
Mathematical
Inequalities

& Applications
Volume 12, Number 1 (2009), 21–32

A CONVERSE OF THE HÖLDER INEQUALITY THEOREM

JANUSZ MATKOWSKI

(communicated by J. Pečarić)

Abstract. Let (Ω,Σ,μ) be a measure space such that 0 < μ(A) < 1 < μ(B) < ∞ for some

A,B ∈ Σ and let bijections ϕ1,ϕ2,ψ1,ψ2 : (0,∞) → (0,∞) be such that ψ1◦ϕ1(t)
t � c � t

ψ2◦ϕ2(t)
(t > 0) . We prove that if∫

Ω
xydμ � ψ1

(∫
Ω(x)

ϕ1 ◦ |x|dμ
)
ψ2

(∫
Ω(y)

ϕ2 ◦ |y|dμ
)

for all nonnegative μ -integrable simple functions x,y :Ω→ R (where Ω(x) stands for the sup-
port of x), then then there exists a real p > 1 such that

ϕ1(t)
ϕ1(1)

= t p,
ψ1(t)
ψ1(1)

= t1/p,
ϕ2(t)
ϕ2(1)

= tq,
ψ2(t)
ψ2(1)

= t1/q, t > 0,

where 1
p + 1

q = 1. A relevant result for the reversed inequality is also given.

1. Introduction

For a measure space (Ω,Σ,μ) denote by S = S(Ω,Σ,μ) the real linear space
of all μ -integrable simple functions x : Ω → R . For two arbitrarily fixed bijections
ϕ ,ψ : (0,∞) → (0,∞) define the functional Pϕ,ψ : S → [0,∞) by

Pϕ,ψ (x) :=

{
ψ

(∫
Ω(x)ϕ ◦ |x|dμ

)
if μ (Ω(x)) > 0

0 if μ (Ω(x)) = 0
,

where Ω(x) := {ω ∈Ω : x(ω) �= 0} .
Supposing that there are A,B ∈ Σ such that 0 < μ(A) < 1 < μ(B) < ∞ we show

that if the bijections ϕ1,ϕ2,ψ1,ψ2 : (0,∞) → (0,∞) are such that

ψ1 ◦ϕ1(t)
t

� c � t
ψ2 ◦ϕ2(t)

, t > 0, (c)

for a constant c > 0, and satisfy the inequality
∫
Ω

xydμ � Pϕ1,ψ1(x)Pϕ2,ψ2(y) (H)
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for all x,y ∈ S+(Ω,Σ,μ) := { x ∈ S : x � 0}, then there is a real p > 1 such that

ϕ1(t)
ϕ1(1)

= t p,
ψ1(t)
ψ1(1)

= t1/p,
ϕ2(t)
ϕ2(1)

= tq,
ψ2(t)
ψ2(1)

= t1/q, t > 0,

where p−1 +q−1 = 1 (Theorem 1) . Concerning the bijections, no regularity conditions
are assumed.

This converse of Hölder’s inequality theorem generalizes the main result of [5]
where the case ϕ1 := ϕ , ϕ2 := ψ , ψ1 := ϕ−1, ψ2 := ψ−1 (with only two unknown
functions) was considered. Note that, in this case, ψ1◦ϕ1(t)

t = 1 = t
ψ2◦ϕ2(t)

, and condi-

tion (c) is obviously satisfied. Since ϕ1,ϕ2,ψ1,ψ2 are defined in (0,∞), Theorem 1
improves the main result of [5] were ϕ1,ϕ2 are defined on [0,∞) and it is assumed that
ϕ1(0) = ϕ2(0) = 0 (cf. Corollary 1).

A relevant result for the reversed inequality is also presented (Theorem 2).
The existence of two sets A,B ∈ Σ such that 0 < μ(A) < 1 < μ(B) < ∞ plays a

crucial role. If a measure space fails to satisfy this condition, then there are some broad
classes of non-power bijections ϕ1,ϕ2,ψ1,ψ2 for which the functionals Pϕ1,ψ1 and
Pϕ2,ψ2 satisfy the inequality (H).

The suitable results for the Minkowski inequality are given in [3] and [7].

