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Abstract. In this paper, a new systemof general nonlinear variational inclusions involving (A,η) -
accretive mappings in Banach spaces is introduced and studied, which includes many variational
inequality (inclusion) problems as special cases. By using the resolvent operator technique
for (A,η) -accretive mapping due to Lan-Cho-Verma, an existence and uniqueness theorem
of solutions for this system of variational inclusion is proved. A new iterative algorithm for
finding approximate solution of this system variational inclusion is suggested and discussed,
the convergence and stability of iterative sequence generated by new iterative algorithm is also
given. The theorems presented in this paper improve and unify many known results variational
inequalities and variational inclusions.

1. Introduction

Variational inequalities and variational inclusions are among the most interesting
and importantmathematical problems and have been studied intensively in the past years
since they have wide applications in mechanics, physics, optimization and control,
nonlinear programming, economics, and transportation equilibrium, and engineering
sciences, etc. In the theory of variational inequalities and variational inclusions, the
development of an efficient and implementable iterative algorithm is interesting and
important. Various kinds of iterative algorithms to solve the variational inequalities
and inclusions have been developed by many authors. For details, we refer the reader
to [1]-[36] and the references therein. Among these methods, the resolvent operator
techniques for solving variational inequalities and variational inclusions are interesting
and important.

Zhu-Marcotte [36] introduced and investigated a class of system of variational
inequalities in Rn . Afterwards, Ansari and Yao [3], Cho et al. [4], Fang and Huang [8],
Fang et al. [9], He et al.[14], Jin [20], Kazmi and Bhat [22], Verma [27]-[29], [32]and
others studied the approximation solvability of a few kinds of systems of variational
inequalities (inclusions).
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On the other hand, in 2001, Huang and Fang [37] were the first to introduce the
generalized m -accretive mapping and give the definition of the resolvent operator for the
generalized m -accretive mappings in Banach spaces. They also showed some properties
of the resolvent operator for the generalized m -accretive mappings in Banach spaces.
For further works, see Huang [15] and the references therein. Recently, inspired and
motivated by the works of [7], [9]–[11], [15], [30], [31], [37]. Lan et al. [24] introduced
a new concept of (A,η) -accretive mappings, which generalizes the existing monotone
or accretive operators, and studied some properties of (A,η) -accretive mappings and
defined resolvent operators associated with (A,η) -accretive mappings. They also
studied a class of variational inclusions using the resolvent operator associated with
(A,η) -accretive mappings.

Inspired and motivated by recent research works in this field, in this paper, we shall
introduce and study a new system of general nonlinear variational inclusions involving
(A,η) -accretivemappings inBanach spaces,which includesmany variational inequality
(inclusion) problems as special cases. By using the resolvent operator technique for
(A,η) -accretive mapping due to Lan-Cho-Verma, an existence and uniqueness theorem
of solutions for this system of variational inclusion is proved. A new iterative algorithm
for finding approximate solution of this system variational inclusion is suggested and
discussed, the convergence and stability of iterative sequence generated by new iterative
algorithm is also given. The theorems presented in this paper improve and unify many
known results variational inequalities and variational inclusions.

2. Preliminaries

Throughout this paper, we assume that X is a real Banach space with dual space
X∗ , 〈 ·, ·〉 is the dual pair between X and X∗ , and 2X denote the family of all the
nonempty subsets of X . The generalized duality mapping Jq : X → 2X∗

is defined by

Jq(x) = {f ∗ ∈ X∗ : 〈 x, f ∗〉 = ‖x‖q, ‖f ∗‖ = ‖x‖q−1}, ∀x ∈ X,

where q > 1 is a constant. In particular, J2 is the usual normalized duality mapping.
It is known that, in general, Jq(x) = ‖x‖q−2J2(x) for all x �= 0 and Jq is single-valued
if X∗ is strictly convex, and if X = H , the Hilbert space,then J2 becomes the identity
mapping on H .

