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(communicated by C. Pearce)

Abstract. One of the application areas of abstract convexity is inequality theory. In this work,
the authors seek to derive new inequalities by sharpening well-known inequalities by the use
of abstract convexity. Cauchy-Schwarz inequality, Minkowski inequality and well-known mean
inequalities are studied in this sense, concrete results are obtained for some of them.

1. Introduction

The applications of abstract convexity are seen in many different areas. (See [3],
[4], [5], [6], [7], [8], [9], [10]). One of them is the application to the inequality theory.
For instance, for different function classes, Hermite-Hadamard type inequalities have
been derived by the several authors [3, 4, 5, 9]. Another use of abstract convexity in
inequality theory is to sharpen known inequalities [8].

In this paper, some famous inequalities such as weighted harmonic-geometric-
aritmethic mean, Cauchy-Schwarz and Minkowski inequalities are studied and investi-
gated in the frame of abstract convexity.

The structure of the paper is as follows: In the first part of the second section, the
basic concepts of abstract convexity and an important theorem related to optimization
theory are given. In the second part of the second section Mt(x,α) mean is introduced
and its properties are given. In the third section, the inequalities are considered separately
and investigated, the results are presented as theorems. In the fourth section, the results
are summarized.

We shall use the following notations:
R is the real line; R+∞ := R ∪ {+∞} ; R−∞ := R ∪ {−∞} ; R̄ := R ∪

{−∞, +∞} ;
Rn is a n -dimensional Euclidean Space;
Rn

+ is the set of points with nonnegative coordinates;
Rn

++ is the set of points with strictly positive coordinates;
X is a Hilbert space with the inner product [.,.] and the norm ‖x‖ =

√
[x, x];

Mathematics subject classification (2000): 26D07.
Keywords and phrases: Abstract convexity, functional inequalities, harmonic-geometric-arithmetic

mean inequalities, global optimization.
This work is supported by Mersin University Scientific Research Projects Unit and Akdeniz University Scientific

Research Projects Unit.

c© � � , Zagreb
Paper MIA-12-04

33



34 GABIL ADILOV AND GÜLTEKIN TINAZTEPE

B(y, r) = {x ∈ X : ‖x − y‖ � r} ;
If f : Ω → R̄, then dom f := {x ∈ Ω : −∞ < f (x) < +∞} ;
If f : Ω → R̄ and g : Ω → R̄, then f � g means that f (x) � g(x) for all x ∈ Ω.

2. Preliminaries

2.1. Abstract convexity, abstract concavity and an application to the optimization
theory

Let Ω be a set and H be a set of functions h : Ω → R−∞ . A function
f : Ω → R+∞ is called abstract convex with respect to H (or H -convex) if there exists
a set U ⊂ H such that

f (x) = sup
h∈U

h(x)

for all x ∈ Ω .
Let H be a set of functions h : Ω → R+∞. A function f : Ω → R−∞ is called

abstract concave with respect to H (or H -concave) if there exists a set U ⊂ H such
that

f (x) = inf
h∈U

h(x)

for all x ∈ Ω .
The set H is called the set of elementary functions.
Let X be Hilbert space, let Ω ⊂ Ω′ ⊂ X, f : Ω → R+∞ and x0 ∈ dom f and L

be a set of functions l : Ω′ → R−∞. An element l ∈ L is called an L -subgradient of
f at the point x0 if x0 ∈ dom l and

f (x) � f (x0) + l(x) − l(x0)

The set ∂Lf (x0) of all L -subgradient of f at x0 is referred to as L -subdifferential
of f at x0.

f : Ω → R+∞ is a lower semicontinuous convex function and x ∈ dom f , then
∂Lf (x) = ∂f (x), where ∂f (x) is the subdifferential in the sense of convex analysis.

Let H be the set of all quadratic functions h of the form

h(x) = a ‖x‖2 + [l, x] + c, x ∈ X

where a > 0, l ∈ X and c ∈ R. We say that a function f : Ω → R−∞ is majorized
by H if there exists h ∈ H such that h � f .

Let Ω ⊂ X and let H be the set of quadratic functions. Then a function f : Ω →
R−∞ is H−concave if and only if f is majorized by H and f is upper semicontinuous
(see [7]).

The following result holds (see [8]).

PROPOSITION 1. Let Ω ⊂ X be a convex set and let f be a differentiable function
defined on an open set containing Ω . Assume that the mapping x �→ ∇f (x) is Lipschitz
continuous on Ω :

K := sup
x,y∈Ω
x�=y

‖∇f (x) −∇f (y)‖
‖x − y‖ < +∞
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Let a � K. For each t ∈ Ω consider the function

f t(x) = f (t) + [∇f , x − t] + a‖x− t‖2, x ∈ X.

Then f (x) = min
t∈Ω

f t(x), x ∈ Ω.

In [8], the global minimization of a function f over a convex set that can be
represented as the infimum of a family (f t)t∈T of convex functions is considered and
some necessary and sufficient ( or only sufficient ) conditions for the global minimum
has been obtained.

In the simplest case of the unconstrained minimization of a function f : X → R
such that ‖∇f (x) −∇f (y)‖ � a ‖x − y‖ for all x, y ∈ X, the following result is
obtained: If a point x∗ is a global minimizer of f over X, then

f (x) − f (x∗) � 1
4a

‖∇f (x)‖2 (1)

for all x ∈ X.
The following theorem which gives the more general case of the inequality (1) is

proved in [8].

THEOREM 1. Consider an n dimensional space R
n with norms ‖.‖ and ‖.‖◦ .

