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Abstract. In this paper, we consider the value distribution of the differential polynomials f nf (k)−
1 where n(� 2), k are positive integers, and obtain some estimates only by the reduced counting
function.

1. Introduction and results

Let C be the open complex plane and D ∈ C be a domain. Let f be a mero-
morphic function in the complex plane. We assumed that the reader is familiar with the
notations of Nevanlinna theory (see, e.g., [7, 16, 15]).

DEFINITION 1.1. Let k be a positive integer, for any a in the complex plane. We
denote by Nk)(r, 1/(f − a)) the counting function of a -points of f with multiplicity
� k , by N(k(r, 1/(f − a)) the counting function of a -points of f with multiplicity
� k , by Nk(r, 1/(f − a)) the counting function of a -points of f with multiplicity of
k . and denote the reduced counting function by Nk)(r, 1/(f − a)) , N(k(r, 1/(f − a))
and Nk(r, 1/(f − a)) , respectively.

Zhang and Li ([17]) proved the following theorem:

THEOREM A. Let f be transcendental meromorphic in the complex plane, L[f ] =
akf (k) + ak−1f (k−1) + · · · + a0f , where a0, a1, · · · , ak(�≡ 0) are small functions, for
c �= 0,∞ , let F = f nL[f ] − c , where n is a positive integer. Then for n � 2 ,
F = f nL[f ] − c has infinitely many zeros.

Recently, Huang and Gu ([9]) have obtained a quantitative result in the case of
n = 2 .

THEOREM B. Let f be transcendental meromorphic in the complex plane and k
be a positive integer, then

T(r, f ) � 6N

(
r,

1
f 2f (k) − 1

)
+ S(r, f ).
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As we all known, the second fundamental theorem in Nevanlinna’s theory of value
distribution use the reduced counting function to estimate the Nevanlinna characteristic
function (cf. [13]). Naturally, we can pose the following important question whether
one can give some quantitative estimates on the generally differential polynomials by
the reduced counting function. Here we give some affirmative answers.

THEOREM 1.2. Let f be transcendental meromorphic function, L[f ] = akf (k) +
ak−2f (k−2) + · · ·+ a0f , where a0, a1, · · · , ak(�≡ 0) are small functions, for c �= 0,∞ ,
let F = f nL[f ] − c , where n is a positive integer, then we have

(1) if n > 2 ,

T(r, f ) � 6 N

(
r,

1
F

)
+ S(r, f )

(2) if n = 2 , there exists a constant M > 0 , which does not depend on f , we
have

T(r, f ) � M N

(
r,

1
F

)
+ S(r, f ).

REMARKS 1. If n � 2 , we know F has infinitely many zeros, and in (2) , we
know the constant M at least is 6 from Theorem B. But the method of Theorem 1.2
can’t give the certain coefficient. Hence, we want to get the more precise estimates
for the coefficient in (2) . In the following, for transcendental meromorphic function
which has few simple zeros, we take the different method by constructing the auxiliary
function and obtain.

THEOREM 1.3. Let f be transcendental meromorphic function, and let k be a

positive integer. Then if N1

(
r, 1

f

)
= S(r, f ) ;

T(r, f ) � 2N

(
r,

1
f 2f (k) − 1

)
+ S(r, f ). (1.1)

COROLLARY 1.4. Let f be transcendental meromorphic function all of whose
zeros are multiple, and let k be a positive integer. Then we have the inequality (1.1)
holds.

REMARKS 2. If n = 1 , we know there are some better estimates on the differential
monomial f f (k) by W. Hennekemper [8], C. Yang and P. Hu [14], A. Alotaibi [1], J.
Wang [11], Xu and Zhang [12]. In fact, these estimates hold all in the condition of
restricted zeros. Hence our condition in Theorem 1.3 and Corollary 1.4 is natural.

2. Some Lemmas

If the coefficients of differential polynomials M[f ] are aj, j = 0, 1, · · · , n , which
satisfy m(r, aj) = S(r, f ) , then differential polynomials M[f ] is called a quasi-
differential polynomials in f . The following Lemma is nothing but an easy variant of
standard Clunie lemma [4], Lemma 1.
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LEMMA 2.1. Let f be a non-constant meromorphic in the complex plane, Q1[f ] ,
Q2[f ] are quasi-differential polynomials in f , satisfy f nQ1[f ] = Q2[f ] , if the total
degree of Q2 � n , then

m(r, Q1[f ]) = S(r, f ).

The following lemma, due to G. Valiron and A. Mohon’ko, is of essential impor-
tance in the theory of complex differential equation and so on. The proof below can be
found in [15, 10].

