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THE SHARPENING OF SOME INEQUALITIES
VIA ABSTRACT CONVEXITY

GABIL ADILOV AND GULTEKIN TINAZTEPE

(communicated by C. Pearce)

Abstract. One of the application areas of abstract convexity is inequality theory. In this work,
the authors seek to derive new inequalities by sharpening well-known inequalities by the use
of abstract convexity. Cauchy-Schwarz inequality, Minkowski inequality and well-known mean
inequalities are studied in this sense, concrete results are obtained for some of them.

1. Introduction

The applications of abstract convexity are seen in many different areas. (See [3],
[4], 5], 6], [7], [8], [9], [10]). One of them is the application to the inequality theory.
For instance, for different function classes, Hermite-Hadamard type inequalities have
been derived by the several authors [3, 4, 5, 9]. Another use of abstract convexity in
inequality theory is to sharpen known inequalities [8].

In this paper, some famous inequalities such as weighted harmonic-geometric-
aritmethic mean, Cauchy-Schwarz and Minkowski inequalities are studied and investi-
gated in the frame of abstract convexity.

The structure of the paper is as follows: In the first part of the second section, the
basic concepts of abstract convexity and an important theorem related to optimization
theory are given. In the second part of the second section M;(x, &) mean is introduced
and its properties are given. In the third section, the inequalities are considered separately
and investigated, the results are presented as theorems. In the fourth section, the results
are summarized.

We shall use the following notations: _

R is the real line; Rioo := RU {+0};R_o = RU{—0};R := RU
{700’ +OO} )

R" is a n-dimensional Euclidean Space;

R’} is the set of points with nonnegative coordinates;

R’ | is the set of points with strictly positive coordinates;

X is a Hilbert space with the inner product [.,.] and the norm ||x|| = /[, x];
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B(y,r) ={xeX:|x—y| <r};
If f : Q — R, then domf :={x€Q: —oc0 <f(x) < +oo};
Iff:Q— Rand g: Q — R, then f < g means that f (x) < g(x) forall x € Q.

2. Preliminaries

2.1. Abstract convexity, abstract concavity and an application to the optimization
theory

Let Q be a set and H be a set of functions 7 : Q@ — R_,,. A function
f :Q — R, iscalled abstract convex with respectto H (or H -convex) if there exists
aset U C H such that

[ (x) = sup h(x)
heu

forall x € Q.

Let H be a set of functions 7 : Q — R . A function f : Q — R_, is called
abstract concave with respect to H (or H -concave) if there exists a set U C H such
that

f(x) = inf h(x)

heu
forall x € Q.
The set H is called the set of elementary functions.
Let X be Hilbert space,let Q C Q' C X, f : Q — R, and xo € domf and L
be a set of functions [ : Q" — R_,. Anelement [ € L is called an L-subgradient of
f at the point xp if xop € dom/ and

[ (%) = [ (x0) + 1(x) — Uxo)

The set Orf (xo) of all L-subgradientof f at xq is referred to as L-subdifferential
of f at xp.

f : Q — R, is alower semicontinuous convex function and x € domf , then
Of (x) = Of (x), where Of (x) is the subdifferential in the sense of convex analysis.

Let H be the set of all quadratic functions /4 of the form

h(x) = alx|> + [,x] +¢, xeX

where a > 0, [ € X and ¢ € R. We say that a function f : Q — R_., is majorized
by H if there exists & € H such that h > f.

Let Q C X and let H be the set of quadratic functions. Then a function f : Q —
R_ is H—concave if and only if f is majorized by H and f is upper semicontinuous
(see [7]).

The following result holds (see [8]).

