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AN INEQUALITY FOR THE TAKAGI FUNCTION

ZOLTAN BOROS

(communicated by Z. Daréczy)

Abstract. The well-known Takagi function T(x) = > 2%, 2~k dist (x,Z) plays a crucial role
in the theory of approximately convex functions. In order to establish the sharpness of some
Bernstein—Doetsch type results for approximate convexity, we prove that the Takagi function
fulfils the inequality

7(5) <300+ 70+ k)

for all real numbers x and y.

1. Introduction

Let, for every x € R, d(x) = dist (x,Z), and

00 =355 (1)
=0

kel

(where, throughout this paper, R, Z, and N denote the sets of real numbers, integers,
and positive integers, respectively, No = N U {0}, and dist (x,Z) = inf{ [x —s| : s €
Z}). Functions of this type have been investigated by several authors (e.g. [3], [7],
and [10]) as convenient examples for continuous nowhere differentiable functions. In
particular, function T is usually cited as “van der Waerden’s function” (e.g. [1], [2]).
However, as it was also mentioned by Knopp [7], function T had been constructed
earlier by Takagi [9] on the interval [0, 1] in a somewhat different way. Namely,
Takagi determined T'(x) with the aid of the dyadic expansion of x. It seems therefore
historically correct to call 7 the Takagi function. More historical and mathematical
details can be found, for instance, in Kairies” paper [6].

Recently, Hazy and Pales have discovered that the Takagi function plays a specific
role in the theory of approximately convex functions. Namely, in order to extend the
celebrated theorem of Bernstein and Doetsch for approximately midconvex functions,
they have proved the following result [4, Theorem 4].
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THEOREM A. Let X be a normed linear space and let D C X be an open convex
set. Suppose that € and O are nonnegative real numbers, f : D — R fulfils the

inequality
F(ER) LRHO ey o)
forevery x,y € D, and f is locally bounded from above at a point of D. Then
fAx+ (1 =2)y) SAf () + (1= A)f (y) +28 + 2eT(A)[x — y| 3)

holds for all x,y € D and A € [0, 1].

The authors also investigate but do not completely justify the optimality of the
coefficient T(A) in the inequality (3). Zsolt Péles observed that this problem can be
reduced to the verification of the inequality

x+y Tx)+T() 1
T < =
( 2 ) >tk

-l 4)

for every x,y € R. Namely, if (4) holds, then Theorem A can be applied with f =T,
0 =0,and € = % . Substituting these values with x = 1 and y = 0 into (3), we
obtain T(A) on both sides of the inequality. Therefore, if the Takagi function T fulfils
the inequality (4) identically, then the coefficient T(A) in (3) cannot be replaced with
a smaller one for any A € [0, 1].

The aim of this note is to prove inequality (4), which was presented in 2003 by
Péles as a conjecture [3].

We note that analogous questions arise for a two-parameter family of Takagi type

functions when we consider a generalization of Theorem A (see [5]).

2. Basic properties

Forevery n € Ny and x € R, let

On(x) = d(;’:x) and T,(x) = Y ¢(x) . (5)

Obviously,
T = lim 7,(x (©

for every x € R . Moreover, each T, and also T is continuous. Our main idea is that
first we prove a discrete version of inequality (4) for the functions 7, by induction on
n. We support our arguments by encountering some basic properties of these functions.

REMARK. Clearly, Ty = d , and
Tn(x) = Tnfl(x) + ‘Pn(x) (7)
holdsforall n€e N and x € R .

This recursion is also shown by Figure 1.
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0.5 1

0.5 1

FIGURE 1. The restrictions of the functions Ty , ¢3 , and T3 = T2 + @3 to the interval [0, 1].

LEMMA 2.1. Forevery n € Ny and x,y € R we have

ITa(x) = ()| < (n 4 1)]x — . (8)

Proof. Clearly, the definition of the function d yields |d(x) — d(y)| < |x — y| for
all x,y € R. Hence, by (5) we have

1 1
100 (x) = )| = 55 1d(2"x) = d(2y)] < 55 [2%% = 2] = |x =)

o
and
Ta(x) = Tu)| < D 10c(x) — ()] < (n 4+ D)lx =y
k=0
forevery x,y € R and n € Ny . ]

In order to describe the local shape of several functions in consideration, we call
a function f : R — R affine on the interval I if there exist a,b € R such that
f(x) =ax+b forevery x € 1.