2. Some lemmas

LEMMA 1. ([4], [6]) Let real numbers a,b such that 0 < a < 1 < a+b be fixed.
Then a function f : (0,∞) → R such that limsupt→0+ f (t) � 0 satisfies the inequality

f (as+bt) � a f (s)+b f (t), s, t > 0,

if, and only if, f (t) = f (1)t for all t > 0 .

Applying this lemma we obtain:

LEMMA 2. Let real numbers a,b such that 0 < a < 1 < a + b be fixed. If a
function F : (0,∞)2 → R satisfies the inequality

F(ax1 +bx2,ay1 +by2) � aF(x1,y1)+bF(x2,y2), x1,x2,y1,y2 > 0,

and the condition
lim sup

t→0+
F(tx,ty) � 0, x,y > 0,

then F is positively homogeneous, i.e.

F(tx,ty) = tF(x,y), t,x,y > 0.

REMARK 1. A finite dimensional counterpart of this lemma is also true (cf. [4],
Theorem 2, and [6]). Let a positive integer n � 2 real numbers a,b such that 0 < a <
1 < a+b be fixed. If F : (0,∞)n → R satisfies the condition

lim sup
t→0+

F(tx1, ...,txn) � 0, (x1, ...,xn) ∈ (0,∞)n,



A CONVERSE OF HÕLDER’S INEQUALITY THEOREM 23

and the inequality

F(ax1 +by1, ...,axn +byn) � aF(x1, ...,xn)+bF(y1, ...,yn)

for all x1, ...,xn,y1, ...,yn > 0, then

F(tx1, ...,txn) = tF(x1, ...,xn), t,x1, ...,xn > 0.

3. The converse of Hölder’s inequality

The main result of this paper reads as follows.

THEOREM 1. Let (Ω,Σ,μ) be a measure space such that there are two sets A,B∈
Σ satisfying the condition

0 < μ(A) < 1 < μ(B) < ∞.

Suppose that ϕ1,ϕ2,ψ1,ψ2 : (0,∞) → (0,∞) are bijective functions such that

ψ1 ◦ϕ1(t)
t

� c � t
ψ2 ◦ϕ2(t)

, t > 0, (1)

for a constant c > 0 . Then the following conditions are equivalent:
(i) the functions ϕ1,ϕ2,ψ1,ψ2 satisfy the inequality

∫
Ω

xydμ � Pϕ1,ψ1(x)Pϕ2,ψ2(y) for all x,y ∈ S+; (2)

(ii) there is a real p > 1 such that

ϕ1(t)
ϕ1(1)

= t p,
ψ1(t)
ψ1(1)

= t1/p,
ϕ2(t)
ϕ2(1)

= tq,
ψ2(t)
ψ2(1)

= t1/q, t > 0,

and
ψ1(1)ψ2(1)(ϕ1(1))1/p (ϕ2(1))1/q = 1,

where
1
p

+
1
q

= 1.

Proof. To show the implication (i) ⇒ (ii) suppose that (i) holds true and put
a := μ(A), b := μ(B\A). Then, obviously,

0 < a < 1 < a+b.

For all x1,x2 > 0, the function x := x1χA + x2χB\A belongs to S+. Setting

x := x1χA + x2χB\A, y := y1χA + y2χB\A, x1,x2,y1,y2 > 0,
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in inequality (2) we get, for all x1,x2,y1,y2 > 0,

ax1y1 +bx2y2 � ψ1 (aϕ1(x1)+bϕ1(x2))ψ2 (aϕ2(y1)+bϕ2(y2)) . (3)

Replacing here xi by ϕ−1
1 (xi) , yi by ϕ−1

2 (yi) for i = 1,2, we obtain

aϕ−1
1 (x1)ϕ−1

2 (y1)+bϕ−1
1 (x2)ϕ−1

2 (y2) � ψ1 (ax1 +bx2)ψ2(ay1 +by2) (4)

for all x1,x2,y1,y2 > 0.
From assumption (1) we have

ψ1(t)
ϕ−1

1 (t)
� c � ϕ−1

2 (t)
ψ2(t)

