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Abstract. We consider nonlinear integral inequalities of Gronwall type for functions of one
variable or two variables. We also study integral inequalities for proving the boundedness and
uniqueness of the solutions to hyperbolic partial differential equations.

1. Introduction

Let u : [α,α + h] → R be a continuous real-valued function satisfying the
inequality

0 � u(t) �
∫ t

α
[a + bu(s)] ds for t ∈ [α,α + h],

where a, b are nonnegative constants. Then u(t) � ahebh for t ∈ [α,α + h]. This
result was proved by T. H. Gronwall [7] in the year 1919, and is the prototype for the
study of several integral inequalities of Volterra type, and also for obtaining explicit
bounds of the unknown function. Among the several publications on this subject, the
paper of Bellman [3] is very well known: Let x(t) and k(t) be real valued nonnegative
continuous functions for t � α. If a is a constant, a � 0, and

x(t) � a +
∫ t

α
k(s)x(s) ds, t � α,

then

x(t) � a exp

(∫ t

α
k(s) ds

)
, for t � α.

It is clear that Bellman’s result contains that of Gronwall. This is the reason why
inequalities of this type were called “Gronwall-Bellman inequalities” or “Inequalities
of Gronwall type”. The Gronwall type integral inequalities provide a necessary tool
for the study of the theory of differential equations, integral equations and inequalities
of various types. During the past few years several authors (see references below and
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some of the references cited therein) have established several Gronwall type integral
inequalities in two or more independent real variables. In [11], Pachpatte proved the
following interesting integral inequality:

THEOREM 1.1. Let a, b ∈ C(I, R+), α ∈ C1(I, I) be nondecreasingwith α(t) � t
on I, and k � 0 be a constants. If u ∈ C(I, R+) and

u(t) � k +
∫ t

t0

a(s)u(s) ds +
∫ α(t)

α(t0)
b(s)u(s) ds (1.1)

for t ∈ I, then

u(t) � k exp

(∫ t

t0

a(s) ds +
∫ α(t)

α(t0)
b(s) ds

)
(1.2)

for t ∈ I.

In this paper is to obtain bound in the inequality (1.1) for functions of one or
two independent variables when the constant k and the function u(t) in the right-
hand side of the inequality (1.1) are replaced by the function k(t) and up(t) for 0 <
p � 1, respectively. We also provide some application of these integral inequalities for
finding the boundedness and uniqueness of the solutions to hyperbolic partial differential
equations.

2. Integral Inequalities

In this section we consider nonlinear integral inequalities of Gronwall type for
functions. We shall introduce her some notation: R denotes the set of real numbers,
R+ = [0,∞), I = [t0, T), J1 = [x0, X) and J2 = [y0, Y) are given subsets of R.

LEMMA 2.1. Let a, b ∈ C(I, R+), α ∈ C1(I, I) be nondecreasing with α(t) � t
on I, k � 1 and 0 < p � 1 be constants. If u ∈ C(I, R+) and

u(t) � k +
∫ t

t0

a(s)up(s) ds +
∫ α(t)

α(t0)
b(s)up(s) ds (2.1)

for t ∈ I, then

u(t) � k exp

(∫ t

t0

a(s) ds +
∫ α(t)

α(t0)
b(s) ds

)
(2.2)

for t ∈ I.

Proof. From the given hypotheses we observe that α′(t) � 0 for t ∈ I. Let k � 1
and define a function z(t) by the right-hand side of (2.1). Then, z(t) � 1, z(t0) =
k, u(t) � z(t), and

z′(t) = a(t)up(t) + b(α(t))up(α(t))α′(t)
� a(t)zp(t) + b(α(t))zp(α(t))α′(t)
� a(t)z(t) + b(α(t))z(α(t))α′(t).
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As α(t) � t on I, we deduce that z′(t) � a(t)z(t) + b(α(t))z(t)α′(t) and therefore

z′(t)
z(t)

� a(t) + b(α(t))α′(t). (2.3)

Integrating (2.3) from t0 to t, where t ∈ I, and applying some change of variables
yields

z(t) � k exp

(∫ t

t0

a(s) ds +
∫ α(t)