Let Ω ⊂ R
n be a set with int Ω 
= ∅ and let f ∈ C1 (Ω) . Assume that the mapping

x �−→ ∇f (x) is Lipschitz on Ω :

K := sup
x,y∈Ω
x�=y

‖∇f (x) −∇f (y)‖
‖x − y‖ < ∞

Let x∗ ∈ int Ω be a global minimizer of f over Ω. Consider the ball

B◦(x∗, r) = {x : ‖x − x∗‖◦ � r} ⊂ intΩ

and let
M := max {‖∇f (x)‖◦ : x ∈ B◦(x∗, r)} .

Let q > 0 be a number such that B◦(x∗, r + q) ⊂ Ω and let a � max
(
K, M

2q

)
. Then

1
4a

‖∇f (x)‖2 � f (x) − f (x∗), x ∈ B◦(x∗, r).

2.2. Mt(x,α) mean

Well-known means (arithmetic mean, geometric mean,harmonic mean etc.) are
the rings of a certain mean chain and the relation among them is determined by their
places in this chain.

Let (x) ≡ (x1, x2, ..., xn) and (α) ≡ (α1,α2, ...,αn) be positive numbers, such

that
n∑

i=1
αi = 1, and t 
= 0 be real number. The following expression is called the tth

order mean of (x1, x2, ..., xn) with the weights (α1,α2, ...,αn) :

Mt(x,α) =

(
n∑

i=1

αix
t
i

) 1
t

.
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Especially, if t is chosen to be equal to −1, 1 and 2 respectively , Mt(x,α) gives
the weighted harmonic, the weighted arithmetic and the weighted quadratic means,
respectively:

1
n∑

i=1

αi
xi

,

n∑
i=1

αixi,

(
n∑

i=1

αix
2
i

) 1
2

By applying L’ Hospital law, it is derived that

M0(x,α) ≡ lim
t→0

Mt(x,α) =
n∏

i=1

xαi
i ,

that is, it can be easily shown that 0th ordermean corresponds to the weighted geometric
mean.

Also let’s note the following important situations:

M+∞(x,α) ≡ lim
t→+∞ Mt(x,α) = max {x1, x2, ..., xn}

M−∞(x,α) ≡ lim
t→−∞ Mt(x,α) = min {x1, x2, ..., xn}

REMARK 1. In the case that for some i ∈ {1, 2, .., n} xi is zero, Mt(x,α) is
accepted to be equal to zero for t � 0 .

For given positive numbers (x) and given weights (α), the mean Mt(x,α) is an
increasing function of t in R̄. If all xi ( i ∈ 1, n ) does not take the same value, then it
is a strictly increasing function of t (see [2]). Thus, for arbitrary positive (x) and (α),
when t1 � t2, the inequality Mt1(x,α) � Mt2(x,α) holds. So the relation between the
different means is determined by making use of this property.

3. Main results

Many inequalities can be represented in the form f (x) � 0, where f is a certain
function. We say that the inequality f (x) � u(x) with u(x) � 0 is sharper than the
inequality f (x) � 0 if there exists x with u(x) > 0.

Some certain conditions for global minimum can be used for sharpening some
special inequalities. Using the optimality conditions which are obtained via abstract
convexity in the previous section, we will study some well-known inequalities in terms
of sharpening.

3.1. The sharpening of the weighted arithmetic-geometric mean inequality

It is known from the previous section that Mt(x,α) mean is an increasing function
with respect to t, moreover, if all xi values do not take the same value, then Mt(x,α)
is a strictly increasing function, i.e., when t1 < t2, Mt1(x,α) < Mt2(x,α) holds. In
particular, if t1 = 0 and t2 = 1, then M0(x,α) < M1(x,α) is obtained, that is, the
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famous inequality between the weighted arithmetic mean and the weighted geometric
mean is derived:

α1x1 + α2x2 + ... + αnxn > xα1
1 xα2

2 ...xαn
n

where x ∈ Rn
+, x 
= λ1 with λ � 0, αi � 0, ∀i ∈ 1, n,

n∑
i=1

αi = 1 and 1 =

(1, 1, ..., 1) ∈ Rn
+.

By making use of Theorem1, this inequality will be sharpened.

THEOREM 2. Let λ > r be positive numbers. Let

aλ ,r = min
r<d<λ

max

{
(m2 + m − 2p)

1
2

λ + d
(λ − d)2

,
M0

2(d − r)

}

where

M0 = max
1�i�n

{
αi

[(
λ + r
λ − r

)1−αi

− 1

]}
, m =

n∑
i=1

α2
i , p =

n∑
i=1

α3
i .

Then for all x ∈ R
n
+ such that ‖x − λ1‖∞ � r the following inequality holds:

n∑
i=1

αixi �
n∏

i=1

xαi
i +

1
4aλ ,r

n∑
i=1

α2
i

⎛
⎜⎜⎝1 −

n∏
j=1

x
αj
j

xi

⎞
⎟⎟⎠

2

where
n∑

i=1
αi = 1 , αi � 0.