PROPOSITION 1. Let Q C X be a convex set and let f be a differentiable function
defined on an open set containing Q. Assume that the mapping x — Vf (x) is Lipschitz

continuous on Q:
IVf (x) = Vf Wl

K := sup < 400
wyea [l =yl
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Let a > K. For each t € Q consider the function
fi(x)=7F @)+ [Vf,x—1] +al|x— t||27 x€eX.
Then f (x) = minf,(x), x € Q.
€Q

In [8], the global minimization of a function f over a convex set that can be
represented as the infimum of a family (f;),.,; of convex functions is considered and
some necessary and sufficient ( or only sufficient ) conditions for the global minimum
has been obtained.

In the simplest case of the unconstrained minimization of a function f : X — R
such that |Vf(x) — Vf ()| < allx—y| for all x,y € X, the following result is
obtained: If a point x* is a global minimizer of f over X, then

F@) 7 ) > 9 )P (1)

forall x € X.

The following theorem which gives the more general case of the inequality (1) is
proved in [8].

THEOREM 1. Consider an n dimensional space R" with norms ||.| and |.||, -

Let Q C R" be a set with int Q # () and let f € C' (Q). Assume that the mapping
x — Vf (x) is Lipschitz on Q :
ke wup [0 =)
b ST

< o0

Let x* € int Q be a global minimizer of f over Q. Consider the ball
Bo(x*,r) = {x:|lx —x*||, < r} C intQ

and let
M = max {||Vf (x)||, : x € Bo(x*,r)}.

Let g > 0 be a number such that Bo(x*,r + q) C Q and let a > max (K, g”—q) . Then

(e}

IV @I <)~ (), x € Bul )

2.2. M(x, ) mean

Well-known means (arithmetic mean, geometric mean,harmonic mean etc.) are
the rings of a certain mean chain and the relation among them is determined by their
places in this chain.

Let (x) = (x1,x2,...,%,) and (&) = (o4, a2, ..., &%) be positive numbers, such

n
that >~ ; = 1, and t # O be real number. The following expression is called the ¢

i=1
order mean of (x,x,,...,x,) with the weights (c, @, ..., 0) :

1
M(x, o) = (Z Otix§> :
i=1
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Especially, if 7 is chosen to be equalto —1, 1 and 2 respectively , M,(x, o) gives
the weighted harmonic, the weighted arithmetic and the weighted quadratic means,

respectively:
1

1 n n 2
2
) E OiXi, E OGX;
i=1 i=1

(071

-

Xi

i=1

By applying L’ Hospital law, it is derived that
_1: _ (o7}
Mo(x, or) = lim My(x, or) = JJE;

i
i=1

that s, it can be easily shown that 0" order mean corresponds to the weighted geometric
mean.
Also let’s note the following important situations:

Mioo(x,a) = t_l)igrnooM,(x, o) = max {xy,x2, ..., X }
M_(x,a) = t_l)i{nooMt(x, o) = min {x, X2, ..., X }

REMARK 1. In the case that for some i € {1,2,..,n} x; is zero, M,(x, o) is
accepted to be equal to zero for t < 0.

For given positive numbers (x) and given weights (o), the mean M,(x, &) is an
increasing function of 7 in R. If all x; (i € 1,n) does not take the same value, then it
is a strictly increasing function of ¢ (see [2]). Thus, for arbitrary positive (x) and (),
when 1, < 1, the inequality M,, (x, ) < My, (x, o) holds. So the relation between the
different means is determined by making use of this property.

3. Main results

Many inequalities can be represented in the form f (x) > 0, where f is a certain
function. We say that the inequality f (x) > u(x) with u(x) > O is sharper than the
inequality f (x) > O if there exists x with u(x) > 0.

Some certain conditions for global minimum can be used for sharpening some
special inequalities. Using the optimality conditions which are obtained via abstract
convexity in the previous section, we will study some well-known inequalities in terms
of sharpening.

