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GENERALIZATION OF THE PECARIC-RAJIC
INEQUALITY IN NORMED LINEAR SPACES

SEVER S. DRAGOMIR

(communicated by S. Saitoh)

Abstract. In this paper we establish a generalization of the recent Pecari¢-Raji¢ inequality by
providing upper and lower bounds for the norm of the linear combination Z}’:l ojxj where
oj € K and xj € X for j € {1,...,n} with n > 2. Applications for two vectors that are related
to the Massera-Schdffer, Dunkl-Williams and Maligranda-Mercer inequalities are given. Some
bounds for the quantity ||x/ ||ly[| — y/ [lx]|[| with x,y € X \_ {0}, are also provided.

1. Introduction

In the recent paper [13], J. Pecari¢ and R. Raji¢ proved the following inequality
for n nonzero vectors xz, k € {1,...,n} in the real or complex normed linear space

X 011 -

n n

1 > gl = llxell
max — E:x - L
ke{l,...,n} ||Xk|| j=1 ' J=1 :

X; 1 - -
Z—J <  min — ij JFZ|||XJ|| = lxell|
i ke{l,...n} ||)Ck|| i =

2Ty

and showed that this inequality implies the following refinement of the generalised
triangle inequality obtained by M. Kato et al. in [8]:

el el |7 Z B

n
X,
ZIIXJII— ij S pemax  Albll} | ZHx—J

j=1
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The inequality (1.2) can be also obtained as a particular case of the author’s result
established in [1]

n n x p
. gt j
max {[l ]} Z;Hx,\l > Tl
J= j=
P o (13)
n n " .
>Z\|x.||p nl=p ij > m1n {||xjH} ZHXJ‘H[FI* Z j
2Tl |

where p > 1 and n > 2.

Notice that, in [1], a more general inequality for convex functions has been obtained
as well.

In [13], Pecari¢ and Raji¢ also observed that, for n = 2,x; = x and x, = —y their
result reduces to

[l = Il = Hlixll = [yl ’
min {[lx] , [ly[[}

__H =l el =l
W TS max Il Ty

which holds for each nonzero vector x,y € X.

The second inequality in (1.4) has been obtained by L. Maligranda in [9]. It
provides a refinement of the Massera-Schdffer inequality [10]

which, in its turn, is a refinement of the Dunkl-Williams inequality [7]

The first inequality in (1.4) was obtained by P.R. Mercer in [11].

HXII Iyl

H _ 2=yl
max {|lx[], [y}

___H Al =yl
Il Tl Tl =+ Tyl

The main aim of this paper is to establish a generalization of the Pecari¢-Raji¢
inequality (1.1) by providing upper and lower bounds for the norm of the linear combina-
tion Y77 | oyx; where o; € K and x; € X for j € {1,...,n} with n > 2. Applications
for two vectors that are related to the Maligranda-Mercer inequalities (1.4) are given.
Some bounds for the dual quantity ||x/ [|y|| — y/ ||x||]] with x,y € X\ {0}, are also
provided.
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2. A General Norm Inequality for n Vectors

We can state the following result

THEOREM 1. Let (X,||||) be a normed linear space over the real or complex
number field K. If o € K and x; € X for j € {1,...,n} with n > 2, then

max < |o Zx onofa x;
ke{l,..n} | k| 7 ‘ J k||| ]||

J=1

n n
<[ <, cmin,, Slenl |35 > ley = cal ]
j= Jj=

.....

Proof. Observe that, for any fixed k € {1,...,n} we have

Z oyX; = Ol ij + Z (05 — o) x;. (2.2)
j=1 j=1 J=1

Taking the norm in (2.2) and utilizing the triangle inequality we have successively

n
> s < o s+ 300 s
j=1

j=1
n n

<ol || D]l + D log — ol Il
=1 =1

which, on taking the minimum over k € {1,...,n}, produces the second inequality in
(2.1).
Since, obviously, by (2.2) we have

>y -3y -Y -y
j=1

then on utilizing the continuity property of the norm we also have

n

n
> o) = aka, > (=)
j=1

J=1

WV

«3 o) - S

j=1

n n
> foul Y x| =D log — oul [
=1 =1
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which, on taking the maximum over k € {1,...,n} produces the first part of (2.1) and
the theorem is completely proved. |

REMARK 1. If some information is available about the location of the scalars
o; #0,j€{l,...,n} namely, if

<p foreachjke{l,...,n}

for a given p > 0, then we get from the second part of (2.1) that

n n
Z%xj S jemin  {loul} > x|l o) Il
b j=1 j=1

If x; € X forj € {1,...,n} are such that

n n
> xil[ = Il =0
=1 =1

then the following nontrivial lower bound can be stated as well

n n n
max  {|og Zx' —PZ Kl < Za'x'
s ey |52 -0 | < |3 s

COROLLARY 1. Let (X,||||) be a normed linear space over the real or complex
number field K. If x; € X for j € {1,...,n} with n > 2, then

n n
max 4 [l | Y]l = D gl = [l 1)
.n} pan o

ked{l,...,
(2.3)
<D Il < cemin 4 e Do)+ D gl = lleelll ]
j:l ..... n j:l J:1
The proof is obvious by Theorem 1 on choosing o = ||x||, k€ {1,...,n}.