The modulus of smoothness of X is the function ρX : [0,∞) → [0,∞) defined
by

ρX(t) = sup

{
1
2
(‖x + y‖ + ‖x − y‖) − 1 : ‖x‖ � 1, ‖y‖ � t

}
.

A Banach space X is called uniformly smooth if

lim
t→0

ρX(t)
t

= 0.

X is called q -uniformly smooth if there exists a constant c > 0 , such that

ρX(t) � ctq, q > 1.

Note that Jq is single -valued if X is uniformly smooth. In the study of characteristic
inequalities in q -uniformly smooth Banach spaces, Xu [38] proved the following result:
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LEMMA 2.1. ([38]) Let X be a real uniformly smooth Banach space. Then X
is q -uniformly smooth if and only if there exists a constant Cq > 0 , such that for all
x, y ∈ X ,

‖x + y‖q � ‖x‖q + q〈 y, Jq(x)〉 + Cq‖y‖q.

DEFINITION 2.1. Let X1, X2 be real Banach spaces. Let Q be a mapping from
X1 × X2 → X1 × X2 , (x0, y0) ∈ X1 × X2 and (xn+1, yn+1) = f (Q, xn, yn) define an
iterative procedure which yields a sequence of points {(xn, yn)} in X1 × X2 . Let
F(Q) = {(x, y) ∈ X1 × X2 : (x, y) = Q(x, y)} �= φ . Suppose that {(xn, yn)} con-
verges to (x∗, y∗) ∈ F(Q) . Let {(un, vn)} be an arbitrary sequence in X1 × X2

and εn = ‖{(un+1, vn+1)} − f (Q, un, vn)‖ for each n � 0 . If lim
n→∞ εn = 0 implies

that lim
n→∞(un, vn) = (x∗, y∗) , then the iteration procedure defined by (xn+1, yn+1) =

f (Q, xn, yn) is said to be Q -stable or stable with respect to Q .

REMARK 2.1. Recently, some stability results of iteration procedures for variational
inequalities (inclusions) have been established by various authors, see for example
[2, 16, 21, 23, 26].

LEMMA 2.2. ([39]) Let {an} be a nonnegative real sequence and {bn} be a real

sequence in [0, 1] such that
∞∑

n=0
bn = ∞ . If there exists a positive integer n1 such that

an+1 � (1 − bn)an + bncn, ∀n � n1,

where cn � 0 for all n � 0 and cn → 0(n → ∞) , then lim
n→∞ an = 0 .

DEFINITION 2.2. A single-valuedmapping η : X×X → X is said to be τ -Lipschitz
continuous if there exists a constant τ > 0 such that ‖η(x, y)‖ � τ‖x − y‖, ∀x, y ∈ X .

DEFINITION 2.3. Let η : X × X → X and A : X → X be single-valued mappings.
Then set-valued mapping M : X → 2X is said to be

(i) accretive if

〈 u − v, Jq(x − y)〉 � 0, ∀x, y ∈ X, u ∈ M(x), v ∈ M(y);

(ii) η -accretive if

〈 u − v, Jq(η(x, y))〉 � 0, ∀x, y ∈ X, u ∈ M(x), v ∈ M(y);

(iii) strictly η -accretive if M is η -accretive and equality holds if and only if
x = y ;

(iv) r -strongly η -accretive if there exists a constant r > 0 such that

〈 u − v, Jq(η(x, y))〉 � r‖x − y‖q, ∀x, y ∈ X, u ∈ M(x), v ∈ M(y);

(v) α -relaxed η -accretive if here exists a constant m > 0 such that

〈 u − v, Jq(η(x, y))〉 � (−α)‖x − y‖q, ∀x, y ∈ X, u ∈ M(x), v ∈ M(y).
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In a similar way, we can define strictly η -accretivity and strongly η -accretivity
of the single-valued mapping A .

DEFINITION 2.4. Let A : X → X,η : X × X → X is two single-valued mappings.
Then a set-valued mapping M : X → 2X is called (A,η) -accretive if M is m -relaxed
η -accretive and (A + ρM)(X) = X for every ρ > 0 .

