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ON THE HYERS-ULAM STABILITY OF
APPROXIMATELY PEXIDER MAPPINGS

BOUIKHALENE BELAID, ELQORACHI ELHOUCIEN AND THEMISTOCLES M. RASSIAS

(communicated by H. Srivastava)

Abstract. In this paper we investigate the Hyers-Ulam stability of the Pexider functional equation

filx+y) +f2lx+0() =f3(x) +fa(y), x.y€E,

where E is a normed space and o: E — E is an involution.

1. Introduction

The stability problem for functional equations was first raised by S. M. Ulam (ref.
[24]): Let G, be a group and let G, be a metric group with a metric d(.,.). Given
€ > 0, does there exist a § > 0 such that if a function f: G; — G, satisfies the
functional inequality d(f (xy),f (x)f (v)) < 6 forall x and y in G, then there exists a
group homomorphism i: G, — G, with d(f (x),h(x)) < € forany x € G ?

The problem for the case of approximately additive mappings was solved by D. H.
Hyers [8] when G, and G, are Banach spaces and the result of Hyers was generalized
by Th. M. Rassias (see [17]). Since then, the stability problems of functional equations
have been extensively investigated by several mathematicians (cf. [11], [16], [18], [19],
[20], [6], and [13]). For the definition of terminologies such as “Hyers-Ulam stability”,
“Hyers-Ulam-Rassias stability” one is refered to [5], [9], [10], [12] or [21].

According to Corollary 8 in [23], a mapping f : E; — E, between vector spaces
is a solution of the quadratic equation

fx+y) +f(x+0o(y) =2f(x) +2f (v), (1.1)

where o is an involution of E; (i.e. o(x+y) = o(x) + o(y) and o(o(x)) = x,
for all x,y € Ey) if and only if there exists an additive function A: E; — E» and
a biadditive symmetric mapping B: E; x E; — E; such that A(o(x)) = A(x),
B(o(x),y) = —B(x,y) and f (x) = B(x,x) + A(x) forany x € E; .

The quadratic equation with o = —I has been much studied (cf. Aczél [1]).

A Hyers-Ulam stability theorem for the quadratic functional equation

fx+y) +f(x—y) =2f(x) +2f(y), x,y € E (1.2)
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was proved by F. Skof [22] for functions f : E; — E,, where E is a normed space
and E, is a Banach space. P. W. Cholewa [3] noticed that the theorem of Skof is still
true if the relevant domain E; is replaced by an abelian group.

In the paper [4], S. Czerwik proved the Hyers-Ulam-Rassias stability of the func-
tional equation (1.2). Recently S. M. Jung [13], S. M. Jung and P. K. Sahoo [14]
investigated the Hyers-Ulam-Rassias stability of equation (1.2). Furthermore they
proved the Hyers-Ulam-Rassias stability of the functional equation of Pexider type

filx+y) +falx —y) = f3(x) + fa(y) (1.3)

In a previous paper [2], the authors dealt with the Hyers-Ulam stability of the functional
equation (1.1) in the case where the control function @(x,y) = §, for some § > 0 and
9(x.y) = O(|lx]” + |y]]") for p < 1 or p > 2, (cf. [2]).

In Section 2, the stability problem in the spirit of Gavruta shall be proved i.e. that
the mapping @ satisfies the condition (2.1) or (2.2) (see below).

In Section 3, we will investigate the stability of the functional equation

[ile+y) +h2lc+ 0(y) =F3(x) +£a()- (1.4)

The result of this section can be compared with the ones of the papers [13], [14] because
we formulate them in the same way by using some ideas from [13] and [14]. It is
intriguing to see that several of the methods of [13] and [14] carry over to the more
general situations (1.4). However our discussion comprise not only o = —I but also
examples like the reflection in hyperplane of R” and the symplectic involution of the
additive group of 2 x 2 matrices. In our solutions we take in the account certain types
of functions that are not considered in [13] and [14] because they are constants for

o = —I. See for example the formulas (3.4) and (3.5). Furthermore, our estimates
improves the ones obtained in [13] and [14].
Throughout this paper, let (Ej, || . ||) be a real normed space and (E,|| . ||) a

Banach space.