α(t0)
b(s) ds

)
(2.4)

for t ∈ I. Using (2.4) in u(t) � z(t), we get the inequality (2.2). �

THEOREM 2.2. Let a, b ∈ C(I, R+), α ∈ C1(I, I) be nondecreasingwith α(t) � t
on I, and 0 < p � 1 be a constant. If k ∈ C(I, R+ − {0}), u ∈ C(I, R+) and

u(t) � k(t) +
∫ t

t0

a(s)up(s) ds +
∫ α(t)

α(t0)
b(s)up(s) ds (2.5)

for t ∈ I, then

u(t) � k(t) + e(t) exp

(
p
∫ t

t0

a(s)kp−1(s) ds + p
∫ α(t)

α(t0)
b(s)kp−1(s) ds

)
(2.6)

for t ∈ I, where

e(t) =
∫ t

t0

a(s)kp(s) ds + p
∫ α(t)

α(t0)
b(s)kp(s) ds (2.7)

for t ∈ I.

Proof. From (2.5) we have u(t) � k(t) + z(t), where the function z(t) is defined

by z(t) =
∫ t

t0
a(s)up(s) ds +

∫ α(t)
α(t0)

b(s)up(s) ds. From the above relation we derive

z(t) �
∫ t

t0

a(s)(k(s) + z(s))p ds +
∫ α(t)

α(t0)
b(s)(k(s) + z(s))p ds.

By applying the following generalizations of Bernoulli’s inequality(see, [10, p.65])
(1 + x)a � 1 + ax, where 0 < a � 1 and −1 < x, it is easy to obtain that

z(t) �
∫ t

t0

a(s)kp(s)
(

1 +
z(s)
k(s)

)p

ds +
∫ α(t)

α(t0)
b(s)kp(s)

(
1 +

z(s)
k(s)

)p

ds

�
∫ t

t0

a(s)kp(s)
(

1 + p
z(s)
k(s)

)
ds +

∫ α(t)

α(t0)
b(s)kp(s)

(
1 + p

z(s)
k(s)

)
ds

= e(t) +
∫ t

t0

a(s)kp−1(s)z(s) ds +
∫ α(t)

α(t0)
b(s)kp−1(s)z(s) ds,
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where e(t) is defined by (2.7). First, we assume that e(t) > 0 for t ∈ I. we get

z(t)
e(t)

� 1 + p
∫ t

t0

a(s)kp−1(s)
z(s)
e(s)

ds +
∫ α(t)

α(t0)
b(s)kp−1(s)

z(s)
e(s)

ds. (2.8)

From the Lemma 2.1, the previous inequality (2.8) yields

z(t)
e(t)

� exp

(
p
∫ t

t0

a(s)kp−1(s) ds +
∫ α(t)

α(t0)
b(s)kp−1(s) ds

)
. (2.9)

Using inequality (2.9) in u(t) � k(t)+z(t), we get the required inequality in (2.6).
If e(t) is nonnegative, then we carry out the above procedure with e(t) + ε instead of
e(t) , where ε > 0 is an arbitrary small constant, and subsequently pass to the limit as
ε → 0 to obtain (2.6). �

THEOREM 2.3. Let a, b,α, p be as in Theorem 2.2 and c > 1 be a constant. If
u ∈ C(I, R+) and

u(t) � c +
∫ t

t0

a(s)up(s) log u(s) ds +
∫ α(t)

α(t0)
b(s)up(s) log u(s) ds (2.10)

for t ∈ I, then
u(t) � c[1+(A(t)+B(t)) exp(A(t)+B(t))] (2.11)

for t ∈ I, where

A(t) =
∫ t

t0

a(s) ds, B(t) =
∫ α(t)

α(t0)
b(s) ds (2.12)

for t ∈ I.

Proof. From the giben hypotheses we observe that α′(t) � 0 for t ∈ I. Let c > 1
and define a function z(t) by the right-hand side of (2.10). Then, z(t) > 1, z(t0) =
c, u(t) � z(t), and

z′(t) = a(t)up(t) log u(t) + b(α(t))up(α(t)) log u(α(t))α′(t)
� a(t)zp(t) log z(t) + b(α(t))zp(α(t)) log z(α(t))α′(t)
� a(t)z(t) log z(t) + b(α(t))z(α(t)) log z(α(t))α′(t).

