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PARAMETRIZED KLAMKIN’S INEQUALITY

AND IMPROVED EULER’S INEQUALITY

DARKO VELJAN AND SHANHE WU

(communicated by V. Volenec)

Abstract. In this paper, the authors present a generalization of Klamkin’s inequality by introduc-
ing a parameter, which relaxes the conditions of Klamkin’s inequality. As applications, some
improved versions of Euler’s inequality are obtained.

1. Introduction

We begin by recalling here the following well-known inequality related to the
angles A, B, C of a triangle

sin A + sin B + sin C � 3
√

3
2

. (1)

In 1969, P. M. Vasić [1] presented a weighted generalization of the inequality (1),
as follows

THEOREM A. Let x , y , z be positive numbers, and let A , B , C be real numbers
with A + B + C = π . Then

x sin A + y sin B + z sin C �
√

3
2

(
yz
x

+
zx
y

+
xy
z

)
. (2)

In 1984, M. S. Klamkin [2] sharpened Vasić’s inequality (2) in the from asserted
by Theorem B below.

THEOREM B. Let x , y , z be positive numbers, and let A , B , C be real numbers
with A + B + C = π . Then

x sinA + y sin B + z sin C � 1
2

(xy + yz + zx)

√
1
xy

+
1
yz

+
1
zx

. (3)

It is well-known that Klamkin’s inequality (3) plays an important role in the study
of geometric inequalities. A number of geometric inequalities can be obtained from
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the Klamkin’s inequality (3) by assigning appropriate values to the parameters. Due
to the importance of Klamkin’s inequality, this inequality has been given considerable
attention by mathematicians. A comprehensive survey on this inequality can be found
in [3], where a large number of references connected to this subject are listed.

The aim of this paper is to give a generalization of Klamkin’s inequality by intro-
ducing a parameter. Moreover, we provide an application of the obtained result to the
improvement of the classical Euler’s inequality and Bǎndilǎ’s inequality.

2. Lemmas

In order to prove the main result in Section 3, we need the following lemmas.

LEMMA 1. Let x, y, z , A, B, C be real numbers with A + B + C = θ, −π �
θ � π . Then

x2 + y2 + z2 � sec
θ
3

(yz cos A + zx cos B + xy cosC) . (4)

Proof. We rewrite the inequality (4) as

x2 − sec
θ
3

(y cosC + z cosB)x + y2 − yz sec
θ
3

cos A + z2 � 0. (5)

To prove the inequality (5), it is enough to prove that

Δ1 = sec2 θ
3

(y cosC + z cos B)2 − 4

(
y2 − yz sec

θ
3

cosA + z2

)
� 0,

i.e.,

Δ1 =
(

sec2 θ
3

cos2 C − 4

)
y2 +

(
2z cos C cosB sec2 θ

3
+ 4z sec

θ
3

cos A

)
y

+ z2

(
sec2 θ

3
cos2 B − 4

)
� 0.

(6)

When C = 0 and θ = π , we deduce directly that Δ1 = 4z2(cos2 B − 1) � 0. When
C �= 0 or θ �= π , it implies that sec2 θ

3 cos2 C − 4 < 0 . Thus, in order to prove the
inequality (6), it is enough to prove that

Δ2 =
(

2z cosC cos B sec2 θ
3

+ 4z sec
θ
3

cos A

)2

− 4

(
sec2 θ

3
cos2 C − 4

) (
sec2 θ

3
cos2 B − 4

)
� 0.

(7)

Direct computation gives

Δ2 = 16z2 sec3 θ
3

[
cos A cosB cosC + cos

θ
3

(
cos2 A + cos2 B + cos2 C

) − 4 cos3 θ
3

]
,
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and

cosA cosB cos C + cos
θ
3

(
cos2 A + cos2 B + cos2 C

) − 4 cos3 θ
3

=
1
2

[cos(θ − C) + cos(A − B)] cos C

+ cos
θ
3

[
1 + cos(θ − C) cos(A − B) + cos2 C

] − 4 cos3 θ
3

=
1
2

cos(A − B)
[
cosC + 2 cos

θ
3

cos(θ − C)
]

+
1
2

cosC

[
cos(θ − C) + 2 cos

θ
3

cosC

]
+ cos

θ
3
− 4 cos3 θ

3

=
1
2

cos(A − B)
[
cos(

4
3
θ − C) + cos(

2
3
θ − C) + cos C

]