2. Stability of the quadratic equation

Let us denote by @: E; X E; — [0,00) a mapping such that
O(x,y)=» 2720V [0(2"x, 2)+(2"~ 1) (2" 542" o (x), 2" y42" o (y)) <oo
n=0
(2.1)
forall x,y € E, or

_ZOO 2y XY 1 x o) y o
llj(x>y) - 2 ( >[(p(2n+l > on+l ) + (1 - on+l )(p(2n+2 + on+27 Jn+2 + on+2 )] <00
n=0

(2.2)
forall x,y € E;.
In the following theorem, we will investigate the Hyers-Ulam stability of the
functional equation (1.1) when ¢ satisfies the condition (2.1).
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THEOREM 2.1. Let ¢ : E; X Ey — [0,00) be a mapping satisfying the condition
(2.1)andlet f : E; — E, satisfies

[fr+y) +f(x+00) =2 (x) =27 ) [< oxy) (2.3)

forall x,y € E|. Then, there exists a unique solution q: E, — E, of equation (1.1)
satisfying

1 () = q(x) [I< 9(x, %) (2.4)
forall x € E;.

Proof. If we set y = x, in the inequality (2.3), we get
1 (22) +f (x + 0(x)) = 2% (x) [|< @(x, ). (2.5)
If we set x =y = x + o(x) in (2.3) then we obtain
Il 2f 2x+20(x)) —4f (x + o(x)) ||I< o(x + o(x),x + o(x)). (2.6)
By induction on n, we will prove the following inequality
1f () =272 {f (2%) + (2" = DF 2" x + 2" o)} | (2.7)

n—1
<Y 27 [p(2x, 2%) + (21 = D2k + 27 o (x), 27 x + 27 o (x)].
i=0

If we replace x,y in (2.3) by 2x, then we get
[1f (4x) +f (2x +20(x)) — 4f (2%) [|< @(2x, 2x). (2.8)

Now, in view of (2.5), (2.6) and (2.8), we can easily show that

I —
_6 | £ (4x) +f (2x + 20(x)) — 4f (2x) |
n 1_16 | 2f (2x +20(x)) — 4f (x + o(x)) |
4 1_16 |4f (2x) + 4f (x + o(x)) — 16/ (x) |

ox,x)  @(2x,2x) 2-1

S 5 20 + 30 o(x+ o(x),x + o(x)),

which proves that the assertion (2.7) is true for n = 2. Now, we assume that the
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assertion (2.7) is true for some n. By using (2.7), (2.5) and (2.6), we obtain

I1f () = 27200 {F (2 ) + (2" = 1)f (2"x +2"0(x))} |
<Hf( ) =27 (2% + (2" = 1f (2" + 2" o))} ]

2}1
+2M4n%@%+f<»—yu%%+?*dmw
1
+ g |1£(22'%) + (2'x + 2"0(x) — 4f (2') |

n

<Y 272 2k, 2%) + (21 - D2 'x + 27 o(x), 27 'k + 27 o ()],
i=0

which implies that the assertion (2.7) holds for n + 1.
First, we show that g,(x) = 272'{f (2"x) + (2" — 1)f (2" 'x + 2" 'o(x))} is a
Cauchy sequence. Let n be an integer, then by (2.5) and (2.6), we see that

| gni1(x) = gn() ||

:2L4Hﬂf“) (2"~ 1 (24 2'o()

—4f(2"x) + (2" = D)f 2"k + 2" o ()] ||
< Sy 1/ (22%) +f (2"x + 2%0(x) — 4f (2x) ||

+ (zzziﬂ) 12 (2"x+2"0(x)) —4f 2" 'x+ 2" "o (x)) ||

o(2"x,2"x) (2" —1)
S T T o @

(2" x4+ 2" o(x),2" x4+ 2" o (x)).