Because of the fact α(t) � t on I, we deduce that z′(t) � a(t)z(t) log z(t) +
b(α(t))z(t) log z(α(t))α′(t). Therefore

z′(t)
z(t)

� a(t) log z(t) + b(α(t)) log z(α(t))α′(t). (2.13)

Integrating (2.13) from t0 to t, where t ∈ I, and applying some change of variables
yields

log z(t) � log c +
∫ t

t0

a(s) log z(s) ds +
∫ α(t)

α(t0)
b(s) log z(s) ds (2.14)
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for t ∈ I. Now by a suitable application of the result given in Theorem 2.2 to (2.14),
we get

log z(t) � (log c)(1 + (A(t) + B(t)) exp(A(t) + B(t)))

� log c[1+(A(t)+B(t)) exp(A(t)+B(t))], (2.15)

where A(t), B(t) are defined by (2.12). From (2.15) we observe that

z(t) � c[1+(A(t)+B(t)) exp(A(t)+B(t))]. (2.16)

Now by using (2.16) in u(t) � z(t), the inequality in (2.11) follows. �
In the following theorems we establish two independent-variable versions of The-

orems 2.2 and 2.3, which can be used for a qualitative analysis of hyperbolic partial
differential equations with retarded arguments. In what follows, J1 = [x0, X) and
J2 = [y0, Y) are given subsets of real numbers R, and denote by � = J1 × J2. The
first order partial derivatives of z(x, y) defined for x, y ∈ R with respect to x and y are
denoted by zx(x, y) and zy(x, y), respectively.

LEMMA 2.4. Let a, b ∈ C(�, R+), α ∈ C1(J1, J1), β ∈ C1(J2, J2) be nonde-
creasing function with α(x) � x on J1, β(y) � y on J2, k � 1 and 0 < p � 1 be
constants. If u ∈ C(�, R+) and

u(x, y) � k +
∫ x

x0

∫ y

y0

a(s, t)up(s, t) dt ds +
∫ α(x)

α(x0)

∫ β(y)

β(y0)
b(s, t)up(s, t) dt ds (2.17)

for (x, y) ∈ �, then

u(x, y) � k exp

(∫ x

x0

∫ y

y0

a(s, t) dt ds +
∫ α(x)

α(x0)

∫ β(y)

β(y0)
b(s, t) dt ds

)
(2.18)

for (x, y) ∈ �.

Proof. Let k � 1, 0 < p � 1 and define a function z(x, y) by the right-hand side
of (2.17). Then z(x, y) � 1, z(x0, y) = z(x, y0) = k, u(x, y) � z(x, y), and

zx(x, y) =
∫ y

y0

a(x, t)up(x, t) dt +

(∫ β(y)

β(y0)
b(α(x), t)up(α(x), t) dt

)
α′(x)

�
∫ y

y0

a(x, t)zp(x, t) dt +

(∫ β(y)

β(y0)
b(α(x), t)zp(α(x), t) dt

)
α′(x)

� z(x, y)
∫ y

y0

a(x, t) dt + z(α(x), β(y))

(∫ β(y)

β(y0)
b(α(x), t) dt

)
α′(x).

Because of the fact α(t) � t on I, we deduce that

zx(x, y) � z(x, y)

[∫ y

y0

a(x, t) dt +

(∫ β(y)

β(y0)
b(α(x), t) dt

)
α′(x)

]
.
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The last estimate reduces to the inequality

zx(x, y)
z(x, y)

�
∫ y

y0

a(x, t) dt +

(∫ β(y)

β(y0)
b(α(x), t) dt

)
α′(x). (2.19)

Keeping y fixed in (2.19), setting x = σ, and integrating it with respect to σ from x0

to x, x ∈ J1, and making the change of variable yields

z(x, y) � k exp

(∫ x

x0

∫ y

y0

a(s, t) dt ds +
∫ α(x)

α(x0)

∫ β(y)

β(y0)
b(s, t) dt ds

)
. (2.20)

