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ON SOME FURTHER SECOND ORDER INTEGRAL INEQUALITIES

KATARZYNA WOITECZEK-LASZCZAK

(communicated by L.-E. Persson)

Abstract. Some weighted quadratic integral inequalities of the second order involving a function,
its first and second derivative has been derived using the uniform method of obtaining integral
inequalities. An example in which some new integral inequalities with Chebyshev weight
functions appeared has been considered.

1. Introduction

In this paper we would like to derive the integral inequality of the form

/ uh’2di < / (sh2 i rh”z) di, hed, (1)
1 1

where I = (o, ), —co < a < B < o0, r, u and s are real functions of the variable
¢, H is a class of functions defined later on.

We will use the uniform method for obtaining integral inequalities first introduced
by Florkiewicz and Rybarski in [4] for first order integral inequalities and then used to
obtain different types of integral inequalities involving a function and its first derivative
(for references see [3] , [7]) and then, in [7] applied to obtain second order integral
inequalities of Hardy type of the form

/ shdt < / rhdt,  heH, 2)
1 1

In [6] the inequality (2) has been obtained in a different class of functions 4.

Further studies made it possible to extend the method which allowed to obtain in
[5] an inequality of the form (1).

In [5] the uniform method of obtaining integral inequalities is as follows. Given
positive and absolutely continuous weight functions », u# and an auxiliary function
@ > 0, where 2r¢p”’ ¢! + u < 0, there is determined directly the weight function s
and auxiliary functions vy and v;. Then using these functions the class of functions
for which the inequality (1) holds is constructed.
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Now we extend the results obtained in [7], [6] and [5] and we modify the method
which let us obtain the integral inequalities of the form (1) in the new class of functions
H.

Our modification of the method let us for given positive weight functions » and u
and auxiliary function @ > 0, (r¢')' @+ 2r@” +u@? —2r¢'> < 0, determine directly
the weight function s such that a suitable differential identity is satisfied. Next, we use
the obtained differential identity to construct the class A of functions 4, depending
on the auxiliary functions wy, w; and w, for which the considered integral inequality
holds.

Then we derive some new integral inequalities of the form (1) with the Chebyshev
weight functions (i.e. (1 — 1), a = const) on I = (—1,1) and show that for such
a weight functions boundary conditions for the class A can be simplified. We also
illustrate on the cosidered example that the classes H in [5] and A determined in this
paper are different because this extension allows to obtaine the cases that cannot be
obtained in [5].

Integral inequalities is the branch of mathematics which developes rapidly during
last years. It has applications both to other branches of mathematics to other areas (see:
[10]).

Many authors considered the inequality of the form (2) e.g. Nasyrovaand Stepanov
[16], Kufner and Sinnamon [11], Kufner and Wannebo [12]. Further references can be
found in the fairly new book [10] by Kufner and Persson and also in Kufner and Opic
book [9] and in [7]. In fact, (2) is a special case of the higher order Hardy type
inequalities studied in Chapter 4 of the book [10] but the results in this Chapter do not
cover the results in this paper.

However the method used by others was different. Namely they considered the
boundary conditions of the form that functions % and /or its derivatives vanish at the
endpoints and found the conditions for weights such that the inequality is valid. In the
uniform method given positive functions r and auxiliary ¢ satisfying some additional
conditions, e.g. @” < 0 a.e. on I, the weight function s = (r¢")" ¢! is determined
directly and class of functions satisfying some integral and limit conditions for which
the inequality (2) holds is built.

Also the inequalities of the form (1) have been considered by others (see e.g.
Benson [1], Leighton [14], Talenti [17]) but different approach was used. Further
detailed studies can be found in the monographs [8], [13] and [15].

2. Main result

Let I = (a,B), —00 < o < B < 00, be an arbitrary open interval. We denote by
AC(I) the class of real functions absolutely continuous on the interval I, and by AC! (1)
the class of functions f € AC(I) such that f' € AC(I). Let r € AC(I), u € AC(I)
and @ € AC'(I) be given functions such that » > 0, u > 0 and ¢ > 0 on the interval
I and r@” € AC!(I).