Hence, for n > m we get

n—1

| n(x) = gn(®) 1< 1| gisa (x) — qi(x) || (2.9)

i=m

<) 272 (20, 2%) + (2 - D2k + 27 o (x), 27 'y + 2 o (x))]

for n > m. From (2.1) and (2.9), we obtain that the sequence g,(x) is a Cauchy
sequence. Because E, is a Banach space, the sequence ¢, (x) converges. Denote

g(x) = lim 272{f(2"x) + (2" — 1)f (2" 'x + 2" 'o(x))} (2.10)

n—-+00

for all x € E;. By the definition of ¢ and the assertion (2.7), we can easily verify the
validity of the inequality (2.4).
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Now, we will show that g is a solution of equation (1.1). By using the definition
of g,(x) and the inequality (2.3), we get

|| q,,(x + )’) + qn(x + O'(y)) - an(x) - 2%()’) H
1
<7 | f(2"x +2"y) +f (2"x + 2"0(y)) — 2f (2"x) — 2f (2"y) ||
+ % | £ (2 x4 2"y 42" Lo (x) + 2" Lo (y))
+f@ x+ 2"y + 2 o(x) + 2" o ()
=2 (2" 42" o(x) — 2 (2" y+ 2" o) ||
. @(2"x,2") N n

= 22n o P2 'x+2"o(x),2" 'y + 2" 'o(y)) — Oas n — oo,

which implies that ¢ is a solution of (1.1).

Finally, let ¢': E; — E, be another solution of equation (1.1) which satisfies
the inequality (2.4). Since g and ¢’ are solutions of equation (1.1), we can easily show
that

q(2"x) + (2" — 1)g(2"'x + 2" 'o(x)) = 2*"g(x) (2.11)

and
¢'(2'%) + (2"~ 1)g'(2"'x + 2 o(x)) = 2¢/(x) (2.12)

forany n € N (cf. [2]). Thus, it follows from (2.11), (2.12) and (2.4) that

40~ 4'() Il = 557 | 2"0) — 4/ (2'%) + (2" 1)
X [g(2" '+ 2 o) — ¢ (@ '+ 2 o) |

Hp(2” )= f @) |+ 4'2"%) —f(2"%) ||

22;1
2}1

+ —22,, g2 x+ 2" o(x)) — f (2" 'x + 2" o (x) ||
2 — 1

+ 5 14 @ x+ 2" o) —F (2" + 2" o (x) |

20(2"x,22x)  20(2" x4+ 2o (x), 2" Lx + 2"~ Lo (x))
< +
22n on
— 0asn — oo.

Consequently, we obtain g(x) = ¢'(x), for all x € E;. This completes the proof of
theorem. [

In the following theorem, we will investigate the stability problem of the functional
equation (1.1) when ¢ satisfies condition (2.2).
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THEOREM 2.2. Let ¢ : E; x Ey — [0,00) be a mapping satisfying the condition
(2.2). If a function f : E\ — E, satisfies the inequality
[f(x+y) +f(x+0() =2 (x) =2 () I< o(x,y) (2.13)

forall x,y € E|, then, there exists a unique solution q: E, — E, of equation (1.1)
satisfying

17 (x) = q(x) I< w(x, %) (2.14)
forall x € E|.

Proof. First we will use the induction on 7 to prove the following statement

1 X

Iro) =220 G + (5 1 (5 + S0
<220 [o (g gin) + (1) o (55 + S5+ 5)]

By replacing x and y by 3, respectively 7 + ( i) , we immediately get

H/ )+ (3 +%)—4f() <o (1Y) (2.16)

272
2f< +¥>f(§+@) <%(p(;—c+¥,g+¥>. (2.17)

Hence in view of (2.16) and (2.17), we can easily deduce that

po=+lr () () (G|
<fpreoer (5+%52) -w( %>\ (558 (=)
o5 (o (ir g ).

which proves that the assertion (2.15) is true for n = 1. Assuming that inequality
(2.15) is true for all integers i, 1 < i < n, it follows from (2.15) that

=20y () + (g 1) (5 3 |
<fro-={ () + (3-1)1 (739

f (é) ' (% ) (554 5)