3.1. The sharpening of the weighted arithmetic-geometric mean inequality

It is known from the previous section that M, (x, o) mean is an increasing function
with respect to 7, moreover, if all x; values do not take the same value, then M,(x, o)
is a strictly increasing function, i.e., when #; < t;, M, (x, ) < My, (x, ) holds. In
particular, if 44 = 0 and 7, = 1, then My(x, ) < M;(x, ) is obtained, that is, the



THE SHARPENING OF SOME INEQUALITIES VIA ABSTRACT CONVEXITY 37

famous inequality between the weighted arithmetic mean and the weighted geometric

mean is derived:

QX1 + 00Xy + .o + OpXy > X715 x0"

where x € R?, x # A1 with A >0, & >0, Vi € I,n, > oz =1 and 1 =
=1

(1,1,...,1) e R
By making use of Theoreml, this inequality will be sharpened.

THEOREM 2. Let A > r be positive numbers. Let
A+d M, }

[T

a), = min max {(m2 +m—2p)

r<d<A ()L — d)27 2(d — r)
where
A\ S "
Mo—lrgl;gn{a,- <)t—r) -1, m:;ai, p:;ai.

Then for all x € R, such that ||x — A1||_ < r the following inequality holds:

n a 2
n n n H xj
o 1 2 j=1
E O!ixi>|lxi’+—§ o |'1-
— L - day, , — X;
i=1 i=1 i=1

n
where > o; =1, o; > 0.
i=1

Proof. Let
fx) = Z o4x; — Hxl‘-x"
i=1 i=1

where Y- o; =1, o >0, x = (x1,x2,...,x,) € R’.. Then f(x) > 0 and f(x) =0
i=1

if and only if x = A1, where A > 0 and 1= (1, 1,...,1). So the vectors A1 are the

global minimizers of f over R’,. We will sharpen the weighted geometric-arithmetic

mean inequality by applying Theorem1 to the inequality f (x) > 0. Itis easily calculated

that

n o o
K % .Hle ij
=1 J= i=1
Viix)= |y (1]7j>,a2 1-— Oy | 1T = E=—
X1 X2 Xn
Hence
n 2

I R
19 @)IP =Y ef [ 1 -

i=1



38 GABIL ADILOV AND GULTEKIN TINAZTEPE

Later we will use not only the norm ||.|| = ||.||, butalso thenorm ||.|| . For A >d >0
consider the ball

Vida = Bso(Ald) ={xeR":||A1—x|_ <d}
= {xeR":A—-d<x<A+di=1,..,n}.
[T+
Since d < A it follows that V; 4 C R% . Let p;(x) = = - We need to estimate
|Vpi(x)|| for x € Vj 4. For this reason we observe the following inequalities:

I
p; = A+d
“Fi — _ < (1 —q)-2"2_
| = [0V < U -a0g g
n xak
O ()| = Oé‘kljl ' o Atd
8va I XiXj = (A, — d)2

and consequently

i < (1o (55 S (25

< (1—2a1+Za>ZLd)Z (x € Vaa). (2)

Now let x,y € V; 4. Applying the mean value theorem and Cauchy-Schwarz inequality,
we conclude that there exist numbers 6; € (0,1), i =1, ...,n such that

IVf () =V = lloa [o1(y) = ()]s 2 [02(y) = p2(x)] 5 s 0 [Pn(y) = u(2)]]

(Za [oi(y) = il M)é

(Za [Voilx + 610y —x))(x—yW)

2

1
2

N

Za IVi(x + 6 (y = )| |l = yl)

1

_ [za IVpiCx + 60 —x>|] e =yl
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Since x,y € V) 4 it follows that x + 6,(y — x) € V, 4 forall i. Applying the inequality
(2), we conclude that

[Vf ) = VIO < ar(A,d) |x =y, x,y € Vra
where

1
2

n " A+d 1 A+d
_ 2 . : 2 _sre 2 2 7 "
al(?t,d)—[;% (1 20‘1"‘;0‘1)] e (m* = 2p +m) (& —d)?
with
i=1 i=1

Hence mapping x — Vf (x) is Lipschitz continuous on V;, 4 with the Lipschitz constant