PROPOSITION 2.2. If n € Ny and k € Z, then T, is affine on the interval

Proof. The statement can be easily verified by induction on n. Obviously, d(x) = x
for x € [0,1], d(x) = 1 —x for x € [1,1], and d(x + 1) = d(x) for every x € R.

Thus Ty = d is affine on the interval [£, £1] forall k € Z . Now let us assume that

n € N such that T,_ is affine on the interval [zi,l , l;—,}] forall [ € Z . It follows from

(5) and our above observation that, for every k € Z , the function ¢, is affine on the

interval I, = [55 , £4] . Hence, T, = T,— + ¢, is also affine on I, . O
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LEMMA 23. Ifne N and s € Z , then
S S
n(3) =7 (3) :
2n "\ 2n ©)

1 s s+ 1 1
2T, — | Ty |=)—-T, | — || = —. 1
<2n + 2n+l> (2n) ( on ) on ( 0)

Proof. Both identities can be obtained from the recursion (7) if we observe,

additionally, that
K 1
o (55) = grdlo) =0.

and

similarly, ¢, (5+) =0,
K 1 1 1 1
9 <?+ﬁ> :§d<s+§> G

) 1 K s+ 1
2T, ([~ 4 — ) -7, (—) T, -0,
1 <2n + 2n+1> 1\ 20 1 ( n ) 0

since T, is affine on the interval 55, 5;1}. O

and

3. Inequalities

THEOREM 3.1. Ifk,ne€Ny,p€Z,and g€ {p,p+ 1}, then

p p—k q+k k
Ty (Zn+1) + Ty (2n+1) — T ( ontl ) T ( 2n+1) < ? (11)

Proof. Clearly, if k = 0, then both sides of the inequality (11) equal zero.
Therefore, we have to show the validity of (11) in the case when & is a positive integer.
We proceed with induction on n. In order to verify (11) for n = 0, we observe that all
values of the function Ty = d belong to the interval [0, 3], hence

T8+ (4) T (%) -7 ()
= (@) —a () + (a(4) -d

In the next step we assume that » > 1 and the inequality

Po 40 po — ko 4o + ko ko
Tnf ( Tn (_ - Tnf - Tnf g . 12
1 2”) + 1 2”) 1 < on ) 1 < o ) 1 (12)

holds for all ko € No, po € Z , and qo € {po, po+ 1}. Using this assumption, we
have to prove that (11) is fulfilled forevery k e N, pe Z ,and g€ {p,p+1}. We
distinguish eight cases according to the evenness of these parameters.

+k 1 1 _
() <teimen
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Casel: p=2r, q=p,and k = 2j for some r € Z and j € N . Applying (9)
and (12) we obtain

2T (2n+l) - Tn (%) - Tn (22rn+j/)
=201 (3) ~ T (5) ~ T (B) S5 = 5 = 5

In the following seven cases we replace each term of the form T, (225;; ) where s
denotes some integer, with the arithmetic mean of 7}, (3) and T, (55), adding also
the error given by (10). Then (9) allows us to apply the inequality (12).

Casell: p=2r,q=p+1,and k = 2j forsome r € Z and j € N . Then we
have

() on () - () - ()
:é(w () -7 (%) -7 ()
( ) + T, (r;r—nl> o (%) = Th—1 (%W))
w3 (o (5 ) -n(5)-n ()
e (n(3) o () 2n (5 )
. ézf1+§5+%<‘%):%:§'

Caselll: p=2r+1,g=p,and k = 2j forsome r € Z and j € N . Then we
have

2T, (i—ﬁ) - T, (%) — T (W)
-3 (1 (3) - (F) - ()
Al (5 e (P (1))
(o (g 3) 7 () - (5)

1
<=

[\

1 r—j r—j+1 r—j, 1
~ Tn Tn A, 2Tn
(5 n () 2n (5 )
1 rtj r+j+1 7+ 1
+2<Tn( on >+Tn< on ) 2Tn< on +2n+1
| S B 1 1/ 1 1/ 1 2k
<_. — — — N — N = L =
2 2;171—"_2 2;11+2n+2< 2n)+2( 2n) on on
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CaselV:p=2r+1,

q=p+1,and k =2j forsome r € Z and j € N . Then
we have
2r+1 2r+2 2r+1-2j 2r+2+472j
T (W) + T (W) —Tn (ﬁ) — T (ﬁ)
1 r r+1 r—j r+14j
== | Tu- (_) T, =T, =T, P T—
3 (7 ()47 (57) 7 () - (F5))