Proof. Let

f (x) =
n∑

i=1

αixi −
n∏

i=1

xαi
i

where
n∑

i=1
αi = 1 , αi � 0, x = (x1, x2, ..., xn) ∈ R

n
+. Then f (x) � 0 and f (x) = 0

if and only if x = λ1, where λ > 0 and 1 = (1, 1, ..., 1). So the vectors λ1 are the
global minimizers of f over R

n
+. We will sharpen the weighted geometric-arithmetic

mean inequality by applying Theorem1 to the inequality f (x) � 0 . It is easily calculated
that

∇f (x) =

⎡
⎢⎢⎣α1

(
1 −

∏n
j=1 x

αj
j

x1

)
,α2

⎛
⎜⎜⎝1 −

n∏
j=1

x
αj
j

x2

⎞
⎟⎟⎠ , ...,αn

⎛
⎜⎜⎝1 −

n∏
i=1

x
αj
j

xn

⎞
⎟⎟⎠
⎤
⎥⎥⎦

Hence

‖∇f (x)‖2 =
n∑

i=1

α2
i

⎛
⎜⎜⎝1 −

n∏
j=1

x
αj
j

xi

⎞
⎟⎟⎠

2
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Laterwe will use not only the norm ‖.‖ = ‖.‖2 but also the norm ‖.‖∞ . For λ > d > 0
consider the ball

Vλ ,d = B∞(λ1,d) = {x ∈ R
n : ‖λ1−x‖∞ � d}

= {x ∈ R
n : λ − d � xi � λ + d, i = 1, ..., n} .

Since d < λ it follows that Vλ ,d ⊂ R
n
++. Let ρi(x) =

n∏
j=1

x
αj
j

xi
. We need to estimate

‖∇ρi(x)‖ for x ∈ Vλ ,d. For this reason we observe the following inequalities:

∣∣∣∣∂ρi

∂xi
(x)

∣∣∣∣ =

∣∣∣∣∣∣∣∣
(αi − 1)

n∏
j=1

x
αj
j

x2
i

∣∣∣∣∣∣∣∣
� (1 − αi)

λ + d
(λ − d)2

∣∣∣∣∂ρi

∂xj
(x)

∣∣∣∣ =

∣∣∣∣∣∣∣∣
αj

n∏
k=1

xαk
k

xixj

∣∣∣∣∣∣∣∣
� αj

λ + d
(λ − d)2

and consequently

‖∇ρi(x)‖ �

⎛
⎜⎝(1 − αi)2

(
λ + d

(λ − d)2

)2

+
n∑

j=1
j �=i

α2
j

(
λ + d

(λ − d)2

)2

⎞
⎟⎠

1
2

�
(

1 − 2αi +
n∑

i=1

α2
i

) 1
2 λ + d

(λ − d)2
(x ∈ Vλ ,d) . (2)

Now let x, y ∈ Vλ ,d . Applying the mean value theorem andCauchy-Schwarz inequality,
we conclude that there exist numbers θi ∈ (0, 1) , i = 1, ..., n such that

‖∇f (x) −∇f (y)‖ = ‖α1 [ρ1(y) − ρ1(x)] ,α2 [ρ2(y) − ρ2(x)] , ...,αn [ρn(y) − ρn(x)]‖

=

(
n∑

i=1

α2
i [ρi(y) − ρi(x)]

2

) 1
2

=

(
n∑

i=1

α2
i [∇ρi(x + θi(y − x))(x − y)]2

) 1
2

�
(

n∑
i=1

α2
i ‖∇ρi(x + θi(y − x))‖2 ‖x − y‖2

) 1
2

=

[
n∑

i=1

α2
i ‖∇ρi(x + θi(y − x)‖2

] 1
2

‖x − y‖
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Since x, y ∈ Vλ ,d it follows that x + θi(y− x) ∈ Vλ ,d for all i. Applying the inequality
(2), we conclude that

‖∇f (x) −∇f (y)‖ � a1(λ , d) ‖x − y‖ , x, y ∈ Vλ ,d

where

a1(λ , d) =

[
n∑

i=1

α2
i

(
1 − 2αi +

n∑
i=1

α2
i

)] 1
2 λ + d

(λ − d)2
=

(
m2 − 2p + m

) 1
2

λ + d
(λ − d)2

with

m =
n∑

i=1

α2
i , p =

n∑
i=1

α3
i

Hencemapping x → ∇f (x) is Lipschitz continuouson Vλ ,d with the Lipschitz constant
K � a1(λ , d). We will apply Theorem1 to a set Ω = Vλ ,d where d < λ and the global
minimizer x∗ = λ1 of the function f . Assume that the norm ‖.‖◦ that was used
in Theorem1 coincides with ‖.‖∞ . Let r ∈ (0, d) and q = d − r . Let’s estimate
M = max {‖∇f (x)‖∞ : x ∈ Vλ ,r} as follows:

M = max
x∈Vλ ,r

{‖∇f (x)‖∞} = max
x∈Vλ ,r

{
max
1�i�n

∣∣∣∣αi

(
1 − xα1

1 xα2
2 ...xαn

n

xi

)∣∣∣∣
}

= max
1�i�n

{
max
x∈Vλ ,r

αi

∣∣∣∣1 − xα1
1 xα2

2 ...xαn
n

xi

∣∣∣∣
}

= max
1�i�n

{
max
x∈Vλ ,r

αi

∣∣∣∣1 −
(

x1

xi

)α1

...

(
xi−1

xi

)αi−1
(

xi+1

xi

)αi+1

...

(
xn

xi

)αn
∣∣∣∣
}

� max
1�i�n

αi

{
max

{
1 −

(
λ − r
λ + r

)1−αi

,

(
λ + r
λ − r

)1−αi

− 1

}}

It can be easily shown that the following inequality holds for given αi (i ∈
{1, 2, ..., n}) : (

λ + r
λ − r

)1−αi

− 1 � 1 −
(
λ − r
λ + r

)1−αi

.