() 4 (1) (2 )|

n—1
1 X o(x) «x o(x)
2(i
22 |: (21+1 ’ 2z+1) + (1 21+1> ¢ <2i+2 + i+2 ’ 2i+2 + i+2
0

i=

(2.15)

and

+ 22n




ON THE HYERS-ULAM STABILITY 811
(3)+ (3 33) - (3)
(i) o - ) (e 29|
S0 o)+ (1 ok o (5 + 9255+ 29))]
i=0
ol )+ (1Yo (st S5 o)

- 23 X x 1 X ox) «x o(x)
< 22 |:(P (2i+1 ’ 2i+1) + <1 2i+1> ¢ <2i+2 + i+2 7 Di+2 + 2i+2 ’
i=0

which proves inequality (2.15). Now, we will show that

" X 1 X o(x)
qn(x) = 2% {f (?) + (F — 1>f <2n+1 + )} (2.18)
is a Cauchy sequence. Let m,n be integers with n > m. Then by using the following
inequality
. X X o(x) X
L) =0 12 |1 () 1 (g + 5t )~ (5)|
" x o) x oW
+2 (1 - ) Hzf <2n+1 + 2n+1) —4f <2n+2 + n+2

n X X 1 x o(x) «x o(x)
<2 {(p (W? W) + (1 o 2n+1> ? <2n+2 + on+2 7 on+2 + on+2 ’

we see that

+ 22;1

1
on+l

1
on+l

n—1
1 gn () = @) 1< [l givi () = qi(x) |
n—1
2 X X 1 X ox) «x o(x)
< ZZ [(p (F’ F) + <1 N 2i+1> @ <2i+2 + 2i+2 7 Dit2 + 2i+2

i=m

— 0 as m — oo.

Since E, is Banach space, we may define a function g: E; — E; by

- (3 (2 (o)) e
for any x € E;. By the definition of ¢ and (2.15), we can easily verify the validity of
inequality (2.14).

Similarly as we did in the proof of the precedent theorem, we can prove that g
is the unique mapping solution of equation (1.1) satisfying inequality (2.14). This
completes the proof of the theorem. [
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3. Stability of equation (1.4)

Throughout this section, § is a positive number. For any function f : E; — E,,

. . _ e — FW+F(o()
we 1ntroc;1<1c>eFt(he<:>)new functions F(x) = f(x) — f(0), F¢(x) = %,
0 _ F(x)—F(o(x
Fo(x) = =272
We note that F¢(o(x)) = F¢(x), F°(o(x)) = —F°(x), for all x € E; and

F(0) = F¢(0) = F°(0) = F°(x + o(x)) = 0, forall x € E; .
In the following theorem, we prove the Hyers-Ulam stability of equation

[ile+y) +h2lx+ 0(y) =F30x) +£a()- (3-1)

The proof is closely related to and inspired by the work by Jung S.-M. [13] and Jung
S.-M. and Sahoo P. K. [14] mentioned in the introduction.

THEOREM 3.1. If the functions f1,f2,f3,fa: Ei — Ej satisfy the inequality

[f1(x+y) +f2lx+0(y) —f3(x) —fa(y) [< 9, (3:2)

forall x,y € E|, then there exists a unique function q: E, — E, solution of equation
(1.1), there exists a function v: E; — Ej solution of equation

vix+y) =vix+0o()), x,y€E, (3.3)

there exist exactly two additive functions Ay, A,: E| — E, such that Ajo o = —A;
(i=1,2)

pl () 24 x) — 3a(x) — Sv() — 2q) ~fy <o>H <195, (34)
1 1 1 1
pzoc) A0~ HAa) ¢ 1) — g fz(O)H <195, (35)
1733 — Aalx) — qx) — £3(0) [I< 163 (3.6)
and
1£6) — Ar(x) — qx) — £2(0) 1< 16, (3.7)

forall x € E.
Proof. From (3.2), we easily obtain
| Filx+y) + Fa(x + 0(y)) — Fa(x) — Fa(y) [[< 26. (3-8)
Consequently,
| Filx+y) + F3(x + 0(y)) — F5(x) — F5(0) [I< 29, (3.9)