LEMMA 2.2. Let P(z, w) =
p∑

k=0
ak(z)wk, w(z) is algebroid function, then

T(r, P(z, w)) = pT(r, w) + O{
p∑

k=0

T(r, ak)}.

LEMMA 2.3. Let f be transcendental meromorphic function, and let k be a
positive integer. Then

3T(r, f ) � N(r, f ) + N

(
r,

1
f

)
+ Nk)

(
r,

1
f

)
+ kN(k+1

(
r,

1
f

)

+N

(
r,

1
f 2f (k) − 1

)
− N0(r,

1
(f 2f (k))′

) + S(r, f ).

(2.1)

where N0(r, 1
(f 2 f (k))′ ) denotes the counting function of the zeros of (f 2f (k))′ , not of

f (f 2f (k) − 1) .

Proof. We first claim f 2f (k) �≡ constant. If f 2f (k) �≡ C , where C is a complex

constant. Obviously, C �= 0 . Hence f has no zero and 1
f 3 = 1

C
f (k)

f . Therefore,

3T(r, f ) = m

(
r,

1
f 3

)
+ N

(
r,

1
f 3

)
+ O(1)

= m

(
r,

f (k)

f

)
+ O(1) = S(r, f ).

It is a contradiction. Hence f 2f (k) �≡ constant. Let

1
f 3

≡ f 2f (k)

f 3
− (f 2f (k))′

f 3

f 2f (k) − 1
(f 2f (k))′

,
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we have

3m

(
r,

1
f

)
= m

(
r,

1
f 3

)

� m

(
r,

f 2f (k) − 1
(f 2f (k))′

)
+ m

(
r,

f (k)

f

)
+ m

(
r,

(f 2f (k))′

f 3

)
+ O(1)

� N

(
r,

(f 2f (k))′

f 2f (k) − 1

)
− N

(
r,

f 2f (k) − 1
(f 2f (k))′

)
+ S(r, f )

= N(r, (f 2f (k))′) + N

(
r,

1
f 2f (k) − 1

)
− N

(
r,

1
(f 2f (k))′

)

−N(r, f 2f (k) − 1) + S(r, f )

= N(r, f ) + N

(
r,

1
f 2f (k) − 1

)
− N

(
r,

1
(f 2f (k))′

)
+ S(r, f ).

Hence

3T(r, f ) = 3m

(
r,

1
f

)
+ 3N

(
r,

1
f

)
+ O(1)

= N(r, f ) + 3N

(
r,

1
f

)
+ N

(
r,

1
f 2f (k) − 1

)
− N

(
r,

1
(f 2f (k))′

)
+ S(r, f ).

(2.2)
Let

N

(
r,

1
(f 2f (k))′

)
= N000

(
r,

1
(f 2f (k))′

)
+ N00

(
r,

1
(f 2f (k))′

)
+ N0

(
r,

1
(f 2f (k))′

)
(2.3)

where N000(r, 1
(f 2f (k))′ ) denotes the counting function of the zeros of (f 2f (k) − 1)′ ,

which come from the zeros of f 2f (k)−1 , N00(r, 1
(f 2 f (k))′ ) denotes the counting function

of the zeros of (f 2f (k) − 1)′ , which come from the zeros of f . Hence we have

N

(
r,

1
f 2f (k) − 1

)
− N000

(
r,

1
(f 2f (k))′

)
= N

(
r,

1
f 2f (k) − 1

)
. (2.4)

Supposed that z0 is a zero of f with multiplicity q , if q � k , then z0 is a zero of
(f 2f (k))′ with multiplicity at least 2q − 1 ; if q � k + 1 , then z0 is a zero of (f 2f (k))′

with multiplicity at least 3q − (k + 1) . Hence we have

3N

(
r,

1
f

)
−N00

(
r,

1
(f 2f (k))′

)
� Nk)

(
r,

1
f

)
+Nk)

(
r,

1
f

)
+(k+1)N(k+1

(
r,

1
f

)

= Nk)

(
r,

1
f

)
+ N

(
r,

1
f

)
+ kN(k+1

(
r,

1
f

)
.

(2.5)
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Combining (2.2)–(2.5), we have

3T(r, f ) � N(r, f ) + N

(
r,

1
f

)
+ Nk)

(
r,

1
f

)
+ kN(k+1

(
r,

1
f

)

+N

(
r,

1
f 2f (k) − 1

)
− N0

(
r,

1
(f 2f (k))′

)
+ S(r, f ).