, t > 0,

whence
ψ1(s)
ϕ−1

1 (s)
� ϕ−1

2 (t)
ψ2(t)

, s,t > 0,

and, consequently,

ψ1(s)ψ2(t) � ϕ−1
1 (s)ϕ−1

2 (t), s, t > 0. (5)

This inequality and (4) imply that, for all x1,y1,x2,y2 > 0,

aψ1(x1)ψ2(y1)+bψ1(x2)ψ2(y2) � ψ1 (ax1 +bx2)ψ2 (ay1 +by2) . (6)

Thus F : (0,∞)2 → (−∞,0) defined by

F(x,y) = −ψ1(x)ψ2(y), x,y > 0,

has negative values and satisfies the inequality

F(ax1 +bx2,ay1 +by2) � aF(x1,y1)+bF(x2,y2), x1,x2,y1,y2 > 0.

By Lemma 2, the function F is positively homogeneous, i.e.

ψ1(tx)ψ2(ty) = tψ1(x)ψ2(y), t,x,y > 0. (7)

Setting here y = 1 we obtain

ψ2(t) = ψ2(1)t
ψ1(x)
ψ1(tx)

, t,x > 0.

Since the right-hand side does not depend on x,

ψ2(1)t
ψ1(x)
ψ1(tx)

= ψ2(1)t
ψ1(y)
ψ1(ty)

, t,x,y > 0,

whence
ψ1(x)
ψ1(tx)

=
ψ1(y)
ψ1(ty)

, t,x,y > 0.
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Setting here y = 1, we get

ψ1(x)
ψ1(tx)

=
ψ1(1)
ψ1(t)

, t,x > 0,

which can be written in the form

ψ1(tx)
ψ1(1)

=
ψ1(t)
ψ1(1)

· ψ1(x)
ψ1(1)

, t,x > 0.

This shows that the function k1 : (0,∞) → (0,∞) defined by

k1(t) :=
ψ1(t)
ψ1(1)

, t > 0,

is multiplicative, i.e.
k1(st) = k1(s)k1(t), s,t > 0.

In the same way we can show that the function

k2(t) :=
ψ2(t)
ψ2(1)

, t > 0,

is multiplicative. Since

ψ1(t) = ψ1(1)k1(t), ψ2(t) = ψ2(1)k2(t) t > 0, (8)

setting these functions into (7) gives

k1(t)k2(t) = t, t > 0. (9)

From (4) and (5) we obtain, for all x1,x2,y1,y2 > 0,

aϕ−1
1 (x1)ϕ−1

2 (y1)+bϕ−1
1 (x2)ϕ−1

2 (y2) � ϕ−1
1 (ax1 +bx2)ϕ−1

2 (ay1 +by2).

Thus the function F : (0,∞)2 → (−∞,0) defined by

F(x,y) = −ϕ−1
1 (x)ϕ−1

2 (y), x,y > 0,

satisfies the assumptions of Lemma 2. Now, repeating the above reasoning, we can
show that there are some multiplicative functions l1, l2 : (0,∞) → (0,∞) such that

ϕ−1
1 (t) = ϕ−1

1 (1)l1(t), ϕ−1
2 (t) = ϕ−1

2 (1)l2(t), t > 0, (10)

and
l1(t)l2(t) = t, t > 0. (11)

Put
k := k1, l := l1. (12)
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From (9) and (11) we get

k2(t) :=
t

k(t)
, l2(t) :=

t
l(t)

, t > 0. (13)

Making use of (5), (8) and (10), we get

ψ1(1)ψ2(1)k(s)
t

k(t)
� ϕ−1

1 (1)ϕ−1
2 (1)l(s)

t
l(t)

, s,t > 0,

whence

d
k(s)
l(s)

� k(t)
l(t)

, s,t > 0, (14)

where

d :=
ψ1(1)ψ2(1)

ϕ−1
1 (1)ϕ−1

2 (1)
. (15)

Inequality (14) implies that the function k
l is globally bounded. Since k

l is a multi-
plicative function, it must be constant and k

l ≡ 1. Consequently,

l(t) = k(t), t > 0. (16)

From (4), taking into account (8), (10), (12), (13) and (16), we obtain

ϕ−1
1 (1)ϕ−1

2 (1)
(

ak(x1)
y1

k(y1)
+bk(x2)

y2

k(y2)

)
� ψ1(1)ψ2(1)k(ax1 +bx2)

ay1 +by2

k(ax1 +bx2)

whence, taking into account (15), for all x1,x2,y1,y2 > 0,

ak(x1)
y1

k(y1)
+bk(x2)

y2

k(y2)
� dk(ax1 +bx2)

ay1 +by2

k(ay1 +by2)
.