Put

s=— [(r(p”)" + (u(p’)'} o L. (3)
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Denote by A the class of functions h € AC'(I) satisfying the following integrability
conditions
/rh”zdt < 00, /shzdt < 00 4)
1 I
and the limit conditions

lim inf <w0h2+2w1hh’+wzh’2) < o0,
— O

lim sup (woh2 + 2wkl + th/z) > —00 (5)
t—p
and
timinf (woh® + 2wihh’ + wah' ) < limsup (woh? + 2wk +wah®) . (6)
—o T—>B

where
wo = (@7 @)} +re" (97 — (r¢") o7 —ug'p™! (7)
wi = r(p7'¢") (8)
wr = ro o). (9)

THEOREM 1. Let w = (r¢’) ¢ + 2r@@” + ug?* — 2r¢"* < 0 almost everywhere
on the interval I.
Then for every function h € H the inequality

/ uh'*d < / (sh2 +rh”2) dr (10)
1 1
holds.

If w# 0 and h £ 0 then the inequality (10) becomes an equality if and only if
h = c@ with ¢ = const # 0 and the additional conditions

g, lim (woh2 + 2wihi + th’z) = lim (w0h2 + 2wk + th’z) (11)
— r—

are satisfied.

Proof. This proof is a modification of the proof of Theorem 1 in [5], [6]. It has
been shown in [5] that the identity

" — bl + sh? = (voh® + 2vihh') + 12
g

holds, where

vo = r@" (@) — (rg") o™ —ug'@", (13)
v = rg"¢! (14)
and

g1=r [fp(fp*lh)” Jr2<10'(<071h)/}2 — (2re@" + u¢?) [((p*lh)’r (15)
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is valid almost everywhere on I. Now we transform the right hand side of the identity
(12).

Let h € AC!(I). By virtue of (7),(8) and (9) and from assumptions we have
@~'h € AC'(I) and woh? + 2w hh' +w,h'> € AC(I). If we substitute h = @f , where
f € ACY(I), in the expression rh""> — ul/> + sh?, then we have

= " (o) +rl(ef" + o) + '] — 2r9"f .

Moreover, by using the identities

V(PN (mfZ)” _ (r(p//)// (pfz _ {rq)// (qon)’ _ (r(p//)/q)fz}/

and
o'+ "o = (r0)o'f "+ (rg) o) + (re!) of ¥ — (rY of
+2r0 1 + r(gf " + ¢'f ')
= (ro0's”) + (20”00 0) > 4rlor "+ olf )
we obtain
= (") o>+ [re” (o) — (r0") o + rog'f ’2}/
"+ ¢t = (2r09" ~ 210" + (rg)0) f7. (16)
Similarly
wh® = u (91 + 20911 + "),
and, due to the fact that
ug' (of) = ugf? + 2up@'ff',
we obtain
uh”” = ug’ (o) + up?f”. (17)
Moreover
sh? == [(r¢")" + (o'} | o
and using
(ug) of > = (upe'f?) — ug’ (@f*)’
we get

sh* = —(r")" of > — (up@'f?) + ug'(gf*) (18)



ON SOME FURTHER SECOND ORDER INTEGRAL INEQUALITIES 771
From (16), (17) and (18) substituting f = @~'h, @f> = @~ 'h?, inthe expression
ro"(of?) — (ro") of > + ro@'f”* — ug@'f?,
we have
(r (07'¢") +ro" (97") - (rfp”)'fp’lfufp’fp") W+ 2r (9~ ') ki +ro ' ¢'n”
=woh® + 2wihh' + wih'”.