+
1
2

cosC

[
cos(

θ
3

+ C) + cos(
θ
3
− C) + cos(θ − C)

]

− cos
θ
3

(
1 + 2 cos

2
3
θ
)

=
1
2

cos(A − B) cos(
2
3
θ − C)

(
1 + 2 cos

2
3
θ
)

+
1
2

cos C cos(
θ
3
−C)

(
1+2 cos

2
3
θ
)
− cos

θ
3

(
1+2 cos

2
3
θ
)

=
(

cos
2
3
θ+

1
2

) [
cos(

2
3
θ−C) cos(A−B)+n cosC cos(

θ
3
−C)−2 cos

θ
3

]
.
(8)

By the assumption of Lemma 1 −π � θ � π , we conclude that cos 2
3θ � − 1

2 ,
cos θ

3 � 1
2 . In order to prove that Δ2 � 0 , we consider the following two cases.

Case (I). When cos( 2
3θ − C) � 0 , we have

cos(
2
3
θ − C) cos(A − B) + cos C cos(

θ
3
− C) − 2 cos

θ
3

� cos(
2
3
θ − C) + cosC cos(

θ
3
− C) − 2 cos

θ
3

= 2 cos
θ
3

cos(
θ
3
− C) − cosC + cosC cos(

θ
3
− C) − 2 cos

θ
3

= −
[
1 − cos(

θ
3
− C)

] [
cosC + 2 cos

θ
3

]

= −2

[
1 − cos(

θ
3
− C)

] [
cos2 C

2
+ cos

θ
3
− 1

2

]
� 0.
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Case (II). When cos( 2
3θ − C) < 0 , we have

cos(
2
3
θ − C) cos(A − B) + cosC cos(

θ
3
− C) − 2 cos

θ
3

� − cos(
2
3
θ − C) + cos C cos(

θ
3
− C) − 2 cos

θ
3

= −2 cos
θ
3

cos(
θ
3
− C) + cos C + cos C cos(

θ
3
− C) − 2 cos

θ
3

= −
[
1 + cos(

θ
3
− C)

] [
− cosC + 2 cos

θ
3

]

= −2

[
1 + cos(

θ
3
− C)

] [
sin2 C

2
+ cos

θ
3
− 1

2

]
� 0.

Combining the identity (8) and the above inequalities, we deduce that Δ2 � 0 ,
which implies the validity of inequality (4). The Lemma 1 is proved. �

LEMMA 2. Let x, y, z , A, B, C be real numbers with A + B + C = θ, (6k −
1)π � θ � (6k + 1)π , (k = 0, ±1, ±2, . . .) . Then

x2 + y2 + z2 � sec
θ
3

(yz cos A + zx cos B + xy cosC) . (9)

Proof. Based on the assumption of Lemma 2 (6k − 1)π � θ � (6k + 1)π , we
have

(A − 2kπ) + (B − 2kπ) + (C − 2kπ) = θ − 6kπ and − π � θ − 6kπ � π.

It thus follows from Lemma 1 that

x2+y2+z2 � sec

(
θ
3
−2kπ

)
[yz cos(A−2kπ)+zx cos(B−2kπ)+xy cos(C−2kπ)] . (10)

this yields

x2 + y2 + z2 � sec
θ
3

(yz cos A + zx cos B + xy cosC) ,

which is the required inequality in Lemma 2. The proof of Lemma 2 is complete. �

3. Main result

Our main result is stated in the following theorem.

THEOREM 1. Let x , y , z be positive numbers, and let A , B , C be real numbers
with A + B + C = θ , (3k + 1)π � θ � (3k + 2)π ( k = 0, ±1, ±2, . . .) . Then
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x sinA+y sinB+z sin C � 1
2

√
(xy+yz+zx)2 − (

2 cos 2
3θ+1

)
(x2y2+y2z2+z2x2)

·
√

1
xy + 1

yz + 1
zx . (11)

Proof. Using a substitution in (11) by

A �−→ π − ϕ1

2
, B �−→ π − ϕ2

2
, C �−→ π − ϕ3

2
,

we find that the inequality (11) is equivalent to the following inequality:

x cos ϕ1

2 +y cos ϕ2

2 +z cos ϕ3

2 � 1
2

√
(xy+yz+zx)2 −

(
1−2 cos φ

3

)
(x2y2+y2z2+z2x2)