So

max

{
1 −

(
λ − r
λ + r

)1−αi

,

(
λ + r
λ − r

)1−αi

− 1

}
=

(
λ + r
λ − r

)1−αi

− 1.

Hence

M � max
1�i�n

{
αi

[(
λ + r
λ − r

)1−αi

− 1

]}
≡ M0.

Let

a2(λ , d, r) =
M0

2(d − r)
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and

a(λ , d, r) = max {a1(λ , d), a2(λ , d, r)} = max

{(
m2 + m − 2p

) 1
2 λ + d

(λ − d)2
,

M0

2(d − r)

}
where

M0 = max
1�i�n

{
αi

[(
λ + r
λ − r

)1−αi

− 1

]}
, m =

n∑
i=1

α2
i , p =

n∑
i=1

α3
i .

Note that lim
d→λ−

a(λ , d, r) = lim
d→r+

a(λ , d, r) = +∞ so the function d �−→ a(λ , d, r)

attends its minimum on the segment (r, λ ) . Let aλ ,r = min
r<d<λ

a(λ , d, r). Applying

Theorem1 we conclude that

n∑
i=1

αixi �
n∏

i=1

x
αj
n +

1
4aλ ,r

n∑
i=1

α2
i

⎛
⎜⎜⎝1 −

n∏
j=1

x
αj
j

xi

⎞
⎟⎟⎠

2

for x ∈ Vλ ,r.

�

REMARK 2. Although aλ ,r in the Theorem2 is a complicated expression, aλ ,r can
be calculated easily for all λ , r . Indeed, a1(λ , d) has finite value on the point d = r
and goes to infinity when d goes to λ . Also, it can be shown that a1(λ , d) is monotone
increasing function of d on the interval (r, λ ) . On the other hand, a2(λ , d, r) has finite
value on the point d = λ and goes to infinity when d goes to r . Also, it can be shown
that a2(λ , d, r) is monotone decreasing function of d on (r, λ ) . So a(λ , d, r) attains
the minimum value on the point which satisfies the inequality a1(λ , d) = a2(λ , d, r) .

For equal weights, i.e., αi = 1
n , i = 1, 2, ..., n, the result is as follows:

COROLLARY 1. Let λ > r be positive numbers. Let

aλ ,r = min
r<d<λ

max

⎧⎪⎪⎨
⎪⎪⎩

(n − 1)
1
2

n
λ + d

(λ − d)2
,

(
λ+r
λ−r

) n−1
n − 1

2(d − r)n

⎫⎪⎪⎬
⎪⎪⎭

Then for all x ∈ R
n
+ such that ‖x − λ1‖∞ � r the following inequality holds:

1
n

n∑
i=1

xi �
(

n∏
i=1

xi

) 1
n

+
1

4aλ ,rn2

n∑
i=1

⎛
⎜⎜⎜⎜⎜⎝1 −

(
n∏

j=1
xj

) 1
n

xi

⎞
⎟⎟⎟⎟⎟⎠

2

.

This special case is derived in [8].

REMARK 3. In [1], the inequality between the arithmetic mean and the geometric
mean has been analyzed from a different viewpoint. A relation between both means,
whose validity has been evaluated statistically, has been derived .
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3.2. The sharpening of the weighted harmonic-geometric mean inequality

In section 2.2, if we take Mt(x,α) into account with t = −1 and t = 0, the
weighted harmonic-geometric mean inequality is derived:

xα1
1 xα2

2 ...xαn
n >

1
α1
x1

+ α2
x2

+ ... + αn
xn

where x ∈ Rn
++, x 
= λ1 with λ � 0, αi � 0, ∀i ∈ 1, n,

n∑
i=1

αi = 1 and 1 =

(1, 1, ..., 1) ∈ Rn
++.

By using the similar way in the Theorem2, the following theorem which sharpens
the inequality above is proved.

THEOREM 3. Let λ > r be positive numbers. Let

aλ ,r = min
r<d<λ

max

{
(λ + d)
(λ − d)2

[
n∑

i=1

[(
1 − 3αi + 2

λ + d
λ − d

)2

+
(
m − α2

i

)(
1 +

2(λ + d)2

(λ − d)2

)2
]
α2

i

] 1
2

,
M0

2(d − r)

⎫⎬
⎭

where

m =
n∑

i=1

α2
i , M0 = max

1�i�n

{
αi

[(
λ + r
λ − r

)2

−
(
λ − r
λ + r

)1−αi
]}

Then for all x ∈ R
n
++ such that ‖x − λ1‖∞ � r the following inequality holds:

n∏
i=1

xαi
i � 1

n∑
i=1

αi
xi

+
1

4αλ ,r

n∑
i=1

⎡
⎢⎢⎢⎢⎢⎣αi

n∏
j=1

x
αj
j

xi
− αi

x2
i

1(
n∑

j=1

αj
xj

)2

⎤
⎥⎥⎥⎥⎥⎦

2

for x ∈ Vλ ,r.

Proof. Let

f (x) =
n∏

j=1

x
αj
j − 1

n∑
j=1

αj
xj

where x = (x1, x2, ..., xn) ∈ R
n
++ .