Therefore we get the following identity

" — uh'”® + sh® = (woh2 + 2wk + th’z)/ +eg, (19)
where
g = rlo(@ )" +o (o'n)] = (@) o +2r00" +ug>~2r9" ) [(07'1)'] 2
= oo + o (070)] w0 (20)

The identity (19) is valid almost everywhere on I and, according to assumptions,
we have g > 0 a.e. on I

Now let h € H. The first condition of (4) implies that the function ri”’* is
summable on I since rh""* > 0 on L. It follows from the assumptions that the functions

I
uh'*, sh* and (woh2 + 2w hh' + woh! 2) are summable on each compact interval

[a,b] C 1.
Thus by (19) we get the summability of the function g on [a, b] C I and we obtain
the equality

b

a

b b b
/ (i 4 sh?) dr = / uh*di + (wol? + 2wih’ +woh®) |+ / gdr. (21)

for arbitrary @ < a < b < B. In view of (5) there exist two sequences {a,} and {b,}
such that a < a, < b, < B, a, — o, b, — B and

> —00

an

lim [— (woh2 2wl + wzh'z)]

n—oo

> —00.
n—oo

lim (w0h2 T 2wihh + wzh’z)

n

Thus there is a constant C such that

by
(woh2 2wl + wzhlz)

> C > —o0.

An

By virtue of the condition g > 0 a.e. on I, the assumption that ¥ > 0 on / and from
the equality (21) we infer that

by
/ (m”z T shz) di>C

n
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and from this by letting n — oo we obtain

/(rh”2 +5I?) di > C > ~oc.
1
By this estimate and by (4) we conclude that rh” * 4+ sh? is summable on I. Next, in a
similar way using (21) and the summability of the function rh” * 4 sh* on I we prove,
in turn, the summability of the functions uh’ * and g on . Thus all the integrals in the
equality (21) have finite limits as ¢ — o or b — f3, and hence both of the limits in
(5) are proper and finite. Therefore the conditions (5) and (6) may be written in the
equivalent form

~ 00 < lim (w0h2 + 2wk + th’z) < lim (w0h2 + 2wk + th’z) <o (22)
— 0 —

Now by (21) as a — a and b — 3 we obtain the equality

/ (rh"zdt+sh2) di = / uh’® + / gd
1 1 1

+ lim (w0h2 + 2wk + wzhlz) ~ lim (w0h2 + 2wk + wzhlz) . (23)
11— —

whence, in view of (22), the inequality (10) follows since g > 0 a.e. on[.

The proof of equality condition follows as the proof of equality condition in [6]
however in [6] conditions for w were different.

If the inequality (10) becomes an equality for a non-vanishing function 7 € A,
then by (22) and (23) we have

/gdtzO
I

lim (wohz S+ 2w+ th’z) = lim (woh2 + 2wk + W2h'2) . (24)
—a t—
As g > 0 a.e. on] we obtain g =0 a.e. on/. Hence

(p(@*lh)// + 2(p’((p*1h)/ =0 (25)
a.e. on / and

W [(quh)’r —0

a.e. on 1. According to the equality assumptions w = (r¢’) @+ 2r@@" +u@*—2r¢’* #
0. Moreover it follows from the assumptions that w < 0 and w € AC(I). Therefore
w < 0 on some (a,b) € I. Whence (¢'h) (1) = 0O for some 7y € I and the
function (¢~ 'h)" € AC(I) satisfies the homogeneous linear differential equation (25)
with the initial value (¢~'h) (19) = 0, and whence (¢~'h)’ = 0 on I. This implies
that 1 = c¢, where ¢ = const # 0, since ¢ 'h € AC'(I). Thus ¢ € H so that
we obtain the first condition of (11) and from the second condition of (24) we get the
second condition of (11).
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Now let (11) be satisfied and let & = c@ , where ¢ = const # 0. That implies
g=0ae. onlsothat [, gdr=0 and,in view of (23), the inequality (10) becomes an
equality which completes the proof.

3. Example

Now we derive some new integral inequalities with the Chebyshev weight functions
and show, by using [6], that in some cases the limit conditions can be simplified.