REMARK 2.2. For appropriate and suitable choices of m, A,η and X , it is easy to
see Definition 2.4 includes a number of definitions of monotone operators and accretive
operators (see [24]).

In [24], Lan et al. showed that (A + ρM)−1 is a single-valued operator if M :
X → 2X be an (A,η) -accretive mapping and A : X → X be r -strongly η -accretive
mapping. Based on this fact, we can define the resolvent operator Rη,M

ρ,A associated with
an (A,η) -accretive mapping M as follows:

DEFINITION 2.5. Let A : X → X be a strictly η -accretive mapping and M : X →
2X be an (A,η) -accretive mapping. The resolvent operator Rη,M

ρ,A : X → X is defined
by

Rη,M
ρ,A (x) = (A + ρM)−1(x), ∀x ∈ X.

LEMMA 2.3. ([24]) Let η : X × X → X be τ -Lipschitz continuous, A : X → X
be r -strongly η -accretive mapping and M : X → 2X be an (A,η) -accretive mapping.

Then the resolvent operator Rη,M
ρ,A : X → X is τq−1

r − ρm -Lipschitz continuous, i. e.,

‖Rη,M
ρ,A − Rη,M

ρ,A (y)‖ � τq−1

r − ρm
‖x − y‖, ∀x, y ∈ X,

where ρ ∈ (0, r
m) is a constant.

3. A system of general variational inclusions and iterative algorithm

In this section, we shall introduce a new system of general variational inclusions
involving (A,η) -accretive mappings and construct a new iterative algorithm for solving
this kind of system of general variational inclusions in Banach spaces. In what follows,
unless other specifird, we assume that for i = 1, 2 , Xi be real qi -uniformly smooth
Banach spaces with norm ‖ · ‖i .

For i = 1, 2 , let ηi : Xi × Xi → Xi , Ai, gi : Xi → Xi , F : X1 × X2 → X1 ,
G : X1 ×X2 → X2 be nonlinear mappings, and Let Mi : Xi → 2Xi be (Ai,ηi) -accretive
mappings. We consider the following problem of find (x, y) ∈ X1 × X2 such that{

0 ∈ F(x, y) + M1(g1(x)),
0 ∈ G(x, y) + M2(g2(y)).

(3.1)

Problem (3.1) is called a system of general variational inclusions involving (A,η) -
accretive mappings.

We remark that for suitable choices of themappings F, G, A1, A2, g1, g2,η1,η2, M1, M2

and the spaces X1, X2 , problem (3.1) includes many system of variational inequality
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(inclusion) problems as special cases, see for example, [1], [4], [6]-[9], [11], [13]–[15],
[22], [27]–[29] and the references therein.

DEFINITION 3.1. A single-valued mappings T : X1 → X1 is said to be
(i) accretive if

〈T(x) − T(y), Jq1(x − y)〉 � 0, ∀x, y ∈ X1;

(ii) r -strongly accretive if there exists a constant r > 0 such that

〈T(x) − T(y), Jq1(x − y)〉 � r‖x − y‖q1
1 , ∀x, y ∈ X1;

(iii) s -relaxed cocoercive if there exists a constant s > 0 such that

〈T(x) − T(y), Jq1(x − y)〉 � (−s)‖T(x) − T(y)‖q1
1 , ∀x, y ∈ X1;

(iv) (α, ξ) -relaxed cocoercive if there exist constants α, ξ > 0 such that

〈T(x) − T(y), Jq1(x − y)〉 � (−α)‖T(x) − T(y)‖q1
1 + ξ‖x − y‖q1

1 , ∀x, y ∈ X1;

(v) t -Lipschitz continuous if there exists a constant t > 0 such that

‖T(x) − T(y)‖1 � t‖x − y‖1, ∀x, y ∈ X1.