This completes the proof of the lemma. �
In the following, we first construct an auxiliary function to remove the restriction

of the pole in (2.1).

LEMMA 2.4. Let f be transcendental meromorphic function, and let k be a
positive integer. Then

H = 4(k + 3)
f ′

f
− (k2 + 5k + 8)

(f 2f (k))′

f 2f (k) − 1
+ (k + 1)(k + 3)

(f 2f (k))′′

(f 2f (k))′
, (2.6)

then we have (1) H(z) �≡ 0 ; (2) The simple poles of f (z) are the zeros of H(z) .

Proof. (1). If H(z) ≡ 0 . We fist prove f (z) has no zeros. If f (z) has the zero
z1 , let z1 be the zero of f (z) with multiplicity p(� 1) and the zero of (f 2f (k))′ with
multiplicity q(� 0) . Then F(z) can be expanded at point z1 , and the coefficient of
(z− z1)−1 in the expansion is 4(k + 3)p + (k + 1)(k + 3)q > 0 . Hence z1 is the pole
of F(z) . It contradicts with H(z) ≡ 0 .

By integrating both of sides of the equality (2.6), we have

f 4(k+3)[(f 2f (k))′](k+1)(k+3) ≡ C(f 2f (k) − 1)k2+5k+8,

where C is a nonzero complex constant. Therefore,

1
C

[
(f 2f (k))′

f 2f (k) − 1

](k+1)(k+3)

=
(f 2f (k) − 1)k+5

f 4(k+3)

=
1

f k−3

(
f (k)

f
− 1

f 3

)k+5

=
1

f k−3

k+5∑
i=0

(−1)k+5−iCi
k+5

(
f (k)

f

)i
1

f 3(k+5−i)

=
(−1)k+5

f 4(k+3) +
1

f 4k+11

k+5∑
i=1

(−1)k+5−iCi
k+5f

3i−1

(
f (k)

f

)i

.

This is,

(−1)k+5

f 4(k+3) ≡ 1
C

[ (
f 2f (k)

)′
f 2f (k) − 1

](k+1)(k+3)

− 1
f 4k+11

k+5∑
i=1

(−1)k+4−iCi
k+5f

3i−1

(
f (k)

f

)i

.
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Let Er = {θ ||f (z)| < 1; z = reiθ , θ ∈ [0, 2π]} . If |f (z)| < 1 , we have∣∣∣∣ 1
f 4(k+3)

∣∣∣∣ �
∣∣∣∣ 1
C

∣∣∣∣
∣∣∣∣
[

(f 2f (k))′

f 2f (k) − 1

](k+1)(k+3) ∣∣∣∣ +
∣∣∣∣ 1
f 4k+11

∣∣∣∣
∣∣∣∣

k+5∑
i=1

(−1)k+5−iCi
k+5

(
f (k)

f

)i ∣∣∣∣.
By Nevanlinna first fundamental theorem and noting f (z) has no zeros, we get

4(k + 3)T(r, f ) = 4(k + 3)T
(

r,
1
f

)
+ O(1) = 4(k + 3)m

(
r,

1
f

)
+ O(1)

=
1
2π

∫ 2π

0
log+

∣∣∣∣ 1

f 4(k+3)(reiθ )

∣∣∣∣ + O(1)

� 1
2π

∫
Er

log+
∣∣∣∣ (f 2(reiθ)f (k)(reiθ ))′

f 2(reiθ )f (k)(reiθ ) − 1
)
∣∣∣∣
(k+1)(k+3)

dθ

+
1
2π

∫
Er

log+
∣∣∣∣ 1
f 4k+11(reiθ)

∣∣∣∣ dθ

+
1
2π

k+5∑
i=1

∫
Er

log+
∣∣∣∣ f (k)(reiθ )

f

∣∣∣∣
i

dθ + O(1)

� (k + 1)(k + 3)m
(

r,
(f 2f (k))′

f 2f (k) − 1

)
+ (4k + 11)m

(
r,

1
f

)

+
k+5∑
i=1

m

(
r,

f (k)

f

)
+ O(1)

� (4k + 11)T(r, f ) + S(r, f ).

This is, T(r, f ) = S(r, f ) , it is a contradiction. Hence we have H(z) �≡ 0 .
(2) Let z2 be a simple pole of f (z) , then f (z) has the following expansions in a

neighborhood of z2 :

f (z) =
a

z − z2
{1 + b(z − z2) + O((z − z2)2)}, (a �= 0).