It is obvious that x = λ1 with λ > 0 and 1 = (1, 1, ..., 1) are the globalminimum
points of f (x). To sharpen the weighted geometric-arithmetic mean inequality via



42 GABIL ADILOV AND GÜLTEKIN TINAZTEPE

Theorem1, the following calculations are pursued:

∇f (x) =

⎡
⎢⎢⎢⎢⎢⎣α1

n∏
j=1

x
αj
j

x1
− α1

x2
1

1(
n∑

j=1

αj
xj

)2 , . . . , αn

n∏
j=1

x
αj
j

xn
− αn

x2
n

1(
n∑

j=1

αj
xj

)2

⎤
⎥⎥⎥⎥⎥⎦

Hence

‖∇f (x)‖2 =
n∑

i=1

⎡
⎢⎢⎢⎢⎢⎣αi

n∏
j=1

x
αj
j

xi
− αi

x2
i

1(
n∑

j=1

αj
xj

)2

⎤
⎥⎥⎥⎥⎥⎦

2

.

We take ‖.‖ = ‖.‖2 , ‖.‖◦ = ‖.‖∞ . Let’s define Vλ ,d with λ > d > 0 as follows:

Vλ ,d = B∞(λ1,d) = {x ∈ R
n : ‖λ1−x‖∞ � d}

= {x ∈ R
n : λ − d � xi � λ + d, i = 1, ..., n} .

It is clear that Vλ ,d ⊂ R
n
++. Let ρi(x) =

n∏
j=1

x
αj
j

xi
− 1

x2
i

1(
n∑

j=1

αj
xj

)2 . The estimation of

‖∇ρi(x)‖ on Vλ ,d is required, so

∂ρi

∂xi
(x) = (αi − 1)

n∏
j=1

x
αj
j

x2
i

+
2
x3
i

1(
n∑

j=1

αj
xj

)2

⎡
⎢⎢⎣1 − αi

xi

n∑
j=1

αj
xj

⎤
⎥⎥⎦

∂ρi

∂xj
(x) = αj

n∏
j=1

x
αj
j

xixj
− 2αj

x2
i x

2
j

1(
n∑

j=1

αj
xj

)3 .
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It is easily seen that

∣∣∣∣∂ρi

∂xi
(x)

∣∣∣∣ �

∣∣∣∣∣∣∣∣
(αi − 1)

n∏
j=1

x
αj
j

x2
i

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣
2
x3
i

1(
n∑

j=1

αj
xj

)2

⎡
⎢⎢⎣1 − αi

xi

n∑
j=1

αj
xj

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣
� (1 − αi)

λ + d
(λ − d)2

+
2(λ + d)2

(λ − d)3

(
1 − αi

λ − d
λ + d

)

=
λ + d

(λ − d)2

(
1 − 3αi + 2

λ + d
λ − d

)

and

∣∣∣∣∂ρi

∂xj
(x)

∣∣∣∣ �

∣∣∣∣∣∣∣∣
αj

n∏
j=1

x
αj
j

xixj

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣
2αj

x2
i x

2
j

1(
n∑

j=1

αj
xj

)3

∣∣∣∣∣∣∣∣∣∣∣
� αj

λ + d
(λ − d)2

[
1 +

2(λ + d)2

(λ − d)2

]

whence

‖∇ρi(x)‖ �

⎛
⎜⎝[ λ+d

(λ−d)2

(
1−3αi+2

λ+d
λ−d

)]2

+
n∑

j=1
j �=i

[
αj

λ+d
(λ−d)2

(
1+

2(λ+d)2

(λ−d)2

)]2

⎞
⎟⎠

1
2

=
(λ + d)
(λ − d)2

⎡
⎢⎣(1 − 3αi + 2

λ + d
λ − d

)2

+
n∑

j=1
j �=i

α2
j

(
1 +

2(λ + d)2

(λ − d)2

)2

⎤
⎥⎦

1
2

(3)

(x ∈ Vλ ,d) .

Now let x, y ∈ Vλ ,d . There exist θi ∈ (0, 1) , i = 1..., n such that

ρi(x) − ρi(y) = ∇ρi(x + θi(y − x))(x − y),

then

‖∇f (x) −∇f (y)‖ =

(
n∑

i=1

α2
i [ρi(x) − ρi(y)]

2

) 1
2

=

(
n∑

i=1

α2
i [∇ρi(x + θi(y − x))(x − y)]2

) 1
2

�
[

n∑
i=1

α2
i ‖∇ρi(x + θi(y − x)‖2

] 1
2

‖x − y‖
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Since x, y ∈ Vλ ,d it follows that x + θi(y − x) ∈ Vλ ,d for all i. Using the inequality
(3), it is concluded that

‖∇f (x) −∇f (y)‖ � a1(λ , d) ‖x − y‖ , for x, y ∈ Vλ ,d

where

a1(λ , d) =
(λ+d)
(λ−d)2

{
n∑

i=1

α2
i

([
1−3αi+2

λ+d
λ−d

]2

+
(
m−α2

i

) [
1+

2(λ+d)2

(λ−d)2

]2
)} 1

2

with

m =
n∑

j=1

α2
j

whence it is seen that mapping x → ∇f (x) is Lipschitz continuous on Vλ ,d with
the Lipschitz constant K � a1(λ , d). Let’s apply Theorem1 to a set Ω = Vλ ,r, let
r ∈ (0, d) and q = d − r .

Let’s estimate M = max {‖∇f (x)‖∞ : x ∈ Vλ ,r} as follows:

M = max
x∈Vλ ,r

{‖∇f (x)‖∞} = max
x∈Vλ ,r

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max
1�i�n

∣∣∣∣∣∣∣∣∣∣∣
αi

n∏
j=1

x
αj
j

xi
− αi

x2
i

1(
n∑

j=1

αj
xj

)2

∣∣∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= max
1�i�n

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max
x∈Vλ ,r

∣∣∣∣∣∣∣∣∣∣∣
αi

n∏
j=1

x
αj
j

xi
− αi

x2
i

1(
n∑

j=1

αj
xj

)2

∣∣∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= max
1�i�n

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max
x∈Vλ ,r

∣∣∣∣∣∣∣∣∣∣∣
αi

(
x1

xi

)α1

...