From (2.3) we can deduce some upper and lower bounds for the nonnegative
. n 2 n

quantity >, [lx;" — HZ]:I ij||xjH as follows:
COROLLARY 2. If x; € X for j€ {1,...,n} with n > 2, then

(0<), min {[lx} > il = |[> %
e{l,..n} . .
Jj=1 Jj=1
E ]I — E [ x; (2.4)

j=1

n

< max Al (D Il - fo

,,,,,
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44444

utilizing the second inequality in (2.3) we have

n n n
S sl < [l | [[D25] + D2 sl = [fs | 11
=1 =1 =1
n n n
2
= |1 ||| 225+ Dl = [l | D2 kil
=1 =1 =1
which is clearly equivalent to the first inequality in (2.4).
The second part follows likewise and the details are omitted. O

REMARK 2. If x; € X\ {0} for j € {1,...,n} with n > 2, then from (2.1) for
oy =1/ |lx]l, k€ {l,...,n} we deduce the PeCari¢-Raji¢ inequality (1.1).

3. Inequalities for Two Vectors

The case of two vectors may be of interest for applications in the Geometry of
Banach Spaces.
We start with the following result:

PROPOSITION 1. For any two vectors x,y € X and two scalars o, 3 € K we have
the double inequality

[(loel + 1B1) [lx + yII = Tee = BI(llxll + lv[1)]

N —

+ 5 (ol = IB]) llx + vl + loe = B (x| = [lv[D)
< JJox + By (3.1)

< % [(lel + 181 llx + ¥l + o = BI (llxl| + flv[D)]

— 5 Wil = 18D I+ 31l — lex = B1 (el = 1)

Proof. If we apply Theorem 1 for n =2, oy = o, 0p = B, x; = x and x; =y
we have

max {|al [lx +y|| — |oc = Bl {y]l . IB] llx + vl — o = Bl Il }
< Jlox + By (3.2)
< min {|e| [[x+ yl[ + [a = Bl IyIl, [BI Ix + y[| + e — B lx[|} -

We utilize the properties that

1
max{a,b} = = (a+ b+ |a— b|),min{a,b :la—kb—a—b ,
2 2
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forany a,b € R and since

max {|ee| [|x +y[| — [ = ByIl, IB] llx + vl = |oe — B [lx][}
= % [(lel + 181 llx + yI| = o = BI (llxl| + flv[D)]

Jell = [1y1DI

43 1l = 18I I+ 311+ e — B

and
min {|e] [lx + yl[ + |oc = Bl ]l [Bl1x + y[| + [ — Bl I« }
= % [(Jer + IBI) [Ix + yll + [ = BI (llxll + [1y[])]

- % [(leel = 1BI) [l + ¥l = Tee = BI(llxll = [y DI

hence by (3.2) we deduce the desired result (3.1). O
The following particular cases are of interest.

COROLLARY 3. Under the assumptions of Proposition 1 and if |a| = || = 1,
then

lox + Byl — [lx + yll| < e = Bl min {[lx]], [[¥]|}, (3-3)
forany x,y € X.
COROLLARY 4. Under the assumptions of Proposition 1 and if ||x| = ||y|| = 1,
then
xX+y xX+y

. (34

[loex + Byll = (Jee| + |B]) -

< — — — .
22| < 1o 1 ot - 18115

forany a,p € K.

4. Dual Versions of the Maligranda-Mercer Inequality

In this section we provide two dual versions of the Maligranda-Mercer inequality:

x =yl =Xl — 1y X y x =y + x|l =y
H rrlirll{lxlllvlllyl]!| e ’ RGN H maxl{|x||v|:|y||}| I (4.1)
namely, we obtain upper and lower bounds for the quantity
X Yy
I -l

in the case when the vectors x and y are nonzero in the normed linear space (X, |-||) .