Using (2.20) in u(x, y) � z(x, y), we get the inequality in (2.18). �
THEOREM 2.5. Let a, b ∈ C(�, R+), α ∈ C1(J1, J1), β ∈ C1(J2, J2) be nonde-

creasing functions with α(x) � x on J1, β(y) � y on J2, and 0 < p � 1 be a
constant. If k ∈ C(�, R+ − {0}), u ∈ C(�, R+) and

u(x, y) � k(x, y) +
∫ x

x0

∫ y

y0

a(s, t)up(s, t) dt ds +
∫ α(x)

α(x0)

∫ β(y)

β(y0)
b(s, t)up(s, t) dt ds

for (x, y) ∈ �, then

u(x, y) � k(x, y) + f (x, y) exp
(
A1(x, y) + B1(x, y)

)
for (x, y) ∈ �, where

f (x, y) =
∫ x

x0

∫ y

y0

a(s, t)kp(s, t) dt ds +
∫ α(x)

α(x0)

∫ β(y)

β(y0)
b(s, t)kp(s, t) dt ds,

A1(x, y) = p
∫ x

x0

∫ y

y0

a(s, t)kp−1(s, t) dt ds,

B1(x, y) = p
∫ α(x)

α(x0)

∫ β(y)

β(y0)
b(s, t)kp−1(s, t) dt ds

for (x, y) ∈ �.

Proof. We deduce from the hypothesis on u(x, y) that u(x, y) � k(x, y) + z(x, y),
where the function z(x, y) is defined by

z(x, y) =
∫ x

x0

∫ y

y0

a(s, t)up(s, t) dt ds +
∫ α(x)

α(x0)

∫ β(y)

β(y0)
b(s, t)up(s, t) dt ds.

By applying some the generalizations of Bernoulli’s inequality, it is easy to observe that

up(x, y) � kp(x, y)
(

1 +
z(x, y)
k(x, y)

)p

� kp(x, y)
(

1 + p
z(x, y)
k(x, y)

)
(2.21)



SOME RETARDED GRONWALL TYPE INTEGRAL INEQUALITY AND ITS APPLICATIONS 801

for 0 < p � 1, k : � → R+ − {0}. From (2.21) we get

z(x, y) � f (x, y) + p
∫ x

x0

∫ y

y0

a(s, t)kp−1(s, t)z(s, t) dt ds

+ p
∫ α(x)

α(x0)

∫ β(y)

β(y0)
b(s, t)kp−1(s, t)z(s, t) dt ds.

The rest of the proof follows by an argument similar to that in the proof of Theorem 2.2
with suitable changes. �

THEOREM 2.6. Let a, b,α, β , p be as in Theorem 2.5 and c > 1 be a constant. If
u ∈ C(�, R+) and

u(x, y) � c +
∫ x

x0

∫ y

y0

a(x, y)up(x, y) log u(x, y) dt ds

+
∫ α(x)

α(x0)

∫ β(y)

β(y0)
b(x, y)up(x, y) log u(x, y) dt ds

for (x, y) ∈ �, then

u(x, y) � c[1+(A(x,y)+B(x,y)) exp(A(x,y)+B(x,y))]

for (x, y) ∈ �, where

A(x, y) =
∫ x

x0

∫ y

y0

a(x, y) dt ds, B(x, y) =
∫ α(x)

α(x0)

∫ β(y)

β(y0)
b(x, y) dt ds

for (x, y) ∈ �.

Proof. The proof of Theorem 2.6 follows by an argument similar to that given for
the proof of Theorem 2.3 with some minor changes. �

3. Some Application

In this section we present applications of the inequality given in Theorem 2.5 for
the study of the boundedness and uniquness of the solutions of the initial boundary
value problem for hyperbolic partial delay differential equations of the form

zxy(x, y) = f
(
(x, y, z(x, y), z(x − h1(x), y − h2(y))