(
xi−1

xi

)αi−1
(

xi+1

xi

)αi+1

...

(
xn

xi

)αn

−αi

x2
i

1(
n∑

j=1

αj
xj

)2

∣∣∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

� max
1�i�n

{
max

{
αi

[(
λ+r
λ−r

)2

−
(
λ−r
λ+r

)1−αi
]

,αi

[(
λ+r
λ−r

)1−αi

−
(
λ−r
λ+r

)2
]}}

By taking into account that g(t) = ct + c−t is monotone increasing function on
[0,∞) for c > 1 , the following inequality holds:

(
λ + r
λ − r

)2

−
(
λ − r
λ + r

)1−αi

�
(
λ + r
λ − r

)1−αi

−
(
λ − r
λ + r

)2

.
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So

max

{
αi

[(
λ + r
λ − r

)2

−
(
λ − r
λ + r

)1−αi
]

,αi

[(
λ + r
λ − r

)1−αi

−
(
λ − r
λ + r

)2
]}

= αi

[(
λ + r
λ − r

)2

−
(
λ − r
λ + r

)1−αi
]

Hence

M � max
1�i�n

{
αi

[(
λ + r
λ − r

)2

−
(
λ − r
λ + r

)1−αi
]}

≡ M0.

Let

a2(λ , d, r) =
M0

2(d − r)
and

a(λ , d, r) = max (a1(λ , d), a2(λ , d, r)) .

Since lim
d→λ−0

a(λ , d, r) = lim
d→r+0

a(λ , d, r) = +∞ , the function d �−→ a(λ , d, r)

takes its minimum value on the interval (r, λ ) . Let aλ ,r = min
r<d<λ

a(λ , d, r). Thus, it is

concluded that

n∏
i=1

xαi
i � 1

n∑
i=1

αi
xi

+
1

4aλ ,r

n∑
i=1

⎡
⎢⎢⎢⎢⎢⎣αi

n∏
j=1

x
αj
j

xi
− αi

x2
i

1(
n∑

j=1

αj
xj

)2

⎤
⎥⎥⎥⎥⎥⎦

2

for x ∈ Vλ ,r.

�
As a special case, if αi = 1

n , i = 1, 2, ..., n, the following result can be obtained
as follows:

COROLLARY 2. Let λ > r be positive numbers. Let

aλ ,r = min
r<d<λ

max

⎧⎨
⎩ 1√

n

(λ+d)
(λ−d)2

[(
1−3

n
+2

λ+d
(λ−d)

)2

+
(n−1)

n2

(
1+

2(λ+d)2

(λ−d)2

)2
] 1

2

,

r
2(d − r)n

[(
λ + r
λ − r

)2

−
(
λ − r
λ + r

) n−1
n
]⎫⎬
⎭

Then for all x ∈ R
n
++ such that ‖x − λ1‖∞ � r the following inequality holds:

n∏
i=1

x
1
n
i � n

n∑
i=1

1
xi

+
1

4αλ ,r

n∑
i=1

⎡
⎢⎢⎢⎢⎢⎣

1
n

n∏
j=1

x
1
n
j

xi
− n

x2
i

1(
n∑

j=1

1
xj

)2

⎤
⎥⎥⎥⎥⎥⎦

2

for x ∈ Vλ ,r.
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3.3. Analyzing the inequality between the arithmetic and the quadratic means

The scheme which is used to sharpen the inequalities in the proofs of Theorem 2
and Theorem3 may not give worthwhile results always. For example, if Mt(x,α) is
considered with t1 = 1 , t2 = 2 (for the simplicity, αi = 1

n , i = 1, 2, ..., n ) then the
following well-known inequality exists:√

x2
1 + x2

2 + ... + x2
n

n
� x1 + x2 + ... + xn

n

Let’s follow the similar scheme to sharpen this inequality.Let

f (x) =

√
x2
1 + x2

2 + ... + x2
n

n
− x1 + x2 + ... + xn

n

where
n∑

i=1
αi = 1 , αi � 0, x = (x1, x2, ..., xn) ∈ R

n
+.

Then,

∇f (x) =

⎡
⎢⎢⎢⎣1

n

⎛
⎜⎜⎜⎝

√
nx1(

n∑
i=1

x2
i

) 1
2

− 1

⎞
⎟⎟⎟⎠ ,

1
n

⎛
⎜⎜⎜⎝

√
nx2(

n∑
i=1

x2
i

) 1
2

− 1

⎞
⎟⎟⎟⎠ , ...,

1
n

⎛
⎜⎜⎜⎝

√
nxn(

n∑
i=1

x2
i

) 1
2

− 1

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦

Hence

‖∇f (x)‖2 =
2

n
√

n

⎛
⎜⎜⎜⎝√

n −

n∑
i=1

xi

(
n∑

i=1
x2
i

) 1
2

⎞
⎟⎟⎟⎠ .