By taking the derivatives on both sides of the above equality, we have

f (k)(z) =
(−1)kk!a

(z − z2)k+1
{1 + O((z − z2)k+1)}.

We can easily obtain

f ′

f
=

−1
z − z2

{1 − b(z − z2) + O((z − z2)2)}, (2.7)

(f 2f (k))′

f 2f (k) − 1
=

−1
z − z2

{(k + 3) − 2b(z − z2) + O((z − z2)2)}, (2.8)

(f 2f (k))′′

(f 2f (k))′
=

−1
z − z2

{(k + 4) − 2k + 4
k + 3

b(z − z2) + O((z − z2)2)}, (2.9)
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By substituting (2.7)–(2.9) into (2.6), we can obtain

H(z) = O((z − z2)).

Hence z2 is the zero of H(z) . We complete the proof of the lemma. �

LEMMA 2.5. Let f be transcendental meromorphic function, and let k be a
positive integer. Then

N1)(r, f ) � N

(
r,

1
f

)
+ N(2(r, f ) + N

(
r,

1
f 2f (k) − 1

)
+ N0

(
r,

1
(f 2f (k))′

)
+ S(r, f ),

(2.10)
where N0(r, 1

(f 2f (k))′ ) denotes the reduced counting function of N0(r, 1
(f 2f (k))′ ) .

Proof. By Lemma 2.4, we have

N1)(r, f ) � N

(
r,

1
F

)
� T(r, F) + O(1) � N(r, F) + S(r, f ).

From (2.6), the poles of F(z) can only occur at the multiple poles of f (z) , the zeros of
f (z) , the zeros of f 2f (k) − 1 , or the zeros of (f 2f (k))′ and all these poles or zeros are
the simple pole. Hence

N1)(r, f ) � N

(
r,

1
f

)
+ N(2(r, f ) + N

(
r,

1
f 2f (k) − 1

)
+ N0

(
r,

1
(f 2f (k))′

)
+ S(r, f ).

This completes the proof of the lemma. �
We now state the main lemma of the paper which is interesting by itself.

LEMMA 2.6. Let f be transcendental meromorphic function, and let k be a
positive integer. Then

7T(r, f ) � 4N

(
r,

1
f

)
+ 4N

(
r,

1
f 2f (k) − 1

)

+3Nk)

(
r,

1
f

)
+ 3kN(k+1

(
r,

1
f

)
+ S(r, f ),

(2.11)

where N0(r, 1
(f 2f (k))′ ) denotes the reduced counting function of N0(r, 1

(f 2f (k))′ ) .

Proof. From (2.1)–(2.10), and N(r, f ) = N1)(r, f ) + N(2(r, f ) , we have

3T(r, f ) � 2N(2(r, f ) + 2N

(
r,

1
f

)
+ 2N

(
r,

1
f 2f (k) − 1

)

+Nk)

(
r,

1
f

)
+ kN(k+1

(
r,

1
f

)
+ S(r, f ),
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Hence

7T(r, f ) � 2(N(2(r, f ) + 2T(r, f )) + 2N

(
r,

1
f

)
+ 2N

(
r,

1
f 2f (k) − 1

)

+Nk)

(
r,

1
f

)
+ kN(k+1

(
r,

1
f

)
+ S(r, f ),

(2.12)

By (2.1), we have

N(2(r, f ) + 2T(r, f ) � 2T(r, f ) + N(r, f ) − N(r, f ) � 3T(r, f ) − N(r, f )

� N

(
r,

1
f

)
+ N

(
r,

1
f 2f (k) − 1

)
+ Nk)

(
r,

1
f

)

+kN(k+1

(
r,

1
f

)
− N0

(
r,

1
(f 2f (k))′

)
+ S(r, f ),

(2.13)
Substituting (2.13) into (2.12), we have (2.11). �

3. Proof of Theorem 1.2

Proof of (1) . Without loss of generality, let c = 1 , then

F = f nL[f ] − 1, (3.1)

where n � 1 is a positive integer. From (3.1) we obtain

T(r, F) = O(T(r, f )). (3.2)

By differentiating the equation (3.1), we get

f β = −F′

F
, (3.3)

where

β = nf n−2f ′L[f ] + f n−1L′[f ] − f n−1L[f ]
F′

F
, (3.4)

obviously F �≡ constant, β �≡ 0 . Applying Lemma 2.1 to (3.3) and noting (3.2), we
have

m(r, β) = S(r, f ). (3.5)

Let z0 be a pole of f of order q , and not any poles and zeros of the coefficients
of L[f ] , then z0 is the simple pole of F′