By the multiplicativity of k we can write the last inequality in the form

ay1k

(
ax1

ay1

)
+by2k

(
bx2

by2

)
� d

ay1 +by2

k(ay1 +by2)
k(ax1 +bx2),

which means that

y1k

(
x1

y1

)
+ y2k

(
x2

y2

)
� d(y1 + y2)k

(
x1 + x2

y1 + y2

)
, x1,x2,y1,y2 > 0.

Setting here x1 = x2 = y1 = y2 = 1 we get 1 � d. On the other hand, setting s = t in
(14) we get d � 1. Thus

d = 1,

and, consequently,

y1k

(
x1

y1

)
+ y2k

(
x2

y2

)
� (y1 + y2)k

(
x1 + x2

y1 + y2

)
, x1,x2,y1,y2 > 0.
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Putting here x1 = tx, x2 = (1− t)y, y1 := t, y2 := 1− t, and taking into account that
k(1) = 1, we obtain

tk (x)+ (1− t)k (y) � k (tx+(1− t)y), x,y > 0; t ∈ (0,1).

Thus k is concave and, consequently, continuous. It follows that there is p � 1 such
that (cf. [2], p. 311)

k1(t) = k(t) = t1/p, t > 0,

whence, by the first formula of (8),

ψ1(t) = ψ1(1)t1/p, t > 0.

The concavity of k implies that p � 1. Since the roles of the functions ψ1 and ψ2

are symmetric, we conclude that k2(t) = t1/q for some q � 1 whence, by the second
formula of (8),

ψ2(t) = ψ2(1)t1/q, t > 0.

From (9) we have
1
p

+
1
q

= 1,

which implies that p > 1. Now from (10), (11), (12) and (16) we get

ϕ1(t) = ϕ1(1)t p, ϕ2(t) = ϕ2(1)tq, t > 0.

The equality d = 1 implies that

ψ1(1)ψ2(1)(ϕ1(1))1/p)(ϕ2(1))1/q = 1.

This completes the proof of the implication (i) ⇒ (ii) . Since the converse implication
is a consequence of Hölder’s inequality, the proof is complete.

REMARK 2. Theorem 1 remains true if inequality (2) is assumed to hold for all
x,y from the two dimensional cone

S+(A,B) :=
{
x1χA + x2χB\A ∈ S : x1,x2 > 0

}
.

COROLLARY 1. Let (Ω,Σ,μ) be a measure space with A,B ∈ Σ such that

0 < μ(A) < 1 < μ(B) < ∞,

and let ϕ ,ψ : (0,∞) → (0,∞) be bijective functions.
Then the following conditions are equivalent:
(i) the functions ϕ and ψ satisfy the inequality∫
Ω

xydμ � ϕ−1
(∫

Ω(x)
ϕ ◦ xdμ

)
ψ−1

(∫
Ω(y)

ψ ◦ ydμ
)

, x,y ∈ S+ (17)

(ii) there is a real p > 1 such that

ϕ(t)
ϕ(1)

= t p,
ψ(t)
ψ(1)

= t1/q, t > 0,

where 1
p + 1

q = 1.
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Proof. With ϕ1 := ϕ , ϕ2 := ψ , ψ1 := ϕ−1, ψ2 := ψ−1 inequality (17) becomes
(2). Since

ψ1(t)
ϕ−1

1 (t)
=

ϕ−1(t)
ϕ−1(t)

= 1,
ϕ−1

2 (t)
ψ2(t)

=
ψ−1(t)
ψ−1(t)

= 1, t > 0,

condition (1) is satisfied with c = 1.

REMARK 3. This improves the main result of [5] where it is assumed that ϕ(0) =
ψ(0) = 0.