K < ai(A,d). We will apply Theorem1 to aset Q = V; ; where d < A and the global

minimizer x* = A1 of the function f. Assume that the norm ||.|, that was used

in Theorem1 coincides with |||, . Let r € (0,d) and ¢ = d — r. Let’s estimate
xX€V; » LIi<n

M = max {||Vf (x)| ., : x € Vi ,} as follows:
a1 x5 xn
i X;

1 x ) xiot ) T xi ) X\
. -\ X %
1—o; 1—o;
< max o; ¢ max< 1 — u , Atr —1
1<i<n A+r A—r

It can be easily shown that the following inequality holds for given o; (i €

{1,2,...,n}) :
A4\ A—r\'"%
—1>1- .
(ﬂtr) 1=1 (l+r>
max< 1 — o\ Atr 1—0‘1'71 = Atr 1—0‘1'71
A+r "\A =7 S \A=r '
Hence e

M = max {||Vf(x)||,.} = max {max
xeVy »

o .00 Oy
xMx . x
= max{maxai -2

1<i<n | x€v,,

Xi

= max { max ¢;
1<i<n | x€v,

|

So

M < max < o
1<i<n

Let
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and

““vd’”—max{a1wd>7az<x7d,r>}—ma"{<m2+mzp)% Atd Mo }

(A—d)? 2(d—r)
where

My = max {oc,-

1<ign

1—o; n n
(i—ﬂ) " _1]}7’”22‘%‘271):20‘?-
i=1 i=1

Note that lim a(A,d,r) = dlim a(A,d,r) = +oo so the function d — a(A,d,r)
d—A— —rt
attends its minimum on the segment (r,A). Let a;, = H(liinxl a(A,d, r). Applying
' r<d<

Theorem1 we conclude that
2

n
@
J

n n n ij
3 o 1 3 e j=1

oux; > Hx,, + o | 1— forx € V.
— o 445, = Xi '
1= 1= 1=

O

REMARK 2. Although a; , in the Theorem2 is a complicated expression, a; , can
be calculated easily for all A,r. Indeed, a;(A,d) has finite value on the point d = r
and goes to infinity when d goesto A. Also, it can be shown that a; (A, d) is monotone
increasing function of d on the interval (r,A). On the other hand, a>(A,d, r) has finite
value on the point d = A and goes to infinity when d goes to r. Also, it can be shown
that a»(A,d, r) is monotone decreasing function of d on (r,A). So a(A,d, r) attains
the minimum value on the point which satisfies the inequality a;(4,d) = a»(A,d,r).

For equal weights, i.e., o = %, i=1,2,..., n, the result is as follows:

COROLLARY 1. Let A > r be positive numbers. Let
n—1

Atr) "
A (n—1)* A+d (AL) —1
a, r = 5
AT 2d<h n (A—d)?  2(d—rn

Then for all x € R, such that ||x — A1|| < r the following inequality holds:
2

1
1 n n % 1 n (ﬁ xl)
3 11 3 j=1

i=1 i=1

This special case is derived in [8].

REMARK 3. In [1], the inequality between the arithmetic mean and the geometric
mean has been analyzed from a different viewpoint. A relation between both means,
whose validity has been evaluated statistically, has been derived .
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3.2. The sharpening of the weighted harmonic-geometric mean inequality
In section 2.2, if we take M,(x, o) into account with 7 = —1 and ¢ = 0, the

weighted harmonic-geometric mean inequality is derived:

1
oy 0o (077}
X7 X5 .o X, >
12 n ou 253 On
g + o + ...+ ™

n

where x € R",, x # A1l with A >0, o; >0, Vie I,n, > oy =1 and 1 =

i=1
(1,1,...,1) eRY,.
By using the similar way in the Theorem?2, the following theorem which sharpens
the inequality above is proved.