and
| Fi(x+y) + F3(x+ o(y)) — F3(x) — F3(y) [I< 26, (3.10)
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forall x,y € E; . Hence, from (3.9) we deduce that
| Fi(x) + F3(x) — F5(x) [|< 26 (3.11)

| Fi(x) + F3(x) — Fi(x) [[< 26, (3.12)

forall x € Ey.
From (3.9), (3.11) and (3.12), we obtain

| Filx+y) + F3(x + 0(y)) = (Fi + F3)(x) = (F{ + F2)() || (3.13)
SIFI(x ) + Fs(x+ 0o(y) — F5(x) = F5() |
+ TFI() + F3(x) = F300) || + | Fi(y) + F5(y) = F5(v) |l
< 64.

If we replace y by o(y) in (3.13), we obtain
| File+ o)) + F(x+y) = (Fi + F5)(x) = (Fi + F3)(y) [<65. (3.14)
If we add inequality (3.14) to (3.13), we get
P+ F)a+) + () 000) =20+ F9)0) =208+ F0) |< 125
forall x,y € E; . Hence by ([2], Theorem 2.1) there exists a unique function ¢ SO(l?l'ti(fl‘)l
of equation (1.1) such that
I (F + F5)(x) — g(x) [< 65, x € E\. (3.16)
On the other hand, from (3.13) and (3.14), we get
| (Fi = F3)(x +y) = (F{ = F5)(x + o(y)) [I< 128. (3.17)

Hence, there exists v: E; — E, defined by v(x) = (F{ — FS)(”‘;(X)) solution of
equation

vix+y)=vx+0o(y), x,y€E (3.18)
that satisfies the inequality

I (F = F5)(x) = v(x) [|< 126. (3.19)
From (3.16) and (3.19), we get
| 2F5(x) — q(x) + v(x) ||< 185 (3.20)

| 2F¢(x) - q(x) - v(x) || < 185. (3.21)
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From (3.11), (3.12) and (3.16),

| F5(x) — q(x) < 85 (3.22)
I F4(x) — q(x) |[< 85. (3.23)
Now, from (3.10) we deduce that
I F5(0) = F(x) — F3(x) [[< 26 (3.24)
and
| F3(x) = FY(x) + F3(x) [[< 26, (3.25)

forall x € E| and consequently, we get
1 2F(x) — F3(x) — FE(x) [|< 46 (3.26)

112F5(x) = F5(x) + F5(x) [[< 49, (3.27)
forall x € Ey.
By using (3.24) and (3.10), we obtain
[ F5(c+y) + F5(x+ o(y)) = 2F5(x) | (3.28)
SIFS(e+y) = Fi(x+y) = Fa(x+) ||
+F3x+0() - Fllx+ o) - F(x+ o)) |l
+IFG+y) +F(x+0o(y) - |
+I Flc+ o) + Filx+y) — F5(x) — Fy
< 86 forallx,y € Ej.
On the other hand, from (3.25) and (3.10), we get

I FE(x+y) + Fi(x + 0o(y)) = 2F3(x) |

3.29
<l F G+ 9) — Fieot3) + R4 | 52
+ [ Fi(x+0(y) = Fix+0() + F3(x+0o()) |
H I F{ v +x) + F(y+ 0o(x) = F5(y) = F{(x) ||
+ [ Fi(o(y) +x) + F5(0(y) + o(x)) — F5(0(y)) — Fi(x) |
< 86 forall x,y € Ej.
In the following, we will prove the stability of (3.29). From (3.29), we get
I FE(y +x) + F{(y + o(x)) — 2F3(y) [[< 85, (3.30)

So we obtain
| 2F(x + y) — 2F3(x) — 2F3(y) || < 168. (331)
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Consequently, by using [8] there exists an additive function A;: E; — E, such that
| F3(x) — Ar(x) [I< 88. (3.32)

Furthermore, A;(o(x)) = —A;(x), because the inequality (3.32) implies that
I Ai(x) + Ai(o(x)) [|[< 160 and then x — A;(x) + A;(o(x)) is a bounded ad-
ditive function on Ej, so A;(x) + A;(o(x)) =0, forall x € E; .

