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ON LOGARITHMIC CONVEXITY FOR DIFFERENCES

OF POWER MEANS AND RELATED RESULTS

MATLOOB ANWAR AND JOSIP PEČARIĆ

(communicated by P. Bullen)

Abstract. We give some further considerations about logarithmic convexity for differences of
power Means for positive linear functionals as well as some related results.

1. Introduction

Let {x1, x2, ..., xn} and {p1, p2, ..., pn} denote two sequences of positive real num-
bers with

∑n
i=1 pi = 1 . The well known Jensen’s Inequality states for t < 0 or t > 1,

n∑
i=1

pix
t
i �

( n∑
i=1

pixi

)t

(1.1)

with reversed sign for 0 < t < 1 (see e.g. [2], [3]). S. Simić [6] has consider the
difference of the expression of both sides of (1.1), and stated the following theorem.

THEOREM 1. ([6], Theorem 2.2.) Let xi, pi , i = 1, ..., n, Pn =
∑n

i=1 pi = 1 be
positive real numbers and let −∞ < r < s < t < ∞ . Then

(λs)t−r � (λr)t−s(λt)s−r (1.2)

where

λt =

⎧⎪⎪⎨
⎪⎪⎩

1
t(t−1) [

∑n
i=1 pixt

i − (
∑n

i=1 pixi)t], t ∈ R \ {0, 1};
log(

∑n
i=1 pixi) −

∑n
i=1 pi log xi, t = 0;∑n

i=1 pixi log xi − (
∑n

i=1 pixi) log
∑n

i=1 pixi, t = 1.

(1.3)

Let p > 1 and q is defined by 1
p + 1

q = 1 , then the well known Holder’s inequality
is,

n∑
i=1

|xiyi| �
[ n∑

i=1

|xi|p
] 1

p
[ n∑

i=1

|yi|q
] 1

q
. (1.4)

By using Theorem 1, S. Simić [6] proved the following converse of (1.4).
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THEOREM 2. Let ai , bi , i = 1, 2.... be arbitrary sequences of positive real
numbers and 1

p + 1
q = 1 , p > 1. Then

pq
[
(
∑

ap
i )

1
p (

∑
bq

i )
1
q −

∑
aibi

]
�

( ∑
ap

i log
ap

i

bq
i
− (

∑
ap

i ) log

∑
ap

i∑
bq

i

) 1
p

( ∑
bq

i log
bq

i

ap
i
− (

∑
bq

i ) log

∑
bq

i∑
aq

i

) 1
q
. (1.5)

Integral version of (1.2) is also obtained but only in the case 0 < r < s < t , r , s ,
t �= 1 .

However, there is a lack in the proof of Theorem 2.2. in [6], the log-convexity of
the functions λs is not justified.

In this paper we shall give a correct proof of Theorem 1, introducing family of
functions ϕs . Also, we shall give extension of these results to the case of positive linear
functionals, and inequalities different from power-mean type inequalities.

2. Main Results

Let E be a nonempty set and L be a linear class of real valued functions f : E → R
having the properties:

f , g ∈ L =⇒ (af + bg) ∈ L ∀a, b ∈ R, (L1)

1 ∈ L, where 1(t) = 1 for all t ∈ E. (L2)

A positive linear functional is a mapping A : L −→ R with properties

A(af + bg) = aA(f ) + bA(g) for f , g ∈ L, a, b ∈ R, (A1)

f ∈ L, f (t) � 0 on E =⇒ A(f ) � 0. (A2)

If A(1) = 1 we say that A is a normalized functional. Jessen (see [4], p–47) gave the
following generalization of Jensen’s inequality for convex functions.

THEOREM 3. Let L satisfy L1, L2 on a nonempty set E , and assume that φ is a
continuous convex function on an interval I ⊂ R . If A is a linear positive functional
with A(1) = 1 then for all f ∈ L such that φ(f ) ∈ L we have A(f ) ∈ I and

φ(A(f )) � A(φ(f )). (2.1)

Now we shall give some generalization of Theorem 1.