DEFINITION 3.2. Let A : X1 → X1 and F : X1 × X2 → X1 be single-valued
mappings. F is said to be

(i) (α, β) -Lipschitz continuous, if there exist constants α > 0 , β > 0 such
that

‖F(x1, y1) − F(x2, y2)‖1 � α‖x1 − x2‖1 + β‖y1 − y2‖2, ∀x,x2 ∈ X1, y1, y2 ∈ X2.

(ii) (a, b) -relaxed cocoercive with respect to A in first argument if there exist
constants a, b > 0 such that

〈F(x1, y)−F(x2, y), Jq1(A(x1)−A(x2))〉 � (−a)‖F(x1, y)−F(x2, y)‖q1
1 +b‖x1−x2‖q1

1 ,

for all x1, x2 ∈ X1, y ∈ X2.

LEMMA 3.1. For any given (x, y) ∈ X1 × X2 , (x, y) is a solution of problem (3.1)
if and only if (x, y) satisfies⎧⎨

⎩
g1(x) = Rη1,M1

ρ1,A1
[A1(g1(x)) − ρ1F(x, y)],

g2(y) = Rη2,M2
ρ2,A2

[A2(g2(y)) − ρ2G(x, y)],
(3.2)

where ρ1, ρ2 > 0 are constants.

Proof. This directly follows from Definition 2.5. �
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REMARK 3.1. The equality (3.2) can be written as⎧⎨
⎩

x = x − g1(x) + Rη1,M1
ρ1,A1

[A1(g1(x)) − ρ1F(x, y)],

y = y − g2(y) + Rη2,M2
ρ2,A2

[A2(g2(y)) − ρ2G(x, y)],
(3.3)

where ρ1, ρ2 > 0 are constants. This fixed point formulation enables us to suggest the
following iterative algorithm.

ALGORITHM 3.1.. For i = 1, 2 , assume that ηi, Ai, gi, Mi, Xi, F and G be as in
problem (3.1). Let {αn}∞n=0 and {βn}∞n=0 be two sequences such that αn, βn ∈ [0, 1]

and
∞∑
n=0

αn = ∞ . Let {(en, f n)} be a sequence in X1 × X2 introduced to take into

account possible incxact computation. For any given (x0, y0) ∈ X1 × X2 , define the
iterative sequence {(xn, yn)} by{

xn+1 = (1 − αn)xn + αn[xn − g1(xn) + Rη1,M1
ρ1,A1

(A1(g1(xn)) − ρ1F(xn, yn))] + αnen,

yn+1 = (1 − αn)yn + αn[yn − g2(yn) + Rη2,M2
ρ2,A2

(A2(g2(yn)) − ρ2G(xn, yn))] + αnf n,

for n = 0, 1, 2, · · · .
Let {(un, vn)} be any sequence in X1 × X2 and define {εn} by

εn = ‖(un+1, vn+1) − (An, Bn)‖∗, (3.4)

where

An = (1 − αn)un + αn[un − g1(un) + Rη1,M1
ρ1,A1

(A1(g1(un)) − ρ1F(un, vn))] + αnen, (3.5)

Bn = (1 − αn)vn + αn[vn − g2(vn) + Rη2,M2
ρ2,A2

(A2(g2(vn)) − ρ2G(un, vn))] + αnf n, (3.6)

for n = 0, 1, 2, · · · .

REMARK 3.2. If we choose suitable αn, en, f n , A1, A2,η1,η2, g1, g2, M1, M2, F, G
and the spaces X1, X2 , then Algorithm 3.1 can be degenerated to a number of algorithms
involving many known algorithms which due to classes of variational inequalities and
variational inclusions (see, for example, [1], [4], [6]–[9], [11], [13]–[15], [22], [27]–[29]).

4. Existence and convergence theorems

In this section, we shall prove existence and uniqueness of solutions for problem
(3.1) and the convergence and stability of iterative sequence generated by Algorithm
(3.1).