By using the precedent discussion, we deduce that there exists another additive
function A,: E; — E, such that

| F3(x) — Ax(x) [|< 86 (3.33)

forall x € E;.
Finally, in view of (3.20), (3.21), (3.22), (3.23), (3.32), (3.33), (3.26) and (3.27),
we obtain

pl () 24 () — 2 4a(2) — Sv() — Sa0) £y <o>H <195 (3.34)
1 1 1 1
pzoc) A0~ L)+ 1) — g f2<o>H <195, (339)
1732 — Aalx) — qx) — £3(0) [I< 163 (3.36)
and
1 73x) — A1) — () — £2(0) 1< 168, (3.37)

The uniqueness of ¢, A;, (i = 1,2) follows by applying some argument used in [13]
and [14]. This completes the proof of the theorem. O

COROLLARY 3.2. If the functions f1,f2,f3,fa: E1 — E satisfy the functional
equation

fix+y) +falx+0(y) = f3(x) +£1 () (3.38)
forall x,y € Ey, then there exists a biadditive function B: E| X E; — E,, an additive
Sunction A such that B(x,o(y)) = B(x,x), A(o(x)) = A(x), there exists a function
v: E; — E, solution of equation

V(X+y) = V(X+O'(y)), x,y € Ey, (339)
there exist o, 3,Y,8 € E, and two additive functions Ay, A, suchthat A;jo o = —A;

(i=1,2),

£109 = 3A10) + 3Aa() + V() + 3(BG) +AGW) +a,  (340)

) = A0+ 3ha) V() 3 (BE) HAR) B, (341)
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f3(x) = Ag(x) + B(x) + A(x) + ¢ (3.42)
and
fa(x) = A(x) + B(x) + A(x) + 6 (3.43)
forall x € E;.
Proof. We use [23] and Theorem 3.1 for the particularcase § =0 . O

From Theorem 3.1, we can deduce the results of [14] in the following corollary.
Furthermore, we improve the estimates of [14].

COROLLARY 3.3. Ifthe functions f1,f>,f3,fa: E1 — E, satisfy the inequality

[f1(x+y) +/2(x —y) =f3(x) = fa0) [I< 6, (3.44)

forall x,y € E|, then there exists a unique function q: E, — E, solution of equation
(1.1), there exists o € E,, there exist exactly two additive functions A, A, : E; — E;
such that

Pl (x) — %Al(x) - %Az(x) - %q(x) —f1(0) — aH < 199, (3.45)
Pz(x) + %Al(x) - %Az(x) _ %q(x) —hO)+al <195, (3.46)
1 f3(x) — Aa(x) — g(x) = £3(0) [|< 166 (3.47)
and
| f4(x) — Ar(x) — g(x) = £2(0) [|< 16, (3.48)

forall x € E;.

The following corollary follows from Theorem 3.1. This result is well known (see
for example [25]).

COROLLARY 3.4. Ifthe functions f1,f2,f3: Ei — E» satisfy the inequality

[ f1(x+y) = f2(x) = f3(3) I< S, (3.49)

forall x,y € Ey, then there exists a unique additive function A: E;, — E, such that

[ f1(x) = Ax) — £1(0) [|< 386, (3.50)

[ f2(x) — A(x) — £2(0) [|< 166 (3.51)
and

| f3(x) — A(x) — f3(0) [|< 168. (3.52)

forall x € E;.
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In the following corollary, we generalize the stability result obtained in [15] for

Drygas functional equation.

COROLLARY 3.5. Ifthe function f : E\ — E, satisfies the inequality

[fx+y)+f(x+00) =2 (x) —f ) —f (o) [I<6, (3.53)

for all x,y € E|, then there exists a unique additive function A: E, — E, and a
unique quadratic function q: E, — Ey such that A o o = —A and

1/ (x) = q(x) = Alx) = f(0) [|< 165 (3.54)

forall x € E;.
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