)
, (3.1)

z(x, y0) = a1(x), z(x0, y) = a2(y), a1(x0) = a2(y0) = 0, (3.2)

where f ∈ C(� × R2, R), a1 ∈ C1(J1, R), a2 ∈ C1(J2, R), h1 ∈ C1(J1, R+), h2 ∈
C1(J2, R+) such that x − h1(x) � 0, y − h2(y) � 0, h′1(x) < 1, h′2(y) < 1, and
h1(x0) = h2(y0) = 0. Our first aim is to derive the bound on the solution of the problem
(3.1)–(3.2).
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THEOREM 3.1. Assume that f : �× R2 → R is a continuous function for which
there exist continuous nonnegative functions a(x, y), b(x, y) for (x, y) ∈ � such that

| f (x, y, u, v) |� a(x, y) | u | +b(x, y) | v |, (3.3)

and
| a1(x) + a2(y) |� k(x, y) (3.4)

for k : � → R+ − {0}, and let

M1 = max
x∈J1

{1 − h′1(x)}, M2 = max
y∈J2

{1 − h′2(y)}. (3.5)

If z(x, y) is any solution of (3.1)–(3.2), then

| z(x, y) |� k(x, y) + f (x, y) exp
(
A(x, y) + B(x, y)

)
, (3.6)

where

f (x, y) =
∫ x

x0

∫ y

y0

a(s, t)k(s, t) dt ds +
1

M1M2

∫ φ(x)

φ(x0)

∫ ψ(y)

ψ(y0)
b(σ, τ)k(σ, τ) dτ dσ,

A(x, y) =
∫ x

x0

∫ y

y0

a(s, t) dt ds,

B(x, y) = M1M2

∫ φ(x)

φ(x0)

∫ ψ(y)

ψ(y0)
b(σ, τ) dτ dσ,

in which φ(x) = x − h1(x), x ∈ J1,ψ(y) = y − h2(y), y ∈ J2, and b(σ, τ) = b(σ +
h1(s), τ + h2(t)) for σ, s ∈ J1, τ, t ∈ J2.

Proof. Under the given conditions the solution z(x, y) of the problem (3.1)–(3.2)
satisfies the equivalent integral equation

z(x, y) = a1(x) + a2(y) +
∫ x

x0

∫ y

y0

f
(
s, t, z(s, t), z(s − h1(s), t − h2(t))

)
dt ds. (3.8)

Using (3.3), (3.4), and (3.5) in (3.8) and making the change of variables, we obtain

| z(x, y) |�k(x, y) +
∫ x

x0

∫ y

y0

a(s, t) | z(s, t) | dt ds

+
1

M1M2

∫ φ(x)

φ(x0)

∫ ψ(y)

ψ(y0)
b(σ, τ) | z(σ, τ) | dτ dσ. (3.9)

Now a suitable application of the inequality given in Theorem 2.5 to (3.9) yields (3.6).
The right-hand side (3.6) gives us the bound on the solution z(x, y) of (3.1)–(3.2) in
terms of the known functions. Thus, if the right-hand side of (3.6) is bounded, then we
assert that the solution of (3.1)–(3.2) is bounded for (x, y) ∈ �. �

In the next we derive from Theorem 2.5 the uniqueness of the solutions of the
problem (3.1)–(3.2). Let z(x, y) and z(x, y) be two solutions of the problem (3.1)–
(3.2) with the function f in (3.1) satisfying the condition

|f (x, y, u, v) − f (x, y, u, v)| � a(x, y)|u − u| + b(x, y)|v − v|, (3.10)
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where a, b ∈ C(�, R+ − {0}), and under some suitable conditions on the functions
M1, M2, φ,ψ , b as in Theorem 3.1. Then, one obtains the equivalent integral equation

z(x, y) − z(x, y) =
∫ x

x0

∫ y

y0

[
f
(
s, t, z(s, t), z(s − h1(s), t − h2(t))

)
−f
(
s, t, z(s, t), z(s − h1(s), t − h2(t))

)]
dt ds.

(3.11)

Using (3.10) in (3.11) and making the change of variables, we have

| z(x, y) − z(x, y) |�
∫ x

x0

∫ y

y0

a(s, t) | z(s, t) − z(s, t) | dt ds

+
1

M1M2

∫ φ(x)

φ(x0)

∫ ψ(y)

ψ(y0)
b(σ, τ) | z(σ, τ) − z(σ, τ) | dτ dσ.

(3.12)

Now by applying the inequality given in Theorem 2.5 to (3.12) yields

|z(x, y) − z(x, y)| � 0.

From the last estimate we infer z(x, y) = z(x, y); that is, there exist at most one solution
of the problem (3.1)–(3.2).
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