LEMMA 1. Let us define the function

ϕs(x) =

⎧⎪⎨
⎪⎩

xs

s(s−1) , s �= 0, 1;

− log x, s = 0;

x log x, s = 1.

(2.2)

Then ϕ′′
s = xs−2 , that is ϕs is convex for x > 0.
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THEOREM 4. Let L satisfy properties L1, L2 on a nonempty set E . Let a positive
function f ∈ L be such that f r ∈ L for r ∈ I \ {0, 1} , I is an interval from R ,
log f ∈ L if r = 0 and f log f ∈ L if r = 1 . Let us define

Λt = A(ϕt(f )) − ϕt(A(f )), (2.3)

and let Λt be positive.
(1) For all s, t ∈ I we have

Λ2
s+t
2

� ΛsΛt (2.4)

that is Λt is log-convex in Jensen sense.
(2) If Λt is continuous on I, then it is also log-convex. That is, for r < s < t

(r, s, t ∈ I) we have
(Λs)t−r � (Λr)t−s(Λt)s−r. (2.5)

Proof. (1) We shall use the idea from [6, Theorem 2.2]. Let us consider the
function defined by

f (x) = u2ϕs(x) + 2uwϕr(x) + w2ϕt(x),

where r = s+t
2 , u, w ∈ R and ϕs is given by (2.2). We have

f ′′(x) = u2xs−2 + 2uwxr−2 + w2xt−2 = (ux
s
2−1 + wx

t
2−1)2 � 0, x > 0.

Therefore f is convex for x > 0. Inequality (2.1) gives

u2ϕs(A(f )) + 2uwϕr(A(f )) + w2ϕt(A(f ))

� u2A(ϕs(f )) + 2uwA(ϕr(f )) + w2A(ϕt(f ))

i.e.
u2Λs + 2uwΛr + w2Λt � 0

therefore we get (2.4).
(2) Since Λt is log-convex in Jensen-sense, if it is continuous it is also log-convex.

Therefore (2.5) is valid, too. �

REMARK 1. In applications of Theorem 4 (as well as other similar results through-
out the paper) we shall assume that similar conditions about positivity of Λt are satisfied
and all expressions obtained from Λt are positive as well.

In the next corollary and two theorems we shall suppose that functional A is such
that continuity property for Theorem 4 (2) is satisfied on appropriate interval.

COROLLARY 1. We have
(1) For s > 3

A(f s) � (A(f ))s +
(

s
2

) (
d3

3d2

)s−2

d2; (2.6)
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(2) for 0 < s < 1

A(f s) � (A(f ))s − s(1 − s)
2

(
3d2

d3

)2−s

d2 (2.7)

where dk = A(f k) − (A(f ))k , k = 2, 3 .

Proof. Applying Theorem 4 (2) with 2 < 3 < s and 0 < s < 1 < 2 < 3,
respectively. �

THEOREM 5. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a
base set E . Let p > 1 , 1

p + 1
q = 1 , if f , g > 0 and f p , gq , f g , f p log f p , f p log gq ,

gq log gq , gq log f p ∈ L then we have

pq
[
(A(f p))

1
p (A(gq))

1
q − A(f g)

]
�

(
A
(
f p log

f p

gq

)
− A(f p) log

A(f p)
A(gq)

) 1
p

(
A
(
gq log

gq

f p

)
− A(gq) log

A(gq)
A(f p)

) 1
q
. (2.8)

For 0 < p < 1 the inequality (2.8) is reversed.

Proof. As in [6], from Theorem 4, for r = 0 , s = s , t = 1, we get

Λs � (Λ0)1−s(Λ1)s.

Set A(f ) = A(wf )
A(w) we will get

1
s(1 − s)

[(A(wf )
A(w)

)s
− A(wf s)

A(w)

]
�

[
log

(A(wf )
A(w)

)
− A(w log f )

A(w)

]1−s

[A(wf log f )
A(w)

−
(A(wf )

A(w)

)
log

(A(wf )
A(w)

)]s
.

Putting s = 1
p , 1− s = 1

q ; w → gq

A(gq) , f → f p

gq . After some calculation we obtain the
inequality (2.8). �

Moreover we can give another version of converse of Holder’s inequality, that is
the following theorem.