4. The converse of the accompanying Hölder’s inequality

THEOREM 2. Let (Ω,Σ,μ) be a measure space such that there are two sets A,B∈
Σ satisfying the condition

0 < μ(A) < 1 < μ(B) < ∞.

Suppose that ϕ1,ϕ2,ψ1,ψ2 : (0,∞) → (0,∞) are bijective functions such that

t
ψ2 ◦ϕ2(t)

� c � ψ1 ◦ϕ1(t)
t

, t > 0, (18)

for some constant c > 0, and, for all α,β > 0,

lim
t→0+

ψ1(αt)ψ2(β t) = 0. (19)

Then the following conditions are equivalent:
(i) the functions ϕ1,ϕ2,ψ1,ψ2 satisfy the inequality∫

Ω
xydμ � Pϕ1,ψ1(x)Pϕ2,ψ2(y) for all x,y ∈ S+ ; (20)

(ii) there is a real p < 1 such that

ϕ1(t)
ϕ1(1)

= t p,
ψ1(t)
ψ1(1)

= t1/p,
ϕ2(t)
ϕ2(1)

= tq,
ψ2(t)
ψ2(1)

= t1/q, t > 0,

ψ1(1)ψ2(1)(ϕ1(1))1/p (ϕ2(1))1/q = 1,

where 1
p + 1

q = 1.

Proof. To show the implication (i) ⇒ (ii) we put a := μ(A), b := μ(B\A). Set-
ting

x := x1χA + x2χB\A, y := y1χA + y2χB\A, x1,x2,y1,y2 > 0,

in (20) we get, for all x1,x2,y1,y2 > 0,

ax1y1 +bx2y2 � ψ1 (aϕ1(x1)+bϕ1(x2))ψ2 (aϕ2(y1)+bϕ2(y2)) .
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Replacing here xi by ϕ−1
1 (xi) , yi by ϕ−1

2 (yi) for i = 1,2, we obtain

aϕ−1
1 (x1)ϕ−1

2 (y1)+bϕ−1
1 (x2)ϕ−1

2 (y2) � ψ1 (ax1 +bx2)ψ2 (ay1 +by2)) , (21)

for all x1,x2,y1,y2 > 0. From (18) we have

ψ1(s)
ϕ−1

1 (s)
� ϕ−1

2 (t)
ψ2(t)

, s,t > 0,

whence
ψ1(s)ψ2(t) � ϕ−1

1 (s)ϕ−1
2 (t), s, t > 0. (22)

Inequalities (21) and (22) imply that, for all x1,y1,x2,y2 > 0,

aψ1(x1)ψ2(y1)+bψ1(x2)ψ2(y2) � ψ1 (ax1 +bx2)ψ2 (ay1 +by2)) , (23)

which proves that the function F : (0,∞)2 → (0,∞) defined by

F(x,y) = ψ1(x)ψ2(y), x,y > 0,

satisfies the inequality

F(ax1 +bx2,ay1 +by2) � aF(x1,y1)+bF(x2,y2), x1,x2,y1,y2 > 0. (24)

Taking into account (19) and Lemma 2, we infer that F is homogeneous, i.e.

ψ1(tx)ψ2(ty) = tψ1(x)ψ2(y), t,x,y > 0.

Now, repeating the relevant part of the proof of Theorem 1, we can show that there are
multiplicative functions k1,k2 : (0,∞) → (0,∞) such that

ψ1(t) = ψ1(1)k1(t), ψ2(t) = ψ2(1)k2(t) t > 0, (25)

and
k1(t)k2(t) = t, t > 0. (26)

Inequalities (21) and (22) imply that the function F : (0,∞)2 → (0,∞) defined by

F(x,y) = ϕ−1
1 (x)ϕ−1

2 (y), x,y > 0,

satisfies inequality (24). Inequality (22) and condition (19) imply that

lim
t→0

F(tx,ty) = 0, x,y > 0.