THEOREM 2. For any x,y € X\ {0} we have

lx =yl il = Il
~ .
min {[|x]|, [[y[[}  max {[|x]|, [Iv[]}
(4.2)
‘LL‘ e =yl kel = vl
~ ~ N .
I Ml max {xf], Iy} min {[lx]], ly]l}
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Proof. We use the inequality (3.1) for « = 1/ ||y|| and B =1/ ||x]| .
Firstly, we observe that

1
1= 5[(|O¢\+|B|) x + || = o = Bl ([lx[| + [I¥]])]
+§\(|a\—Iﬁl)lliryIIHa—B\(IIXII— 11D
1 IIXI|+|y||> Ll = Iyl
=5\ oo ) I+l = = el + vl
2 K [l {1yl [l {1y 3
1 <IIXI||y|> el = 1lxll '
s T ) eyl + = =yl
’ [l Il ([ Iy
1 (IIXII + ||y||>
=\ g ) (el = lxl = Iyl
2\ (X[l
L]l = [yl
+ 5 MR L=yl
[l {1y
and since
e+ Yl el = [yl =l + yl =+ el = (1[I
we get from (4.3) that
,1” | {IIXHIIyII n ||IXI||y||]
([ Ly ([ Iy
(4.4)
[lI] {1y [l {1l
Moreover, it is clear that
1 — 1 1 1
1 [||x| ol Ll ||y||] _max{_’_} -
2L (=l ([ Iy [l Ay (1) minc (]l [ly ]I}
and
1 — 1 1 1
L ETIRILESTI) S T
2.0 [xlHvl [l {1l [l Iy max {[[x[|, |[y[|}
and then, by (4.4) we deduce
sl = vl ws)

— min {|lx[ I} max {[lx]] [Jyll}

Secondly, if we define J by

[(lox] +1B1) IIX+yH + o = BL(IIx + llyID)]

l\)l'—‘

J =

- 5 [ (el =181 llx + y1l = fer = BI (llel| = flv[D]
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then for o = 1/ ||y|| and B = 1/ ||x|| we get in a similar manner the equality

g xl kel =l (4.6)

max {{|x][, [y} min {|lx[], [y}

Finally, by making use of the representations (4.5) and (4.6) we deduce from the
inequality (3.1) that

x4yl il = iyl
min {{xl, f[y[[} - max [l flv[[} 47)
o ‘ Xy ‘ [l + Il [l = 1yl
Iy Al fE max {[lx]l, fivll} - min {]lx] (I}
which is clearly equivalent with (4.2). O
The second result looks slightly different:
THEOREM 3. For any two nonzero vectors x,y € X we have
’ Xy ’ eyl X[ + [yl (<2) (438)
I Al E min s flyl13 | max (] 1yl
Proof. For a = m and = —m in the left side of (3.2), we have
1 Il + vl Il + 1yl
max § o [lx + ¥l - Al = eyl = - Xl
{Ilyl IR || | KRR
2
_ U eyl AR+ fivlD el + 1D
2 [l 1yl [l [
1} e A A Cllell = fill) (||x||+|)’||)(||x|||)’||)‘
2 [ 1yl [l {1
2
_ 1 eyl il £ fivlD) 1 el =+ livlD
2 [l 1yl 2 iyl
o L I = Uil L el = A e+l
2 [l ]yl 2 [l 1yl
L[+l
=5 [llell =+ 111l + el = [y
2 el

U el + vl
5 [llell 11 = TIlell = [ 1l1]
2 bl

1 1 1 1
— Jlx+ || max {—, —} (el + ||y||>min{—, —}
ERE ERE

BN 20 I 1 o 7
min {lx[|, [lyl[}  max {lx[], Iy}

On utilizing the first inequality in (3.2) we then conclude that

I+l <‘
min {lx[|, [lyl[}  max {lx[], [Iyll}

Xy
Il Il

x,y € X\ {0}. (4.9)
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We also have

win { L _ Bt

x4yl flxell + iyl
Il - - |l

EIRENE TREIE
2
e s+ ) (el D)
2| B
el el = ) (el D (el — |y|>‘
N ENE
2
L el el bl 1 Qs+l
2 R 2 T
N
LI I = e
2 D
U 4ol
_ L Ul = ]+l = 1
2 TRl
Ul + ol
o LD = e = il
2 T
I + ]| ma { L1 }+<|| 1+ ||>min{ L1 }
=|xTYy XS 777 X y TR RTERT
ERE ERE
491 Il + Il

. - :
min {[]x][, [y}~ max {|lx[|, [lv[|}

On utilizing the second inequality in (3.2) we deduce

The desired result (4.8) is clearly equivalent with (4.9) and (4.10) and the proof is
complete. |

[lx + Il [l + [yl
min {|lx[|, [[y[l} ~ max {|lx[|, [lv[l}

x
Iyl el

(4.10)