For λ > d > 0, define Vλ ,d as given before:

Vλ ,d = {x ∈ R
n : ‖λ1−x‖∞ � d}

Let ρi(x) = xi(
n∑

i=1

x2
i

) 1
2
. Let’smake the following calculations to estimate ‖∇ρi(x)‖

for x ∈ Vλ ,d :

∣∣∣∣∂ρi

∂xi
(x)

∣∣∣∣ =

∣∣∣∣∣1− x2
i

(x2
1+x2

2+...+x2
n)

3
2

∣∣∣∣∣ � max

{∣∣∣∣∣1− (λ−d)2

n
3
2 (λ+d)3

∣∣∣∣∣ ,
∣∣∣∣∣1− (λ + d)2

n
3
2 (λ−d)3

∣∣∣∣∣
}

∣∣∣∣∂ρi

∂xj
(x)

∣∣∣∣ =

∣∣∣∣∣− xixj

(x2
1+x2

2+...+x2
n)

3
2

∣∣∣∣∣ � (λ + d)2

n
3
2 (λ − d)3

.

Then
‖∇ρi(x)‖ �

[
(n − 1)s2

2 + s2
1

]1/2
(x ∈ Vλ ,d) . (4)
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where

s1 = max

{∣∣∣∣∣1 − (λ − d)2

n
3
2 (λ + d)3

∣∣∣∣∣ ,
∣∣∣∣∣1 − (λ + d)2

n
3
2 (λ − d)3

∣∣∣∣∣
}

and s2 =
(λ + d)2

n
3
2 (λ − d)3

.

Now let x, y ∈ Vλ ,d . From the mean value theorem, we know the existence of
θi ∈ (0, 1) , i = 1, ..., n such that

‖∇f (x) −∇f (y)‖ =
1√
n

(
n∑

i=1

[ρi(y) − ρi(x)]
2

) 1
2

=
1√
n

(
n∑

i=1

[∇ρi(x + θi(y − x))(x − y)]2
) 1

2

� 1√
n

(
n∑

i=1

‖∇ρi(x + θi(y − x))‖2 ‖x − y‖2

) 1
2

� [(n − 1)s2
2 + s2

1]
1/2 ‖x − y‖

It is clear that x + θi(y − x) ∈ Vλ ,d for all i and x, y ∈ Vλ ,d. Making use of the
inequality (4), we come to a conclusion that

‖∇f (x) −∇f (y)‖ � a1(λ , d) ‖x − y‖ , x, y ∈ Vλ ,d

where
a1(λ , d) = [(n − 1)s2

2 + s2
1]

1/2.

Hence we see that ∇f (x) is Lipschitz continuous on Vλ ,d with the Lipschitz
constant K � a1(λ , d).

Let ‖.‖◦ = ‖.‖∞ , r ∈ (0, d) and q = d−r . Let’s estimate M = max {‖∇f (x)‖∞ :
x ∈ Vλ ,r} as follows:

M = max
x∈Vλ ,r

{‖∇f (x)‖∞} = max
x∈Vλ ,r

{
max
1�i�n

∣∣∣∣∣1n
( √

nxi√
x2
1 + x2

2 + ... + x2
n

− 1

)∣∣∣∣∣
}

=
1
n

max
1�i�n

{
max
x∈Vλ ,r

∣∣∣∣∣
√

nxi√
x2
1 + x2

2 + ... + x2
n

− 1

∣∣∣∣∣
}

� 1
n

max
1�i�n

{
max

{
λ + r
λ − r

− 1, 1 − λ − r
λ + r

}}

=
1
n

max
1�i�n

{
λ + r
λ − r

− 1

}
=

2r
n(λ − r)

Let
a2(λ , d, r) =

r
n(λ − r)(d − r)

and

a(λ , d, r) = max {a1(λ , d), a2(λ , d, r)} = max

{
[(n − 1)s2

2 + s2
1]

1/2,
r

n(λ − r)(d − r)

}
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The function d �−→ a(λ , d, r) takes its minimum value on the interval (r, λ ) ,
because lim

d→λ−
a(λ , d, r) = lim

d→r+
a(λ , d, r) = +∞. Let aλ ,r = min

r<d<λ
a(λ , d, r). Using

Theorem1 we conclude that

f (x) � 1
4aλ ,r

2√
n

1(
n∑

i=1
x2
i

) 1
2

f (x) � 1
2naλ ,r(λ + r)

f (x) for x ∈ Vλ ,r,

that is, f (x) � 0. Thus, this is not a new inequality.

REMARK 4. By using the scheme which is presented, the inequality between the
means with any two order t1 and t2 can be studied.

3.4. Analyzing the Cauchy-Schwarz and Minkowski inequalities

The problemof sharpening the inequalities which obey the conditions of Theorem1
can be surveyed in the given way above. The famous two of these inequalities are
Cauchy-Schwarz and Minkowski inequalities. It is shown below that given scheme
does not give worthwhile results for these inequalities.

Let
f y(x) = f (x, y) = ‖x‖ ‖y‖ − [x, y]

where y ∈ R
n
+ is a fixed vector, x ∈ R

n
+ and [x, y] is the inner product of x and y .

Cauchy-Schwarz inequality requires that f y(x) � 0 . Only f y(x) = 0 when
x = λy, λ ∈ R. Let’s apply the scheme to f y . First, let’s show that ∇f y is Lipschitz
function for fixed y.