By Remark 1, the function F is positively homogeneous. This allows us to conclude
that there are the multiplicative functions l1, l2 : (0,∞) → (0,∞) such that

ϕ−1
1 (t) = ϕ−1

1 (1)l1(t), ϕ−1
2 (t) = ϕ−1

2 (1)l2(t), t > 0, (27)
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and
l1(t)l2(t) = t, t > 0. (28)

Setting
k := k1, l := l1 (29)

and arguing in the same way as in the proof of Theorem 1, we can show that

l(t) = k(t), t > 0, (30)

and
tk (x)+ (1− t)k (y) � dk (tx+(1− t)y), x,y > 0; t ∈ (0,1),

where

d :=
ψ1(1)ψ2(1)

ϕ−1
1 (1)ϕ−1

2 (1)
= 1.

This implies that k is convex and, consequently, for some p � 1,

k1(t) = k(t) = t1/p, t > 0.

Similarly we have
k2(t) = t1/q, t > 0.

for some q � 1. In view of (26),
1
p

+
1
q

= 1,

which implies that p < 1. Now, from (25),

ψ1(t) = ψ1(1)t1/p, ψ2(t) = ψ2(1)t1/q t > 0.

From (27), (28), (29) and (30) we get

ϕ1(t) = ϕ1(1)t p, ϕ2(t) = ϕ2(1)tq, t > 0.

The equality d = 1 implies that

ψ1(1)ψ2(1)(ϕ1(1))1/p)(ϕ2(1))1/q = 1.

This completes the proof of the implication (i) ⇒ (ii) . The converse implication is a
consequence of the accompanying Hölder’s inequality.

5. Remarks on the basic assumptions

REMARK 4. To see that, in Theorem 1, condition (1) is essential, note that the
functions ϕ1(t) = t p, ψ1(t) = t1/p, ϕ2(t) = tq and a non-power function ψ2(t) =
t1/q + t, where p > 1, 1

p + 1
q = 1, satisfy inequality (2) and, as

ψ1 ◦ϕ1(t)
t

= 1 >
t

ψ2 ◦ϕ2(t)
=

1
1+ tq−1 , t > 0,
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condition (1) is not satisfied.
Moreover, taking p = q = 1 and (Ω,Σ,μ) such that Ω = {1,2} , Σ = 2Ω, and μ

such that μ({0}) = 1
2 , μ({1}) = 2, it easy to verify that inequality (2). This shows

that conditions (1) and the basic assumption on the measure space are independent.

The next two remarks show that the assumption of the underlying measure space
is indispensable. They can be treated as some generalizations of the Hölder inequality.

REMARK 5. Suppose that (Ω,Σ,μ) is a measure space such that μ(Ω) � 1 with
at least one set A ∈ Σ such that 0 < μ(A) < 1. Let α,β : (0,∞) → (0,∞) be bijective
increasing and such that the function of two variables

(s,t) → α−1(s)β−1(t)

is concave in (0,∞)2 (cf. inequality (6) for b = 1−a ). Then (cf. [1], [5]),∫
Ω

xydμ � Pα ,α−1(x)Pβ ,β−1(y), x,y ∈ S(Ω,Σ,μ). (31)

For arbitrary bijective increasing functions ϕ1, ϕ2, ψ1, ψ2 : (0,∞) → (0,∞) such that

ψ−1
1 � α � ϕ1, ψ−1

2 � β � ϕ2, (32)

we, obviously, have

Pα ,α−1(x) � Pϕ1,ψ1(x), Pβ ,β−1(y) � Pϕ2,ψ2(y), x,y ∈ S(Ω,Σ,μ),

and, consequently, a generalized Hölder inequality (2) is satisfied.

REMARK 6. Suppose that (Ω,Σ,μ) is a measure space such that for every A ∈
Σ , either μ(A) = 0 or μ(A) � 1. Let α,β : (0,∞) → (0,∞) be increasing bijective
functions and p,q > 0 , p−1 +q−1 = 1, such that the functions

t → α(t)
t p , t → β (t)

tq

are nonincreasing. Then (cf. [5], Theorem 6 ) inequality (31) is satisfied. Let ϕ1, ϕ2,
ψ1, ψ2 : (0,∞) → (0,∞) be arbitrary increasing bijections satisfying conditions (32).
Now, similarly as in the previous remark, we infer that (2) holds true.
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