‘ ~

5. Bounds for the éebyéev Functional

For B:=(B,...,B) € K" and y:=(y1,...,ys) € X" we consider the un-
weighted Cebysev functional defined by

1 n 1 n 1 n
Co(Boy) == Byi— =D B = v
j=1 j=1 j=1

This functional plays an important role in providing error bounds for approximating
1 i1 Byj by the simpler quantities 1 > i1 B and 1 > i1 Vi

We remark that, this functional has been considered previously by the author and
some bounds have been established. We recall here some simple results.
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With the above assumptions for X, o and y, we have

L -1 max Ao max Ay; 6[;
i (n )je{l,m,n—l}| j‘] i H il [6]

n—1

3 (1=3) > (Aol 2= il 131

J=1 J=1

1Co (2, ¥)II < (5.1)

L L

1o [ AN a)’

s (Siaar ) (S i)
= =

p>1 5 +.=1 [

where Az; = zj,1 — z; is the forward difference. Here the constants 5,4 and } are
best possible in the sense that they cannot be replaced by smaller quantities.

In [5] we also have established that
1C (. y)

max
ie{l,...n—1}

n—1
det
glzx <Z <Zk1ak Zklak)
n

forp > 1,

N n PR
det( D et Ok Dy O )‘ > i1 1Ayl

q é n—1 "L’
) (5 A
=1

1 1_ 1.
I_7+5_1,

3 det max Ayl .
; ( Zk 1 %% Zk 1 O >‘ je{l,..n—1} 1Ayl
and
| < 1 i n—1
max L I i Ay :
ic{l,.n—1} |" i 21 % lkZ::l k ; [| Ay
L 1
n=l n 1 ! N g n—1 ) » 7
1 (Zlgzak—TZak ) '(ZlIIAin)
1Cn (e, y)|| < = x i=1 k=1 k=1 -1
n
1,1 _ 9.
forp>1, ;+,=1
n—1 | n . i
i o= f o max Ay
=1 1 k=1 =1 | iE{l, 1}

Finally, we recall the following result from [4]:
If there exists the complex numbers a,A € C such that

Re[(A— o) (oG —a@)] >0 foreach i€ {l,...,n}
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or, equivalently,

o — 5 §|A7a‘ foreach i € {1,...,n},

a+A ‘ < 1
then one has the inequality:

1Ca (B, ¥ < IA*a\ Z Zy; : (5-4)

i=1

The constant % in the right hand side of the inequality (5.4) is best possible in the sense
that it cannot be replaced by a smaller quantity.

For many other results that hold for n-tuples § and y of real numbers we recom-
mend the chapters devoted to Griiss and Cebysev inequalities from the books [12] and
[14].

In the following we provide other upper and lower bounds for ||C, (8,y)]| -

PROPOSITION 2. Forany f:=(Pi,...,0,) € K" and y :=(y1,...,yn) € X" we
have

1Cu (B, )l
< mingeygy {% S 1B = Bel |y — 5 i 1y/||}

minﬂ}{ NS ﬁk}} 52;;1 =45

44444

N
bl
2

44444

min {[t5r18-a0) b ESL -3l )

wherep>17 ;+l:1;

min LSS B — Bl f max {lly— 3 S}

ke{l,...,n}

Proof. We observe that
) = 1 En ﬁ R 1 En
y_"j:1 T\ "Hyl .

Now, on applying the second inequality in Theorem 1 for o = f; and x; = y; —
LS ¥ we deduce the first part of (5.5). The second part is obvious by the Holder
inequality. (]

The following results can be stated as well:
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PROPOSITION 3. Forany f:=(Pi,...,0:) € K" and y :=(y1,...,ya) € X" we
have

1 < 1 1 <
(x| Bk*;;ﬁé ZJ;YJ*Z *;Zlﬁj*ﬁklllyrz\l

j=1
<G B,y (5.6)

. 1< 1 o 1«
< min B — - Zﬁ[ = Zyj—w +- Z 1Bi—B! lly—wll
ke{l,...,n} n ] n ) n =1

forany z,w € X.

Proof. Follows from Theorem 1 on noticing that

Cn(ﬁ>y):%2 Bj_%ZBZ (yj_t)
j=1 (=1

forany r € X. (]

REMARK 3. As a particular case, one can state the following inequality

1 < 1< 1
max Br — — Bel |- yill = = B — Bel Ily;
[P 7 2P| |7 2]~ 218 - Al
<G (B y)ll (5.7)
< min Jp- 25 pl Iyl LS g
\kG{l,...,n} k n = ‘ nj:I Yj nj:1 ] k| 1Y)

that provides simpler upper and lower bounds for the norm of the unweighted Cv‘ebysvev
Sunctional C, (B,y).
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