∇f y(x) =
[‖y‖
‖x‖x1 − y1,

‖y‖
‖x‖x2 − y2, ...,

‖y‖
‖x‖xn − yn

]
Let ρi(x) = xi

‖x‖ . We have∣∣∣∣∂ρi

∂xi

∣∣∣∣ =
‖x‖2 − x2

i

‖x‖3∣∣∣∣∂ρi

∂xj

∣∣∣∣ =

∣∣∣∣∣ xixj

‖x‖3

∣∣∣∣∣ , i 
= j

then it is known that there exist numbers θi ∈ (0, 1), i = 1, n such that

‖∇f y(x) −∇f y(z)‖ = ‖y‖
√√√√ n∑

i=1

(
xi

‖x‖ − zi

‖z‖
)2

= ‖y‖
√√√√ n∑

i=1

[ρi(x) − ρi(z)]
2

= ‖y‖
√√√√ n∑

i=1

[∇ρi(x + θi(z − x))2(x − z)]2

� ‖y‖
√√√√ n∑

i=1

‖∇ρi(x + θi(z − x))‖2 ‖x − z‖



THE SHARPENING OF SOME INEQUALITIES VIA ABSTRACT CONVEXITY 49

It is clear that f y(x) has the minimum on the ray λy, λ > 0 . It is easily seen
from above that for given λ > 0 there exists a closed neighborhood Vλ ,d of λy not
including origin such that ∇f y is Lipschitz function, that is, there exists M1 > 0 such
that

‖∇f y(x) −∇f y(z)‖ � M1 ‖x − z‖ .

So Theorem1 can be applied to this situation. Consequently,

‖∇f y(x)‖2 = 2
‖y‖
‖x‖ (‖x‖ ‖y‖ − [x, y]) = 2

‖y‖
‖x‖ f y(x)

and since a closed neighborhood Vλ ,d of λy doesn’t include the origin, there exists M2

such that 2 ‖y‖
‖x‖ � M2 for all x, y ∈ Vλ ,d.

Thus, it is easily seen that there exists M3 < 1 depending on M1, M2 such that

f y(x) � M3f y(x).

that is, f y(x) � 0 . This is not a new inequality.
Minkowski inequality can be studied in a similar way.

3.5. Numerical Computations

Some computations have been done in order to evaluate the results obtained nu-
merically. The weighted geometric-arithmeticmean has been considered and compared
with the new derived inequality for some weights and values.

As it is expressed in Remark 2, aλ ,r can be computed easily. So the inequality

a1(λ , d) = a2(λ , d, r)

is solved with respect to d . The solution d∗ is put in the expression a1(λ , d) or
a2(λ , d) . Thus, a(λ , d) is derived, that is,

aλ ,r = a1(λ , d∗) = a2(λ , d∗, r).

For the values λ = 1 , r = 0.5 , n = 5 and (x)1 = (0.6, 0.8, 1, 1.2, 1.4) , (x)2 =
(0.6, 0.7, 0.8, 0.9, 1) , (x)3 = (1, 1.1, 1.2, 1.3, 1.4) , (x)4 = (0.9, 0.95, 1, 1.05, 1.1) with
the different weights, the weighted geometric-arithmetic mean inequality is compared
with the new inequality.

The functions f (x) and u(x) in tables are as follows:

f (x) =
n∑

i=1

αixi −
n∏

i=1

xαi
i , u(x) =

1
4aλ ,r

n∑
i=1

α2
i

⎛
⎜⎜⎝1 −

n∏
j=1

x
αj
j

xi

⎞
⎟⎟⎠

2
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Table 1. Results for the equal weights (α) = (0.2, 0.2, 0.2, 0.2, 0.2)

n∑
i=1

αixi

n∏
i=1

xαi
i f (x) u(x) u(x)

f (x)

(x)1 1.000000 0.957878 0.042122 0.009820 0.233137
(x)2 0.800000 0.787257 0.012743 0.003185 0.249942
(x)3 1.200000 1.191596 0.008404 0.001332 0.158446
(x)4 1.000000 0.997492 0.002508 0.000035 0.013864

Table 2. Results for random weights (α) = (0.05, 0.05, 0.2, 0.3, 0.4)

n∑
i=1

αixi

n∏
i=1

xαi
i f (x) u(x) u(x)

f (x)

(x)1 1.190000 1.164844 0.025156 0.003788 0.150559
(x)2 0.895000 0.887265 0.007735 0.001476 0.190843
(x)3 1.295000 1.289853 0.005147 0.000677 0.131586
(x)4 1.047500 1.045953 0.001547 0.000019 0.012391

Table 3. Results for the case in which one of the weights is dominant on others
(α) = (0.8, 0.1, 0.06, 0.03, 0.01)

n∑
i=1

αixi

n∏
i=1

xαi
i f (x) u(x) u(x)

f (x)

(x)1 0.670000 0.655642 0.014358 0.002924 0.203672
(x)2 0.635000 0.630730 0.004270 0.000918 0.215099
(x)3 1.035000 1.032214 0.002786 0.000370 0.132640
(x)4 0.917500 0.916676 0.000824 0.000009 0.011363

Last two columns of tables show the sharpening ratio of inequality for different
values with the different weights.

4. Conclusion

One of the large application areas of abstract convexity is the inequality theory.
In this area, besides different applications, the sharpening of well-known inequalities
takes place.

In this paper, the situations of Mt(x,α) which gives the important and famous mean
inequalities are considered separately and studied in terms of sharpening. By sharp-
ening the weighted harmonic-geometric mean inequality and the weighted geometric-
arithmetic mean inequality, new inequalities are derived. Numerical results which show
the amount of sharpening are given.

By using the samemethod,Arithmetic-quadraticmean inequality,Cauchy-Schwarz
inequality andMinkowski inequality are studied. It is shown that these inequalities obeys
the conditions of Theorem1, but the performed scheme does not give new inequality.
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