THEOREM 3. Let A > r be positive numbers. Let

! Atd\’

i=1

A N 5
T (m—o?) <1+H)]aﬁ] g

a = min max M
AT ldeh (A —d)?

where

n

m:E aiz, My = max < o
—1 1<i<n
=

G -G )

Then for all x € R, such that ||x — A1|| < r the following inequality holds:

2

. 1  — _ 7 o 1
| e D Lt 7| forxe Vi,
. i A " i i

Proof. Let
n 1
(04
f(x) = ]J — n ]
j=1 A
=1

where x = (x1,x2,...,x,) € R .
Itis obviousthat x = A1 with A > 0 and 1 = (1, 1, ..., 1) are the global minimum
points of f(x). To sharpen the weighted geometric-arithmetic mean inequality via
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Theoreml1, the following calculations are pursued:

Lo o
—1xj] a 1 Exj] 0% 1
Vf(x) = |on— - 5 S Oy —— — = >
X1 X7 no o Xn x% no.
4 4
=Y =1
Hence
2
n
Q
: ‘qu] o 1
2 = '
IVf @7 =D |o—— =5 :
i=1 i i n o
j=1
We take ||.|| = [.]l,, |||, = I|.]l o, - Let’s define V} 4 with A > d > 0 as follows:

Boo(Ald) = {x € R": |A1—x||, <d}

Via =
{xeR":A—d<x;<A+d,i=1,..,n}.

It is clear that V, , C R’ ,. Let p;(x) = j:lxl_ - Xiz < nl >2. The estimation of

|[Vpi(x)|| on Vy 4 is required, so

I1x"
3;),- j=1 ! 2 1 (047
Ox: (x) = (OC,' - 1) 2 + F 2 1 - "
i i i Xn:ﬁ xiZX_J
Pl a
n o
X,
3;),- jl;ll ! 2OCJ 1

) = o e | .

. 7 yoxs 2,2 3

a')CJ XiX; ixj ( n >
%
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It is easily seen that

1%’
0 i i=1 2 1 (04}
ai(x)‘ < @-n=|+ |2 1 o
i i noo X; Y
(g2) L 5
A+d  2(A+d)? A—d
SU-we—m*t g "%
A+d A+d
- o (12 )
and
n x‘?‘j
i o < avjl:—llj 2 1 |\ A+d [ 2(A+d)
0x; S X x3x? /o, T (A —a) (A —d)?
J Zﬁ
=17
whence
A+d A+d i A+d 2A+d)2\ 1
a0l < {[ g (1304235 dﬂ*,z{“’a—dv (o
J#i

1

—~
(O8]
~

(A +d) A+d . 2(A +d)?
= 1 - 3 l 2—
A —ay + E Z —a?
J?’I
()C S V/l,d) .
Now let x,y € V3 4. There exist 6; € (0,1), i = 1...,n such that

pi(x) — pi(y) = Vpi(x + 6i(y — x))(x — y),

then

IVf () = VF W) = (Za pi(x) — p; >]>
= (Z off [Vpi(x + 6;(y —x))(x — Y)]2>

i=1

(S

N

[Z of [ Vpi(x + 6i(y — X)IIZ] [lx = Il

i=1
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Since x,y € V, 4 it follows that x 4+ 6;(y — x) € V4 for all i. Using the inequality
(3), it is concluded that

IVf(x) = VWl Sar(A,d) [lx =yl forx,y € Vg

where

A+d " A+d 2 A +d)? 2 >
a(A,d) = (():d))2 {;afqlsaﬁzﬁ} 4 (m—o?) {”ﬁ] )}

with

n

_ 2
m=y o
j=1

whence it is seen that mapping x — Vf(x) is Lipschitz continuous on V), with
the Lipschitz constant K < a;(A,d). Let’s apply Theoreml to a set Q = V., let
re(0,d) and g=d —r.