THEOREM 6. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on
a base set E . Let 1 < p < 2 , 1

p + 1
q = 1 , if f , g > 0 and f p , gq , f g , f g log f g1−q ,

f 2g2−q ∈ L then we have

1
p(p − 1)

((
(A(f p))

1
p (A(gq))

1
q

)p
− A(f g)p

)

� 1
2p−1

(
A(f 2g2−q)A(gq) − A(f g)2

)p−1

(
A(f g log f g1−q) − A(f g) log

(A(f g)
A(gq)

))2−p
. (2.9)

For p > 2 the above inequality is reversed.We have equality for p = 2 .
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Proof. As in [6], from Theorem 4, for r = 1 , s = p , t = 2, we get

Λp � (Λ2)p−1(Λ1)2−p.

Set A(f ) = A(wf )
A(w) we will get

1
p(p − 1)

(A(wf p)
A(w)

−
(A(wf )

A(w)

)p)
� 1

2p−1

(A(wf 2)
A(w)

−
(A(wf )

A(w)

)2)p−1

(A(wf log f )
A(w)

− A(wf )
A(w)

log
A(wf )
A(w)

)2−p
.

Putting w = gq , f = f g1−q . After some calculation we obtain the inequality (2.9). �

REMARK 2. This result is the conversion of Theorem 4.12 in [4], p–113.

Let us note that the well known Jensen-Steffensen inequality is valid (see, for
example [4], pp. 57–58 ).

THEOREM 7. If f : I → R is a convex function, (x1, ..., xn) is a real monotonic
n-tuple such that xi ∈ I (i = 1, ..., n) , and (p1, ..., pn) is a real n-tuple such that
Pk =

∑k
i=1 pi for 1 � k � n and

0 � Pk � Pn = 1 (k = 1, .., n) (2.10)

is satisfied. Then,

f
( n∑

i=1

pixi

)
�

n∑
i=1

pif (xi). (2.11)

As in proof of Theorem 4 we can get.

THEOREM 8. Let (x1, ..., xn) be monotonic n-tuple of positive numbers, pi ∈ R

such that (2.11) be valid and let −∞ < r < s < t < +∞. Then (1.2) is still valid.

Moreover, we can also use related integral analogues of Jensen-Steffensen in-
equality and generalizations (see Jensen-Steffensen’s, Jensen-Boas and Jensen-Brunk
inequalities as well as Theorem 2.26 from [4], pp. 59–65 ).

LEMMA 2. Let us define the function

φt(x) =

⎧⎨
⎩

1
t2 e

tx, t �= 0 ,

1
2x2, t = 0 .

Then φ ′′
t (x) = etx , that is φt(x) is a convex.

THEOREM 9. Theorem 4 and 8 are still valid if we set ϕs = φs .

Proof. As in proof of Theorem 4 we consider the function,

f (x) = u2φs(x) + 2uwφr(x) + w2φt(x),
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where r = s+t
2 , u, w ∈ R . We have f ′′(x) = (ue

s
2 x + we

t
2 x)2 > 0 so that f is convex.

Therefore by using (2.1) we get required results. �

REMARK 3. In fact we can use substitution f = log g in previous theorem. So we
have that

Λt =

⎧⎪⎪⎨
⎪⎪⎩

1
t2

[
Mt

t(g, A) − Mt
0(g, A)

]
, t �= 0

1
2

[
M2

2(log g, A) − (M1(log g, A))2
]
, t = 0

where,

Mt(g, A) =
{

(A(gt))
1
t , t �= 0

expA(log g), t = 0

is the power mean of g with respect to positive linear functional A and Λt be positive,
is also log-convex.

3. Some Results of Aczél’s type

The following version of Jensen’s inequality is valid ([4], p. 124–125).

