 1
n

(
1

Hn−1
− 1

Gn−1

)(
Hn−1

xn

) 1
n

� n − 1
n

(
1

H′
n−1

− 1
G′

n−1

)(
G′

n−1

1 − xn

) 1
n

�

⎛
⎝ 1

H′
n−1

n−1
n

− 1

G′
n−1

n−1
n

⎞
⎠ 1

(1 − xn)
1
n
,

since
Hn−1

xn
> 1 >

G′
n−1

1 − xn
.

So, comparing (12) with (16), we have strict inequality in (7), and the proof is
complete. �
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3. The General Case of Arbitrary weights

In this section, we consider the general case of arbitrary weights λ1, λ2, . . . , λn .
Here, using binomial series, first we establish a trivial lemma, from which is similarly
obtained some new recursive identities among arithmetic, geometric and harmonic
means of positive numbers in the general case. Then using these identities, we prove
(3-7) by induction on n . Fortunately, this method is stronger here than in the previous
case and gives the inequality (5) directly.

LEMMA 3.1. If 0 < a < 2b , then for each real λ ,

(1 − λ )a + λb = a1−λbλ +
∞∑
k=2

(−1)k−1

(
1 − λ

k

)
(b − a)kb1−k. (17)

Thus, in the case of 0 < λ < 1 , considering

(−1)k−1

(
1 − λ

k

)
> 0 (k � 2), (18)

and arranging a and b so that 0 < a � b , we get the difference of arithmetic and
geometric means of a and b as a series of nonnegative terms.

Proof. Since | ab − 1| < 1 , using binomial series [6, p. 90], we have

(a
b

)1−λ
= 1 +

∞∑
k=1

(
1 − λ

k

)(a
b
− 1
)k

.

Now, multiplying each side by b we get (17). �

COROLLARY 3.2. If An−1 < 2xn , then

An

Gn
=
(

An−1

Gn−1

)1−λn

+
1
Gn

∞∑
k=2

(−1)k−1

(
1 − λn

k

)
(xn − An−1)kx1−k

n , (19)

and

An − Gn =
(
A1−λn

n−1 − G1−λn
n−1

)
xλn
n +

∞∑
k=2

(−1)k−1

(
1 − λn

k

)
(xn − An−1)kx1−k

n , (20)

where An−1 =
∑n−1

i=1
λi

1−λn
xi and Gn−1 =

∏n−1
i=1 x

λi
1−λn
i .

Proof. The identities (19) and (20) follow from (17) by taking a = An−1, b = xn

and λ = λn in Lemma 3.1, and considering An = (1 − λn)An−1 + λnxn and Gn =
G1−λn

n−1 xλn
n . �
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COROLLARY 3.3. If xn < 2Hn−1 , then

Gn

Hn
=
(

Gn−1

Hn−1

)1−λn

+
Gn

xn

∞∑
k=2

(−1)k−1

(
1 − λn

k

)(
1 − xn

Hn−1

)k

, (21)

and

1
Hn

− 1
Gn

=

(
1

H1−λn
n−1

− 1

G1−λn
n−1

)
1

xλn
n

+
1
xn

∞∑
k=2

(−1)k−1

(
1 − λn

k

)(
1 − xn

Hn−1

)k

,(22)

where Hn−1 = 1/
(∑n−1

i=1
λi

1−λn

1
xi

)
and Gn−1 =

∏n−1
i=1 x

λi
1−λn
i .

Proof. Clearly,

An

(
1
x1

, . . . ,
1
xn

)
=

1
Hn (x1, . . . , xn)

,

and

Gn

(
1
x1

, . . . ,
1
xn

)
=

1
Gn (x1, . . . , xn)

.

Nowsince 1
Hn−1

< 2
xn

, changing the roles of xi ’s by 1
xi

’s, the identities (21) and (22) fol-

low from Corollary 3.2 by replacing An , Gn, An−1, Gn−1 and xn , by 1
Hn

, 1
Gn

, 1
Hn−1

, 1
Gn−1

and 1
xn

respectively. �

Proof of inequalities (3-7). We prove (3-7) by induction on n . If n = 1 , there is
nothing to prove. Suppose n � 2 and the assertions hold for n − 1 . If x1 = . . . = xn ,
then obviously equality holds in each inequality of (3-7). Let not all xi ’s be equal. For
proving (3), (4) and (5), arrange xi ’s so that xn = max