Let’s estimate M = max {||Vf (x)| ., : x € V; .} as follows:

M = max {||Vf(x)| .} = max { max |o; - =
xX€V) »

x€V; | 1<i<n X; Xl-z "y 2
9%
25

= max { max |o; - —

1<i<n | €V, Xi X2 2
o

I

>

=17

[od] Qi1 Qi1 On
Xy Xi—1 Xit1 Xn o 1
= max { max |¢; [ — | = — = _
mmela(3) () () (%) )
max J max J o A\ 2 A—r\' "% o A\ T A—r\?
X qmaxq o | (=— ] —(5— o || 7= -
1<i<n A—r A+r A—r A+r

By taking into account that g(#) = ¢’ + ¢~ is monotone increasing function on
[0,00) for ¢ > 1, the following inequality holds:

A+r 2_ A—r lfa"> A+r lfa"_ A —r\?
A—r A+r “\A-r A+r)

N
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So
max 4 o A+r 2_ A—r\'"% o A+r l_ai_ A=r\’
% A—r A+r T\ A =7 A+r
A+r\> (A—=r\'"T"
:ai —
A—r A+r
Hence
A2 A -\ _
Mglngliaél{ai (/lr) _()L+r) = Mo.
Let M.
. 0
a(A,d,r) = 3d—7)
and

a(A,d,r) = max (a;(A,d),ax(A,d,r)).
Since dliin Oa(/l,d, r) = dlimoa()L,d, r) = 400, the function d — a(A,d, r)
—A— —r+
takes its minimum value on the interval (r,A). Let a; , = rrbin/I a(A,d,r). Thus, itis
' r<d<

concluded that

2
n
o

u 1 1 < H1 5 o 1

. j= ;
fo" > — + Z o - —2’ 5| forxeV,,
. o 4a)L r Xi Xj
i=1 Z X—’ =1 ! n o

=1 Zl X
=

O

As a special case, if o; = %, i =1,2,...,n, the following result can be obtained
as follows:

COROLLARY 2. Let A > r be positive numbers. Let

1

o = et | (g (”igj)zz)zr,
S <ﬁ><i+)_

Then for all x € R}, such that ||x — A1|| < r the following inequality holds:
Q2

ﬁ 1 S N . 1 i 1j=1 ' n 1 P cv
Xi 2 = - = orx eV,
i=1 40

- = 1
i >4
j=1 ]

e

1
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3.3. Analyzing the inequality between the arithmetic and the quadratic means

The scheme which is used to sharpen the inequalities in the proofs of Theorem 2
and Theorem3 may not give worthwhile results always. For example, if M;(x, @) is
considered with 7, = 1, , = 2 (for the simplicity, o = %, i =1,2,...,n) then the
following well-known inequality exists:

\/x%—&—x%—l—... +x2 JJ + X+ ...+ xp

n n

Let’s follow the similar scheme to sharpen this inequality.Let

£lx) = \/x%er%Jr... + 12 Xttt
n n

n
where Y o, =1, 06 >0, x = (x1,x2,...,%,) € R,
i=1

Then,
N Vnx; Vnx,
Vf(x) = r—1], =11, r—1
n n 2 n n 2 n n 2
(£) (£) (£)
i=1 i=1 i=1
Hence

IVF ()™ = i Vn— ————

For A > d > 0, define V, 4 as given before:

Via={x eR": |A1—x|| <d}

Let p;(x) = ——. Let’s make the following calculations to estimate ||V p;(x)||
n 2
X
i=1
forx e V;4:
op; x? A—d)? A +d)?
‘ (x)’_ T a2 N[ S max 1—2 )3’ (3 )3
Ox; (3 4x3+...+x2)2 n2(A+d) n2(A—d)
‘ap, (x)’ _ XiXj (A, + d)z
2y (B4 4x2)2 | n2(A —d)
Then
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1—

7

where
_ )2 2 2
§| = max E)L 9) - E)L +d) and s, = 79 +d) .
n? (A +d)3 ni(A —d)3 ni(A —d)?