THEOREM 10. Let L satisfy conditions L1, L2 and A satisfy conditions A1, A2
on a base set E suppose that w ∈ L with w � 0 on E and 0 < A(w) < u ∈ R ,
(ua−A(wf ))

u−A(w) ∈ I , a ∈ I. When I is an interval I ⊂ R and f is an arbitrary real function
defined on E such that wf ∈ L . Suppose that ψ is a continuous convex function on I
and wψ(f ) ∈ L. Then

ψ
(ua − A(wf )

u − A(w)

)
� uψ(a) − A(wψ(f ))

u − A(w)
. (3.1)

Similarly as in the proof of Theorem 4 we can prove:

THEOREM 11. Let the conditions of Theorem 10 be satisfied for an interval I ⊆
(0, +∞) for function ψ = ϕs (as is defined by (2.2)) for s ∈ J is some interval in R .
Let us define

Ωt = ϕt

(ua − A(wf )
u − A(w)

)
− uϕt(a) − A(wϕt(f ))

u − A(w)
.

(1) For all s, t ∈ J we have

Ω2
s+t
2

� ΩsΩt

that is Ωt is log-convex in Jensen-sense.
(2) If Ωt is continuous on J , then it is also log-convex, i.e for r < s < t

(r, s, t ∈ J) we have
(Ωs)t−r � (Ωr)t−s(Ωt)s−r.

In next two theorems we shall suppose that functional A is such that continuity
property for Theorem 11 (2) is satisfied on appropriate interval.
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THEOREM 12. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on
a base set E . Let p > 1 , 1

p + 1
q = 1 , if f , g > 0 and f p , gq , f g , f p log f p , f p log gq ,

gq log gq , gq log f p ∈ L and f 0 , g0 are positive numbers such that gq
0 − A(gq) > 0 ,

f p
0 − A(f p) > 0 then we have

pq
[
(f 0g0 − A(f g)) − (f p

0 − A(f p))
1
p (gq

0 − A(gq))
1
q

]

�
(
(f 0 − A(f p)) log

( f p
0 − A(f p)

gq
0 − A(gq)

)
−

(
f p
0 log

f p
0

gq
0

− A
(
f p log

f p

gq

))) 1
p

(
(g0 − A(gq)) log

( gq
0 − A(gq)

f p
0 − A(f p)

)
−

(
gq

0 log
gq

0

f p
0

− A
(
gq log

gq

f p

))) 1
q
. (3.2)

Proof. As in [6], from Theorem 11, for r = 0 , s = s , t = 1, we get

Ωs � (Ω0)1−s(Ω1)s.

Set A(f ) = ua−A(wf )
u−A(w) we will get

1
s(1 − s)

(uas − A(wf s)
u − A(w)

−
(ua − A(wf )

u − A(w)

)s)

�
(u log a − A(w log f )

u − A(w)
− log

(ua − A(wf )
u − A(w)

))1−s

((ua − A(wf )
u − A(w)

)
log

(ua − A(wf )
u − A(w)

)
− ua loga − A(wf log f )

u − A(w)

)s
.

Putting s = 1
p , 1 − s = 1

q ; w → gq

gq
0−A(gq)

, f → f p

gq , u = gq
0

gq
0−A(gq)

, a = f p
0

gq
0

. After

some calculation we obtain the inequality (3.2). �

THEOREM 13. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on
a base set E . Let 1 < p < 2 , 1

p + 1
q = 1 , if f , g > 0 and f p , gq , f g , f g log f g1−q ,

f 2g2−q ∈ L then we have

1
p(p − 1)

(
(f 0g0 − A(f g))p − ((f p

0 − A(f p))
1
p (gq

0 − A(gq))
1
q )p

)

� 1
2p−1

(
(f 0g0 − A(f g))2 − (f 2

0 − A(f 2))(gq
0 − A(gq)))

)p−1
(3.3)

(
(f 0g0−A(f g)) log

( f 0g0−A(f g)
gq

0−A(gq)

)
−

(
f 0g0 log(f 0g

1−q
0 )−A(f g) log(f 0g

1−q
0 )

))2−p
.

For p > 2 the above inequality is reversed.We have equality for p = 2 .
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Proof. As in [6], from Theorem 11, for r = 1 , s = p , t = 2, we get

Ωp � (Ω2)p−1(Ω1)2−p.