EXAMPLE. Let us take / = (—1,1) and the functions r = (1 —)", u =

A(l ftz)a_l and ¢ = (1 7t2)2—a on I, where a and A are arbitrary constants
such that @ < 1 and A > 6 —4a on I. Then

s=Q2-a)A+4a—6)(1-7) >0,

on I. Moreover

—(6a— 124+ A+ (4—2a—A4)) (1-2)" <0

on I, since

4-2a—A<4—-2a—-6+4a=2(a—-1)<0
and

6a—12+A=(4a—-6+A)+2(a—-1)—-10<0.

Therefore from (10) we obtain the inequality
1
A/ (1—2)" " W
-1
! a—2 ! a 2
<(2—-a)(A+4da— 6)/ (1-7) h2dt+/ (1—7)"h""dr, (26)
—1 —1

which holds for & € AC'(—1, 1) satisfying the integral conditions

1 1
/ (1—2)"1"dt < o, / (1—2) Kdr < (27)
-1 -1

and the limit condition (22) with wy, w; and w; equal to:

wo(t) =22 —a)1 [A+6a— 10 — ( —2)7] (1 - )“‘32 do(t)(1—2)" 7,
wi(t) =4a—2) (1+72) (1-72)"" t(l £)

wa(t) = 2(a — 2)t(1 - 2)" " = cﬁz(t)(l )

respectively.

Now we show that a function 7 € AC'((—1, 1)) satisfying the integral conditions
(27) and the limit conditions

h(=1)=H(=1)=h(1) =K (1)=0 (28)
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belongs to the class A using the method introduced in [6].
It was shown in [6] that if A(1) = #’(1) = 0 and f_ll (1 —2)“Wdr < oo, then
the limit condition
lim (1, b, 1) = 0

is satisfied, where

S(t 1) = wo()) (1-2) 7> 2o (1) (1-2) 7 Wi +a () (1-2) " 1> (29)
with
wo(t) =4(a—2)1 [(5 —3a) + (a — 1)F*],
() =4a-2) (1+7),
w(t) =2(a—2)t.

It is easy to see that if we put @y instead if wy, @, instead of w; and @, instead
of w, than we obtain that

S(Lh,h’) = lim ((I)O([)(l _ tz)a73 - (2)1([)(1 B tz)a72 W

+in(r)(1—2)" h’z) ) (30)

provided that integral conditions (27) are fulfilled.
In analogous way we show that if A(—1) = #’'(—1) = 0 and (27) holds, then

lim S(t,h, ') = 0.

t——

Based on the above considerations we obtain that from the conditions (27) and
(28) follows the limit condition (22).
Therefore we get the following:

LEMMA. Ifa function h € AC'((—1,1)) satisfies the integral condition

1 1
/ (1—2)" W"dr < oo, / (1- tz)afzhzdt < oo
-1 -1

and the limit conditions
h(=1)=H(=1)=h(1)=H1) =0,

then the inequality

1 1
(1-2)" "W+ / (1= n"dr,
-1

! a—1_,2
A/_l(l—ﬁ) W7dt < (2—a)(A+4a—6)/

~1
holdson I = (—1,1), where a <1, A>6—4a on I.

The inequality (26) becomes an equality if and only if A = ¢ (1 — tz)z_a, where
¢ = const.
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REMARK. In the paper [5] the inequality (26) was derived under the assumption
that 1 < a < % on [. This assumption appeared as a result of the condition w =
2r@" @' +u < 0. Indeed since r, u and ¢ are positive it is necessary that ¢” < 0

and the inequality (26) with a < 1 cannot be obtained from Theorem 1 in [5], as for
such a the function ¢ = (1 — tz)zfa doesn’t satisfy the condition ¢” < 0 on (—1,1).

In this paper for a < 1 we have w = (r¢’) @ + 2rop@” + up® — 2r¢’* < 0 so the
inequality (26) follows from Theorem 1. Therefore the classes of functions % for which
the inequality (1) holds obtained in [5] and in this paper are not equal.
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