THEOREM 4.1. For i = 1, 2 , let Xi be qi -uniformly smooth Banach spaces. Let
ηi : Xi × Xi → Xi be τi -Lipschitz continuous, Ai : Xi → Xi be ri -strongly ηi -
accretive and γi -Lipschitz continuous, gi : Xi → Xi be (si, ti) -relaxed cocoercive
and δi -Lipschitz continuous, Mi : X → 2X be (Ai,ηi) -accretive mappings. Let
F : X1 × X2 → X1 be (a, b) -relaxed cocoercive with respect to A1 ◦ g1 in the first
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argument and (μ1, ν1) -Lipschitz continuous, G : X1 × X2 → X2 be (c, d) -relaxed
cocoercive with respect to A2 ◦ g2 in the second argument and (μ2, ν2) -Lipschitz
continuous. If there exist constant ρ1 ∈ (0, r1

m1
) and ρ2 ∈ (0, r2

m2
) such that{

k1 = θ1 + λ1l1 + ρ2μ2l2 < 1,
k2 = θ2 + λ2l2 + ρ1ν1l1 < 1.

(4.1)

where

θ1 = (1 − q1t1 + q1s1δ q1
1 + Cq1δ

q1
1 )

1
q1 , θ2 = (1 − q2t2 + q2s2δ q2

2 + Cq2δ
q2
2 )

1
q2 ,

λ1 = (γ q1
1 δ q1

1 − q1ρ1b + q1ρ1aμq1
1 + Cq1ρ

q1
1 μ

q1
1 )

1
q1 ,

λ2 = (γ q2
2 δ q2

2 − q2ρ2d + q2ρ2cνq2
2 + Cq2ρ

q2
2 ν

q2
2 )

1
q2 ,

l1 =
τq1−1
1

r1 − ρ1m1
, l2 =

τq2−1
2

r2 − ρ2m2
.

Then problem (3.1) admits a unique solution.

Proof. For any given ρi > 0 (i = 1, 2) , define T : X1 × X2 → X1 and S :
X1 × X2 → X2 by

T(x, y) = x − g1(x) + Rη1,M1
ρ1,A1

[A1(g1(x)) − ρ1F(x, y)],

S(x, y) = y − g2(y) + Rη2,M2
ρ2,A2

[A2(g2(y)) − ρ2G(x, y)], (4.2)

for all (x, y) ∈ X1 × X2 .
For any (x1, y1), (x2, y2) ∈ X1 × X2 , it follows from (4.2) and Lemma 2.3 that

‖T(x1, y1) − T(x2, y2)‖1

� ‖x1 − x2 − (g1(x1) − g1(x2))‖1 + ‖Rη1,M1
ρ1,A1

[A1(g1(x1)) − ρ1F(x1, y1)]

−Rη1,M1
ρ1,A1

[A1(g1(x2)) − ρ1F(x2, y2)]‖1

� ‖x1 − x2 − (g1(x1) − g1(x2))‖1 +
τq1−1

r1 − ρ1m1
(ρ1‖F(x2, y1) − F(x2, y2)‖1

+‖A1(g1(x1)) − A1(g1(x2)) − ρ1(F(x1, y1) − F(x2, y1))‖1). (4.3)

By assumptions, we have

‖x1 − x2 − (g1(x1) − g1(x2))‖q1
1

� ‖x1 − x2‖q1
1 − q1〈 g1(x1) − g2(x2), Jq1(x1 − x2)〉 + Cq1‖g1(x1) − g1(x2)‖q1

1

� (1 − q1t1 + q1s1δ q1
1 + Cq1δ

q1
1 )‖x1 − x2‖q1

1 (4.4)
‖A1(g1(x1)) − A1(g1(x2)) − ρ1(F(x1, y1) − F(x2, y1))‖q1

1

� ‖A1(g1(x1)) − A1(g1(x2))‖q1
1 + Cq1ρ

q1
1 ‖F(x1, y1) − F(x2, y1)‖q1

1

−q1ρ1〈F(x1, y1) − F(x2, y1), Jq1(A1(g1(x1)) − A1(g1(x2)))〉
� (γ q1

1 δ q1
1 − q1ρ1b + q1ρ1aμq1

1 + Cq1ρ
q1
1 μ

q1
1 )‖x1 − x2‖q1

1 (4.5)
‖F(x2, y1) − F(x2, y2)‖1 � ν1‖y1 − y2‖2. (4.6)
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From (4.3)–(4.6), we have