1 r+1 r+1-—j r+1+j
=3 (o (57) -7 (F50) -7 (55)
1 r 1 r r+1
Y 2Tn ~n A1 - Tn (_) - Tn Y
+ ( (2n + 2n+1) on ( on ))

CaseV:p=2r,q=p,and k=2j+ 1 forsome r € Z and j € Ny

. Then we
have
2r 2r—2j—1 2r+2j+1
2T, <2n+1> — T ( on+l ) — T ( on+l )

r r—j r+j
e () () o ()
1 r r—j—1 r+j+1
+ E (ZTnl (E) *Tnfl ( 2n ) *Tnfl < )>

2n

1 r—j—1 —J j—1 1

~ Tn A, 2Tn

> (n () o () 2 (5 )
1 r+j r+]+1 r+j 1

2 (Tn ( on ) T, ( ) Ty ( on + ontl
i1

1 1 j+1 1 1/ 1 2J+1 1 241 &k
2 2;171—"_2 2n1+2( 2n)+2( 2n>_ on 2n< on _Zn'

+
+

<

We note that strict inequality occurs only in this case.

CaseVI:p=2r,q=p+1,and k=2j+1 forsome r € Z and j € Ny

. Then
we have
2r 2r+1 2r—2j—1 2r+142j+1
() on(520) () o (205
1 r r—j—1 r+j+1
L on (L) -t (L) e (2
s (211 () - 1 () - (55

1 r r+1 r—j r+1+4j
) () e () 2 (£22)

2}1
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1 r 1 r r+1

~ 2Tn ~n Antl *Tn (_) *Tn
+2( <2n +211+1> on ( on )>

1 r—j—1 Jj r—j—1 1
(=)o (F) n (5 ))
j+1

1 1 11 1 1\ 2j+1 &
I R T I T +2( 2n)_ non’

Case VII. p =2r+1,q=p,and k =2j+ 1 forsome r € Z and j € Ny .
Thenwe have p —k=2r—2j, g+ k=2r+2j+2,and

o (55 - (5) - (25222) |
(e () 1 () - (75) s (£2240))
( ( 2n+1) fn (2) & (V;rl»

L2+l _k
2n1 on 2n 2n'

<

CaseVIIl: p=2r+1,qg=p+1,and k =2j+1 forsome r € Z and j € Ny .
Thenwehave g =2r+2,p—k=2r—2j,q+k=2r+2j+3 ,and

2r+1 2r+2 2r—2j 2r+2j+3
I (ﬁ) ”" (ﬁ) — (ﬁ) — I (T)
r+1 r—j r+1+4j
Tn *Tnf Y *Tnf A,
=2 (@) o (57) 1 (7)1 (F57))
1 r+1 r—j r+j+2
2<2Tn 1( n ) Tn—l( on ) Tn—l( on
1 r r+1
5( ( 2”1)_3(?)4"( > ))
1 r+]+1 r+j+2 r+j+1 1
" Tﬂ  An 72Tﬂ  An
e (m () o () (T
J 1
2

B .J+1 LoLoi( 1y _ %l ko
2 2n-d 2n=l 2 202 2n 2n 2n
This completes the proof of Theorem 3.1. (]

It is worth noting that in the sequel we apply only the particular case g = p of
Theorem 3.1. However, the calculations in Case VII show that we cannot restrict our
inductive argument to the verification of the statement only for g = p .
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COROLLARY 3.2. If n € Ny and u, h € R suchthat h > 0, then

2 Ty(u) — Tyt — ) — Ty(u + h) < w (13)

Proof. Let p, = [2""'u] and k, = [2""1h], where [x] denotes the lower integer
part of the real number x. Clearly, p, € Z and k, € Ny . Applying the inequalities
(8) and (11) we obtain

2Ty () — Tou — ) — To(u+ h)
(o) () - () 2 2
+ (Tn (p"z;lk”) - T,,(u—h)) + (Tn (’gtf‘) - Tn(u+h))

kﬂ Pn Pn — kn Pn + kn
< gp ) (2o ]+ [P - |+ P e
kn DPn kn kn 6(” + 1)
2Rl +3(n+1) - 27+ 3(n+ 1)
N 2n h 2n '
O
COROLLARY 3.3. The inequality (4) holds forall x,y € R..
Proof. If we let n tend to infinity, the inequality (13) yields
2T(u) — T(u —h) — T(u+h) <2h (14)

forall u, h € R such that h > 0 . Substituting u = % and h = 1[x — y| into (14)
and rearranging the terms appropriately we obtain the inequality (4). O
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