·
√

1
xy + 1

yz + 1
zx , (12)

where φ = ϕ1 + ϕ2 + ϕ3, (6k − 1)π � φ � (6k + 1)π (k = 0, ±1, ±2, . . .) .
In order to prove the inequality (11), it is enough to prove that the inequality (12)

is valid.
Applying the Cauchy-Schwarz’s inequality [4, p.30], one obtain

x cos
ϕ1

2
+y cos

ϕ2

2
+z cos

ϕ3

2

�
√(

zxxy cos2 ϕ1

2
+xyyz cos2 ϕ2

2
+yzzx cos2 ϕ3

2

)(
1
yz

+
1
zx

+
1
xy

)

=
1
2

√
2 (zxxy+xyyz+yzzx)+2 (zxxy cosϕ1 + xyyz cosϕ2 + yzzx cosϕ3)

·
√

1
xy

+
1
yz

+
1
zx

.

(13)

On the other hand, in view of the hypothesis that

φ = ϕ1 + ϕ2 + ϕ3, (6k − 1)π � φ � (6k + 1)π (k = 0, ±1, ±2, . . .).

We thus deduce from Lemma 2 that

zxxy cosϕ1 + xyyz cosϕ2 + yzzx cosϕ3 � cos
φ
3

(
z2x2 + x2y2 + y2z2

)
. (14)

Combining inequalities (13) and (14) gives

x cos
ϕ1

2
+ y cos

ϕ2

2
+ z cos

ϕ3

2

� 1
2

√
2 (zxxy + xyyz + yzzx) + 2 cos

φ
3

(z2x2 + x2y2 + y2z2)

√
1
xy

+
1
yz

+
1
zx

=
1
2

√
(xy + yz + zx)2 −

(
1 − 2 cos

φ
3

)
(x2y2 + y2z2 + z2x2)

√
1
xy

+
1
yz

+
1
zx

.
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Hence the inequality (12) is proved, which leads us to the desired inequality (11). This
completes the proof of Theorem 1. �

REMARK 1. It is obvious that the Klamkin’s inequality (3) would follow as a
special case of Theorem 1 when θ = π .

4. Application to the improvement of Euler’s inequality

In what follows, we state that A, B, C denote the angles of triangle ABC , a , b , c
denote the lengths of the corresponding sides. Let R , r be the radii of the circumscribed
and inscribed circles of triangle ABC respectively. Similarly define the triangle A′B′C′ .

The inequality
R � 2r (15)

is called Euler’s inequality. This inequality was proved by L. Euler in 1765, it is
one of the oldest geometric inequalities, As is well-known, Euler’s inequality (15) is
an important tool in the study of geometric inequalities, see [5] for history and more
details, refer to [6–13] for some results concerning improvements and applications of
this inequality .

In 1985, an interesting sharpened version of Euler’s inequality was presented by
V. Bǎndilǎ [14], as follows

R
r

� b
c

+
c
b
. (16)

In 2003, Zh.-H. Zhang and Q. Song et al [15] established an analogue of Bǎndilǎ’s
inequality (16) as a sharpening of Euler’s inequality, i.e.,

R
r

� 2
3

(
a
b

+
b
c

+
c
a

)
. (17)

As application of Theorem1,we give here a new improvement of Euler’s inequality,
it will be shown that the present result is a unified improved version of Bǎndilǎ’s
inequality (16) and Zhang-Song’s inequality (17).

THEOREM 2. Suppose that A , B , C are the real numbers such that A+B+C = θ
(π � θ � 2π) , A′ , B′ , C′ are the angles of triangle A′B′C′ , and R′ , r′ are the radii
of the circumscribed and inscribed circles respectively. Then the following inequality
holds true

sinA
sin A′+

sin B
sin B′+

sin C
sin C′ �

√
3

(
2 cos

2
3
θ+1

)
R′

r′
−2

(
cos

2
3
θ
) (

1+
R′

r′

)2

. (18)

Proof. Direct computation gives

(
x2y2 + y2z2 + z2x2

) (
1
xy

+
1
yz

+
1
zx

)

=
[
(xy + yz + zx)2 − 2xyz(x + y + z)

] (
1
xy

+
1
yz

+
1
zx

)
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= (xy + yz + zx)2
(

1
xy

+
1
yz

+
1
zx

)
− 2(x + y + z)2

= (xy+yz+zx)2
(

1
xy

+
1
yz

+
1
zx

)
−6(xy+yz+zx)−(x−y)2−(y−z)2−(z−x)2

� (xy + yz + zx)2
(

1
xy

+
1
yz

+
1
zx

)
− 6(xy + yz + zx).