‖T(x1, y1) − T(x2, y2)‖1 � (θ1 + λ1l1)‖x1 − x2‖1 + l1ρ1ν1‖y1 − y2‖2, (4.7)

where

l1 =
τq1−1
1

r1 − ρ1m1
, θ1 = (1 − q1t1 + q1s1δ q1

1 + Cq1δ
q1
1 )

1
q1 ,

λ1 = (γ q1
1 δ q1

1 − q1ρ1b + q1ρ1aμq1
1 + Cq1ρ

q1
1 μ

q1
1 )

1
q1 .

Similarly, we can prove that

‖S(x1, y1) − S(x2, y2)‖2 � (θ2 + λ2l2)‖y1 − y2‖2 + l2ρ2μ2‖x1 − x2‖1. (4.8)

where

l2 =
τq2−1
2

r2 − ρ2m2
, θ2 = (1 − q2t2 + q2s2δ q2

2 + Cq2δ
q2
2 )

1
q2 ,

λ2 = (γ q2
2 δ q2

2 − q2ρ2d + q2ρ2cνq2
2 + Cq2ρ

q2
2 ν

q2
2 )

1
q2 .

From (4.7) and (4.8), we have

‖T(x1, y1) − T(x2, y2)‖1 + ‖S(x1, y1) − S(x2, y2)‖2

� k1‖x1 − x2‖1 + k2‖y1 − y2‖2

� k(‖x1 − x2‖1 + ‖y1 − y2‖2), (4.9)

where k = max{k1, k2} , k1 = θ1 + λ1l1 + ρ2μ2l2 , k2 = θ2 + λ2l2 + ρ1ν1l1.
Define the norm ‖ · ‖∗ on X1 × X2 by

‖(x, y)‖∗ = ‖x‖1 + ‖y‖2, (x, y) ∈ X1 × X2. (4.10)

It is easy to see that (X1 × X2, ‖ · ‖∗) is a Banach space. Define Q(x, y) : X1 × X2 →
X1 × X2 by

Q(x, y) = (T(x, y), S(x, y)), ∀(x, y) ∈ X1 × X2.

By (4.1), we know that 0 < k < 1 . It follows from (4.9) and (4.10) that

‖Q(x1, y1) − Q(x2, y2)‖∗ � k‖(x1, y1) − (x2, y2)‖∗.
This proves that Q(x, y) : X1 × X2 → X1 × X2 is a contraction mapping. Hence,
by Banach contraction principle, there exists a unique (x∗, y∗) ∈ X1 × X2 such that
Q(x∗, y∗) = (x∗, y∗) , which implies that{

g1(x∗) = Rη1,M1
ρ1,A1

[A1(g1(x∗)) − ρ1F(x∗, y∗)],
g2(y∗) = Rη2,M2

ρ2,A2
[A2(g2(y∗)) − ρ2G(x∗, y∗)].

It follows from Lemm 3.1 that (x∗, y∗) is the unique solution of problem (3.1). This
completes the proof. �
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THEOREM 4.2. For i = 1, 2 , let ηi, Ai, gi, Mi, Xi, F and G be the same as in
Theorem 4.1 and let condition (4.1) of Theorem 4.1 hold. Then:

(i) If lim
n→∞ ‖(en, f n)‖∗ = 0 , then approximate solution (xn, yn) generated by

Algorithm 3.1 converges strongly to the unique solution (x∗, y∗) of problem (3.1).
(ii) Moreover, if 0 < α < αn , then lim

n→∞(un, vn) = (x∗, y∗) if and only if

lim
n→∞ εn = 0 .