1�i�n
xi . Since An−1 < xn < 2xn ,

the identities (19) and (20) hold. Now, using the induction hypothesis

An−1 � Gn−1,

and considering (18), the AGM inequality (3) follows from (20) with strict inequality.
Since A′

n−1 < 2(1 − xn) , using Corollary 3.2, we have

A′
n

G′
n

=
(

A′
n−1

G′
n−1

)1−λn

+
1
G′

n

∞∑
k=2

(−1)k−1

(
1 − λn

k

)
(An−1 − xn)k(1 − xn)1−k, (23)

and
A′

n − G′
n =(A′1−λn

n−1 − G′1−λn
n−1 )(1 − xn)λn

+
∞∑
k=2

(−1)k−1

(
1 − λn

k

)
(An−1 − xn)k(1 − xn)1−k,

(24)

where A′
n−1 =

∑n−1
i=1

λi
1−λn

(1 − xi) and G′
n−1 =

∏n−1
i=1 (1 − xi)

λi
1−λn . But,

Gn < G′
n, xn > An−1 and xn � 1 − xn.
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Therefore, considering (18), the second terms in the right hand sides of (19) and
(20) are strictly greater than the second terms in the right hand sides of (23) and (24)
respectively. Now, considering the induction hypothesis

An−1

Gn−1
�

A′
n−1

G′
n−1

,

the Ky Fan’s inequality (4) follows with strict inequality by comparing (19) with (23).
Moreover, using the mean value theorem and the induction hypothesis

An−1 − Gn−1 � A′
n−1 − G′

n−1 � 0,

we have (
A1−λn

n−1 − G1−λn
n−1

)
xλn
n = (1 − λn)(An−1 − Gn−1)

(
xn

θn−1

)λn

� (1 − λn)(A′
n−1 − G′

n−1)
(

1 − xn

θ ′
n−1

)λn

=
(
A′1−λn

n−1 − G′1−λn
n−1

)
(1 − xn)λn ,

where θn−1 ∈ [Gn−1, An−1] and θ ′
n−1 ∈ [G′

n−1, A
′
n−1] , since

xn

θn−1
>

An−1

θn−1
� 1 �

G′
n−1

θ ′
n−1

>
1 − xn

θ ′
n−1

.

Thus, comparing (20) with (24), we get strict inequality in (5).
For the proof of (6) and (7), arrange xi ’s so that xn = min

1�i�n
xi . Since xn <

Hn−1 < 2Hn−1 and 1− xn < 2H′
n−1 , using Corollary 3.3, the identities (21), (22), and

also the following similar identities hold:

G′
n

H′
n

=
(

G′
n−1

H′
n−1

)1−λn

+
G′

n

1 − xn

∞∑
k=2

(−1)k−1

(
1 − λn

k

)(
1 − 1 − xn

H′
n−1

)k

, (25)

and
1
H′

n
− 1

G′
n

=

(
1

H′
n−1

1−λn
− 1

G′
n−1

1−λn

)
1

(1 − xn)λn

+
1

1 − xn

∞∑
k=2

(−1)k−1

(
1 − λn

k

)(
1 − 1 − xn

H′
n−1

)k

.

(26)

Now, since

1 − xn

Hn−1
=

n−1∑
i=1

λi

1 − λn

xi − xn

xi
�

n−1∑
i=1

λi

1 − λn

xi − xn

1 − xi
=

1 − xn

H′
n−1

− 1 > 0,

Gn

xn
>

G′
n

1 − xn
, and

1
xn

>
1

1 − xn
,
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considering (18), the second terms in the right hand sides of (21) and (22) are strictly
greater than the second terms in the right hand sides of (25) and (26), respectively.
Now, by the induction hypothesis

Gn−1

Hn−1
�

G′
n−1

H′
n−1

,

comparing (21) with (25), we have strict inequality in (6).
Finally, by the mean value theorem and the induction hypothesis

1
Hn−1

− 1
Gn−1

� 1
H′

n−1
− 1

G′
n−1

� 0,

we have(
1

H1−λn
n−1

− 1

G1−λn
n−1

)
1

xλn
n

= (1 − λn)
(

1
Hn−1

− 1
Gn−1

)(
1

xnηn−1

)λn

� (1 − λn)
(

1
H′

n−1
− 1

G′
n−1

)(
1

(1 − xn)η′
n−1

)λn

=

(
1

H′
n−1

1−λn
− 1

G′
n−1

1−λn

)
1

(1 − xn)λn
,

where ηn−1 ∈ [ 1
Gn−1

, 1
Hn−1

] and η′
n−1 ∈ [ 1

G′
n−1

, 1
H′

n−1
] , since

xnηn−1 � xn

Hn−1
< 1 <

1 − xn

G′
n−1

� (1 − xn)η′
n−1.

So, comparing (22) with (26), we have strict inequality in (7), and the proof is com-
plete. �

REMARK 3.4. It is noted that if xn � An−1 , each of identities (9) and (19) gives a
refinement for the Popoviciu inequality

An

Gn
�
(

An−1

Gn−1

)1−λn

, (27)

in the case of equal and arbitrary weights respectively, where An−1 =
∑n−1

i=1
λi

1−λn
xi and

Gn−1 =
∏n−1

i=1 x
λi

1−λn
i ; see [5] for details.
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