By using Theorem 1 with k = 1 , and appealing to the above inequality, we get that

x sin A+y sinB+z sin C

� 1
2

√
6

(
2 cos

2
3
θ+1

)
(xy+yz+zx)−

(
2 cos

2
3
θ
)

(xy+yz+zx)2
(

1
xy

+
1
yz

+
1
zx

)
.

(19)
Now, substituting

x =
1

sin A′ , y =
1

sin B′ , z =
1

sinC′

into (19), and making use of the known results (see [3, p.180]):

1
sin A′ sin B′ +

1
sin B′ sinC′ +

1
sin C′ sin A′ =

2R′

r′
,

sin A′ sinB′ + sin B′ sin C′ + sin C′ sin A′ �
(

1 +
r′

R′

)2

,

we obtain immediately the desired inequality (18). The proof of Theorem 2 is com-
plete. �

As a consequence of Theorem 2, letting A , B , C be the angles of a triangle
and using the law of sine, it yields immediately the following interesting and valuable
inequality between two triangles.

COROLLARY 1. For any triangle ABC and triangle A′B′C′ , the following inequal-
ity holds true

R

(
1
r′

+
1
R′

)
� a

a′
+

b
b′

+
c
c′

. (20)

REMARK 2. In particular, the Bǎndilǎ’s inequality (16) would follow from the
inequality (20) by setting a′ = a, b′ = c, c′ = b (where, it evidently implies that
r′ = r and R′ = R ).

Moreover, putting a′ = b, b′ = c, c′ = a in inequality (20), a new sharpened
version of Euler’s inequality is derived as follows

COROLLARY 2. For any triangle ABC , the following inequality holds true

R
r

� a
b

+
b
c

+
c
a
− 1. (21)
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REMARK 3. It is clear that

a
b

+
b
c

+
c
a
− 1 � 2

3

(
a
b

+
b
c

+
c
a

)
. (22)

Thus, the inequality (21) is stronger than the inequality (17) given by Zhang and Song
et al in [15].
In fact, we can now prove that the inequality (21) is the strongest possible inequalities
of the form

R
r

� μ
(

a
b

+
b
c

+
c
a

)
+ 2 − 3μ. (23)

By using the identity

R
r

=
2abc

(a + b − c)(b + c − a)(c + a − b)
,

we conclude that the inequality (23) is equivalent to the inequality:

2abc
(a + b − c)(b + c − a)(c + a − b)

� μ
(

a
b

+
b
c

+
c
a

)
+ 2 − 3μ. (24)

Putting a = b = 1 , c = ε in (24) and then taking limits as ε → 0 , we get that
μ � 1 . Consequently, the coefficient μ = 1 is best possible in the sense that it cannot
be replaced by a larger constant.

REMARK 4. In a recent paper [16], D. Svrtan and I. Urbiha proved a sharp inequal-
ity:

2abc
(a + b − c)(b + c − a)(c + a − b)

� 1
2

(
1 +

a2

bc
+

b2

ca
+

c2

ab

)
. (25)

By direct computation, we find that

1
2

(
1+

a2

bc
+

b2

ca
+

c2

ab

)
=

(
a
b
+

b
c
+

c
a
−1

)

+
(b+c−a)(c+a−b)(a+b−c)

8abc

(
b+c−a
c+a−b

+
c+a−b
a+b−c

+
a+b−c
b+c−a

−3

)
.

(26)

Combining inequalities (25) and (26), a refinement of inequality (21) is derived as
follows

R
r

� 1
2

(
1 +

a2

bc
+

b2

ca
+

c2

ab

)
� a

b
+

b
c

+
c
a
− 1. (27)

In addition, applying inequalities (21) and (25) to identity (26), we get immediately
the following sharpened version of inequality (21):(

R
r

)2

�
(

a
b
+

b
c
+

c
a
−1

)2

+
1
4

(
b+c−a
c+a−b

+
c+a−b
a+b−c

+
a+b−c
b+c−a

−3

)
. (28)
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