Now let x,y € V; 4. From the mean value theorem, we know the existence of
6; € (0,1), i = 1,...,n such that

1

(Z [0:(y) — pi <x>]2>

i=1

IV (x) = VIl =

Sl

1

- % (Z [Vpi(x + 6;(y —x)) (x — y)]2>

< % (; IVoi(x+ 6:(y = x)|* |x y||2>

< = s3+ 572 x|

It is clear that x 4+ 6;(y — x) € V4 forall i and x,y € V, 4. Making use of the
inequality (4), we come to a conclusion that

IVf () = VF Il S ar(A,d) lx = yll, x5 € Via
where
ai(A,d) = [(n—1)s3 +s7]'/2.
Hence we see that Vf(x) is Lipschitz continuous on V), , with the Lipschitz
constant K < a;(A,d).
Let |||, = ||/l » 7 € (0,d) and g = d—r. Let’sestimate M = max {||Vf (x)||  :
x € Vy,} as follows:

1 \/ﬁx,- 1
n \/X% +x% + .+ X2

M = max {||Vf(x)||} = max {max
xeVy »

xX€V; . | 1<ign

1 nx;
—= — max max \/_ d - 1
nASiKn | x€Vo, |\ /03 + 23 + ...+ 22

< lmax max Mfl,lf/lir
n1<i<n A—r A+r

_ 1 /lJrr_l o 2r
B A n(A—r)

Let

r

az(ﬂ,,d,") = m

and

a(A,d,r) =max {a;(A,d),a(A,d,r)} = max{[(n —1)s3 +57]'2, m}
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The function d — a(A,d,r) takes its minimum value on the interval (r,A),
because lim a(A,d,r) = dlim a(A,d,r) = 4o0. Let a) , = rI}iinAa(/l,d7 r). Using
d—A— —rt r<d<

Theorem1 we conclude that

fos 21 i

- 401’,« \/ﬁ n %
(&)
i=1

that is, f (x) > 0. Thus, this is not a new inequality.

)2 Wf (x) forx € Vy,

REMARK 4. By using the scheme which is presented, the inequality between the
means with any two order #; and #, can be studied.

3.4. Analyzing the Cauchy-Schwarz and Minkowski inequalities

The problem of sharpening the inequalities which obey the conditions of Theorem1
can be surveyed in the given way above. The famous two of these inequalities are
Cauchy-Schwarz and Minkowski inequalities. It is shown below that given scheme
does not give worthwhile results for these inequalities.

Let

Fy(x) = £ (xy) =[x Iyl = [, y]
where y € R is a fixed vector, x € R”, and [x,y] is the inner product of x and y.

Cauchy-Schwarz inequality requires that fy(x) > 0. Only fy(x) = 0 when
x = Ay, A € R. Let’s apply the scheme to f,. First, let’s show that Vf, is Lipschitz
function for fixed y.

vfy(x) = [Mxl -1, sz — Y250 Mxn —n
[ [l x|

Let p;(x) = 2. We have

[

’% Xl — xF

| = 3

Oxi |1

op; xXixi | ., .
A

‘axf 3R

then it is known that there exist numbers 6; € (0,1), i = 1,n such that

n n

196 — VAGI = Iyl Z(W‘n%) = S o) - o)

i=1 i=1

n

= Iyl (| D [Voilx + 6z — x))2 (x — 2))?

i=1

n

< Iy | Do IVRile + 6z =) e — 2]
i=1
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It is clear that f),(x) has the minimum on the ray Ay, A > 0. It is easily seen
from above that for given A > 0 there exists a closed neighborhood V, 4 of Ay not
including origin such that Vf, is Lipschitz function, that is, there exists M; > 0 such
that

IVFy(x) = V@)l < Myl — 2|

So Theorem1 can be applied to this situation. Consequently,

1941 = 221 g il = el = 225

T X[
and since a closed neighborhood V) ; of Ay doesn’tinclude the origin, there exists M,
such that 2121 <M, forall x,y € Vy 4.