Proof. It follows from Theorem 4.1 that problem (3.1) has the unique solution
(x∗, y∗) . Hence, by Lemma 3.1, we have⎧⎨

⎩
g1(x∗) = Rη1,M1

ρ1,A1
[A1(g1(x∗)) − ρ1F(x∗, y∗)],

g2(y∗) = Rη2,M2
ρ2,A2

[A2(g2(y∗)) − ρ2G(x∗, y∗)],
(4.11)

From Algorithm 3.1 and Lemma 2.3, we obtain

‖xn+1 − x∗‖1

� (1 − αn)‖xn − x∗‖1 + αn‖xn − x∗ − (g1(xn) − g1(x∗))‖1 + αn‖en‖1

+αn‖Rη1,M1
ρ1,A1

[A1(g1(xn)) − ρ1F(xn, yn)] − Rη1,M1
ρ1,A1

[A1(g1(x∗)) − ρ1F(x∗, y∗)]‖1

� (1 − αn)‖xn − x∗‖1 + αn‖xn − x∗ − (g1(x1) − g1(x2))‖1 + αn‖en‖1

+αnl1(‖A1(g1(xn)) − A1(g1(x∗)) − ρ1(F(xn, yn) − F(x∗, yn))‖1

+ρ1‖F(x∗, yn) − F(x∗, y∗)‖1). (4.12)

where l1 = τq1−1
1

r1−ρ1m1
.

By Lemma 2.1, δ1 -Lipschitz continuous and (s1, t1) -relaxed cocoercive of g1 ,
we obtain

‖xn − x∗ − (g1(xn) − g1(x∗))‖q1
1

� ‖xn − x∗‖q1
1 − q1〈 g1(xn) − g1(x∗), Jq1(xn − x∗)〉 + Cq1‖g1(xn) − g1(x∗)‖q1

1

� (1 − q1t1 + q1s1δ q1
1 + Cq1δ

q1
1 )‖xn − x∗‖q1

1 (4.13)

Since, A1 is γ1 -Lipschitz continuous, F is (a, b) -relaxed cocoercive with respect to
A1 ◦ g1 in the first argument and (μ1, ν1) -Lipschitz continuous, then using Lemma 2.1,
we have

‖A1(g1(xn)) − A1(g1(x∗)) − ρ1(F(xn, yn) − F(x∗, yn)‖q1
1

� ‖A1(g1(xn)) − A1(g1(x∗))‖q1
1

−q1ρ1〈F(xn, yn) − F(x∗, yn), Jq1(A1(g1(xn)) − A1(g1(x∗)))〉
+Cq1ρ

q1
1 ‖F(xn, yn) − F(x∗, yn)‖q1

1

� (γ q1
1 δ q1

1 − q1ρ1b + q1ρ1aμq1
1 + Cq1ρ

q1
1 μ

q1
1 )‖xn − x∗‖q1

1 (4.14)
‖F(x∗, yn) − F(x∗, y∗)‖1 � ν1‖yn − y∗‖2. (4.15)

From (4.12)–(4.15), we have

‖xn+1 − x∗‖1 � (1 − αn)‖xn − x∗‖1 + αn[(θ1 + λ1l1)‖xn − x∗‖1

+l1ρ1ν1‖yn − y∗‖2] + αn‖en‖1, (4.16)
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where

l1 =
τq1−1
1

r1 − ρ1m1
, θ1 = (1 − q1t1 + q1s1δ q1

1 + Cq1δ
q1
1 )

1
q1 ,

λ1 = (γ q1
1 δ q1

1 − q1ρ1b + q1ρ1aμq1
1 + Cq1ρ

q1
1 μ

q1
1 )

1
q1 .