Set A(f ) = ua−A(wf )
u−A(w) we will get

1
p(p − 1)

((ua − A(wf )
u − A(w)

)p
− uap − A(wf p)

u − A(w)

)

� 1
2p−1

((ua − A(wf )
u − A(w)

)2
− ua2 − A(wf 2)

u − A(w)

)p−1

(ua − A(wf )
u − A(w)

log
(ua − A(wf )

u − A(w)

)
− ua log a − A(wf log f )

u − A(w)

)2−p
.

Putting w → gq

gq
0−A(gq)

, f → f g1−q , u = gq
0

gq
0−A(gq)

, a = f 0g
1−q
0 . After some

calculation we obtain the inequality (3.3). �
Let us note that the following converse of Jensen-Steffensen’s inequality was given

by J. E. Pečarić ([5], see also [4], pp. 83–84).

THEOREM 14. Let (x1, x2, ..., xn) and (p1, p2, ..., pn) be the real n-tuples such that
xi ∈ I (1 � i � n, I is an interval in R ) Pn = 1 ,

∑n
i=1 pixi ∈ I , x is monotonic, and

there exist an m ∈ {1, 2, ..., n} such that

Pk � 0 (k < m), 1 � Pk−1 (k > m). (3.4)

If f : I → R is a convex function, then

f
( n∑

i=1

pixi

)
�

n∑
i=1

pif (xi). (3.5)

We can use Theorem 14 in similar way for a proof of the following result.

THEOREM 15. Let (x1, x2, ..., xn) bemonotonic n-tuple of positive numbers, pi ∈ R

such that (3.4) and
∑n

i=1 pixi ∈ I are valid. Denote

λ̃t = ϕt

( n∑
i=1

pixi

)
−

n∑
i=1

piϕt(xi), (3.6)

and let λ̃t be positive. If −∞ < r < s < t < ∞ , then

(λ̃s)t−r � (λ̃r)t−s(λ̃t)s−r. (3.7)

Moreover we can also use related integral analogues of Jensen-Steffensen inequal-
ity (see for example [4], pp. 84–87).
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4. Some Results of Mercer’s type

The following version of Jessen’s inequality is valid see [1].

THEOREM 16. Let L satisfy conditions L1, L2 on a nonempty set E , and let ϕ
be a convex function on an interval I = [m, M] (−∞ < m < M < ∞ ). if A
is a positive linear functional on L with A(1) = 1 , then for all g ∈ L such that
ϕ(g),ϕ(m + M − g) ∈ L (so that m � g(t) � M for all t ∈ E ), we have the following
variant of Jessen’n inequality

ϕ(m + M − A(g)) < ϕ(m) + ϕ(M) − A(ϕ(g)). (4.1)

As previously we can prove the following two theorems:

THEOREM 17. Let the conditions of Theorem 16 be satisfied for an interval I =
[m, M] for function ϕ = ϕs (as is defined by (2.2)) for s ∈ J is some interval in R .
Let us define

Ω̃t = ϕt(m) + ϕt(M) − A(ϕt(g)) − ϕt(m + M − A(g)),

and let Ω̃t be positive.
(1) For all s, t ∈ J we have

Ω̃2
s+t
2

� Ω̃sΩ̃t (4.2)

that is Ω̃t is log-convex in Jensen-sense.
(2) If Ω̃t is continuous on J , then it is also log-convex, i.e is for r < s < t

(r, s, t ∈ J) we have
(Ω̃s)t−r � (Ω̃r)t−s(Ω̃t)s−r. (4.3)

THEOREM 18. Let the conditions of Theorem 16 be satisfied for an interval I =
[m, M] for function ϕ = φs (as is defined Lemma 2) for s ∈ J is some interval in R .
Let us define

Ω̂t = φt(m) + φt(M) − A(φt(g)) − φt(m + M − A(g)),

and let Ω̂t be positive.
(1) For all s, t ∈ J we have (4.2) that is Ω̂t is log-convex in Jensen-sense.
(2) If Ω̂t is continuous on J , then it is also log-convex, i.e is for r < s < t

(r, s, t ∈ J) we have (4.3).
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