&
Thus, it is easily seen that there exists M3 < 1 depending on M;, M, such that

fy(x) = Mafy(x).

that is, f,(x) > 0. This is not a new inequality.
Minkowski inequality can be studied in a similar way.

3.5. Numerical Computations

Some computations have been done in order to evaluate the results obtained nu-
merically. The weighted geometric-arithmetic mean has been considered and compared
with the new derived inequality for some weights and values.

As it is expressed in Remark 2, a; , can be computed easily. So the inequality

al(A’?d) :a2(lad7r)

is solved with respect to d. The solution d* is put in the expression a;(A,d) or
az(A,d). Thus, a(A,d) is derived, that is,

ar = ay (A7d*) = az(ﬂ,,d*, }’).

For the values A =1, r =05, n =5 and (x); = (0.6,0.8,1,1.2,1.4), (x), =
(0.6,0.7,0.8,0.9,1), (x)3 = (1,1.1,1.2,1.3,1.4), (x)4 = (0.9,0.95,1,1.05, 1.1) with
the different weights, the weighted geometric-arithmetic mean inequality is compared
with the new inequality.

The functions f (x) and u(x) in tables are as follows:

n o 2

n n 1 n ljl‘xjj

F) = ami— [, ulx) = Yo |1-5
i—1 i=1 darr 5 i
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Table 1. Results for the equal weights (o) = (0.2,0.2,0.2,0.2,0.2)

Zazxz Hx“’ fx) u(x) e
(x)1 1 OOOOOO 0. 957878 0.042122 | 0.009820 | 0.233137
(x)2 | 0.800000 | 0.787257 | 0.012743 | 0.003185 | 0.249942
(x)3 | 1.200000 | 1.191596 | 0.008404 | 0.001332 | 0.158446
(x)4 | 1.000000 | 0.997492 | 0.002508 | 0.000035 | 0.013864

Table 2. Results for random weights (o) = (0.05,0.05,0.2,0.3,0.4)

Yo | M | S0 | el o)

()1 1.190000 | T1.164844 | 0.025156 | 0.003788 | 0.150559
(x)2 | 0.895000 | 0.887265 | 0.007735 | 0.001476 | 0.190843
(x)
(

3| 1.295000 | 1.289853 | 0.005147 | 0.000677 | 0.131586
x)s | 1.047500 | 1.045953 | 0.001547 | 0.000019 | 0.012391

Table 3. Results for the case in which one of the weights is dominant on others
() = (0.8,0.1,0.06,0.03,0.01)

Zatxt Hx"" f () u(x) o

i 0670000 0655642 0.014358 | 0.002924 | 0.203672
x)2 | 0.635000 | 0.630730 | 0.004270 | 0.000918 | 0.215099
)
)

3| 1.035000 | 1.032214 | 0.002786 | 0.000370 | 0.132640
x)4 | 0917500 | 0.916676 | 0.000824 | 0.000009 | 0.011363

Last two columns of tables show the sharpening ratio of inequality for different
values with the different weights.

4. Conclusion

One of the large application areas of abstract convexity is the inequality theory.
In this area, besides different applications, the sharpening of well-known inequalities
takes place.

In this paper, the situations of M,(x, ) which gives the important and famous mean
inequalities are considered separately and studied in terms of sharpening. By sharp-
ening the weighted harmonic-geometric mean inequality and the weighted geometric-
arithmetic mean inequality, new inequalities are derived. Numerical results which show
the amount of sharpening are given.

By using the same method, Arithmetic-quadratic mean inequality, Cauchy-Schwarz
inequality and Minkowski inequality are studied. Itis shown that these inequalities obeys
the conditions of Theorem1, but the performed scheme does not give new inequality.
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