Similarly, we have

‖yn+1 − y∗‖2 � (1 − αn)‖yn − y∗‖2 + αn[(θ2 + λ2l2)‖yn − y∗‖2

+l2ρ2μ2‖xn − x∗‖1] + αn‖f n‖2, (4.17)

where

l2 =
τq2−1
2

r2 − ρ2m2
, θ2 = (1 − q2t2 + q2s2δ q2

2 + Cq2δ
q2
2 )

1
q2 ,

λ2 = (γ q2
2 δ q2

2 − q2ρ2d + q2ρ2cνq2
2 + Cq2ρ

q2
2 ν

q2
2 )

1
q2 .

By (4.16) and (4.17), we obtain

‖(xn+1, yn+1) − (x∗, y∗)‖∗
= ‖xn+1 − x∗‖1 + ‖yn+1 − y∗‖2

� (1 − αn)‖(xn, yn) − (x∗, y∗)‖∗ + αn max{k1, k2}‖(xn, yn) − (x∗, y∗)‖∗
+αn‖(en, f n)‖∗

= (1 − (1 − k)αn)‖(xn, yn) − (x∗, y∗)‖∗ + αn‖(en, f n)‖∗, (4.18)

where k = max{k1, k2} , k1 = θ1 + λ1l1 + ρ2μ2l2 , k2 = θ2 + λ2l2 + ρ1ν1l1.
Letting

an = ‖(xn+1, yn+1) − (x∗, y∗)‖∗, bn = (1 − k)αn, cn =
‖(en, f n)‖∗

1 − k
,

then (4.18) can written as

an+1 � (1 − bn)an + bncn.

It follows from Lemma 2.2 that an → 0 (n → ∞) , and so (xn, yn) converges strongly
to the unique solution (x∗, y∗) of problem (3.1).

Now we prove conclusion
(ii) , by (3.4)–(3.6), we obtain

‖(un+1, vn+1) − (x∗, y∗)‖∗ � ‖(un+1, vn+1) − (An, Bn)‖∗ + ‖(An, Bn) − (x∗, y∗)‖∗
� εn + ‖An − x∗‖1 + ‖Bn − y∗‖2. (4.19)

As the proof of in equality (4.16), we have

‖An − x∗‖1 � (1 − αn)‖un − x∗‖1 + αn[(θ1 + λ1l1)‖un − x∗‖1

+ρ1ν1l1‖vn − y∗‖2] + αn‖en‖1, (4.20)
‖Bn − y∗‖2 � (1 − αn)‖vn − y∗‖2 + αn[(θ2 + λ2l2)‖vn − y∗‖2

+ρ2μ2l2‖un − x∗‖1] + αn‖f n‖2. (4.21)
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Since 0 < α < αn , by (4.19)–(4.21) we have

‖(un+1, vn+1) − (x∗, y∗)‖∗
� (1 − (1 − max{k1, k2})αn)‖(un, vn) − (x∗, y∗)‖∗ + αn‖(en, f n)‖∗ + εn

� (1 − (1 − k)αn)‖(un, vn) − (x∗, y∗)‖∗ + (1 − k)αn

[‖(en, f n)‖∗
1 − k

+
εn

(1 − k)α

]
.

where k = max{k1, k2} , k1 = θ1 + λ1l1 + ρ2μ2l2 , k2 = θ2 + λ2l2 + ρ1ν1l1.

Suppose that lim
n→∞ εn = 0 . Then from

∞∑
n=0

αn = ∞ and Lemma 2.2, we have

lim
n→∞(un, vn) = (x∗, y∗) .

Conversely, if lim
n→∞(un, vn) = (x∗, y∗) , then we get

εn = ‖(un+1, vn+1) − (An, Bn)‖∗
� ‖(un+1, vn+1) − (x∗, y∗)‖∗ + ‖An − x∗‖1 + ‖Bn − y∗‖2

� ‖(un+1, vn+1) − (x∗, y∗)‖∗ + (1 − (1 − k)αn)‖(un, vn) − (x∗, y∗)‖∗
+αn‖(en, f n)‖∗ → 0(n → ∞),

i.e., lim
n→∞ εn = 0 . This completes the proof. �
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