F , hence the poles of f of order q(� 2) are
the zeros of β of order q− 1 from (3.3), the simple pole of f is the non-zero analytic
point of β . Thus we have

N(2(r, f ) � N

(
r,

1
β

)
+ N

(
r,

1
β

)
+ S(r, f ) � 2N

(
r,

1
β

)
+ S(r, f ). (3.6)
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For any poles of f are not the poles of β with (3.3), if n > 2 we have

N(r, β) � N

(
r,

1
F

)
+ S(r, f ), (3.7)

From (3.5) and (3.7), we have

T(r, β) � N

(
r,

1
F

)
+ S(r, f ), (3.8)

Next with (3.7), we have

N(2(r, f ) � 2N

(
r,

1
F

)
+ S(r, f ), (3.9)

By using (3.3), we obtain

m(r, f ) � m

(
r,

1
β

)
+ m

(
r,

F′

F

)
� T(r, β) + S(r, f ).

Combining these with (3.8), we have

m(r, f ) � N

(
r,

1
F

)
+ S(r, f ), (3.10)

If f only have finite simple poles, we get Case (1) in Theorem1.2 by (3.9)–(3.10).
In the sequel, we suppose that f have infinity simple poles. Let z0 be any simple

pole of f , then z0 is the non-zero analytic of β , so near z0 , we have

f (z) =
d1

z − z0
+ d0 + O(z − z0) (3.11)

and
β(z) = β(z0) + β ′(z0)(z − z0) + O((z − z0)2)

ak(z) = ak(z0) + a′k(z0)(z − z0) + O((z − z0)2) (3.12)

where d1 �= 0 , β(z0) �= 0 , ak(z0) �= 0. By taking the derivatives on both sides of
(3.11), we get

f (j)(z) = (−1)j j!d1

(z − z0)j+1
+ O(1), j = 1, 2, · · · , k. (3.13)

with (3.3) and (3.4) we have

f β = nf n−1f ′L[f ] + f nL′[f ] + f n+1L[f ]β . (3.14)

Substituting (3.11)–(3.13) into (3.14), we obtain that the coefficients have the
form

d1 =
k + n + 1
β(z0)

, (3.15)
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d0 = − k + n + 1
k + 2n + 1

(
a′k(zo)
ak(zo)

+ (k + n + 1)
β ′(z0)
β(z0)

)
1

β(z0)
, (3.16)

so that
d0

d1
= − 1

k + 2n + 1
a′k(zo)
ak(zo)

− k + n + 1
k + 2n + 1

β ′(z0)
β(z0)

. (3.17)

Through the calculating from (3.11) and (3.13), we get

f ′

f
= − 1

z − z0
+

d0

d1
+ O(z − z0), (3.18)

F′

F
= −k + n + 1

z − z0
+ n

d0

d1
+

a′k(z)
ak(z)

+ O(z − z0). (3.19)

Let

h(z) =
F′

F
−(k+n+1)

f ′

f
− 2k + 2n + 2

k + 2n + 1
a′k(z)
ak(z)

− (k + 1)(k + n + 1)
k + 2n + 1

β ′(z)
β(z)

. (3.20)

Then from (3.17)–(3.20), it can be seen that h(z0) = 0 . Hence the simple poles of f
must be the zeros of h(z) . From (3.20), we have

m(r, h) = S(r, f ). (3.21)

We assert that h(z) �≡ 0 , otherwise h(z) ≡ 0 , then

F′

F
= (k + n + 1)

f ′

f
+

2k + 2n + 2
k + 2n + 1

a′k(z)
ak(z)

+
(k + 1)(k + n + 1)

k + 2n + 1
β ′(z)
β(z)

.

By integration

Fk+2n+1 = Cf (k+n+1)(k+2n+1)a2k+2n+2
k β (k+1)(k+n+1), (3.22)

where C �= 0 is a constant. From (3.1), we know any zeros of f are not the zeros
and poles of F . Suppose that z0 is the zero of f with multiplicity q , we have
F(z0) �= 0,∞ , therefore, z0 is a pole of β from (3.2). But z0 is a zero of β by (3.4)
for n > 2 . This is a contradiction, hence h(z) �≡ 0 .

Since h(z) �≡ 0 , and the simple pole of f is the zeros of h , thus if n > 2 , the
zeros of f of order q at least is the zeros of β of order q by (3.4), and the multiply
poles of f of order p are the zeros of β of order p − 1 , and h(z) just has the simple
pole , by (3.6),(3.8) and (3.20), we have

N(r, h) � N
(
r, 1

F

)
+ N(r, β) + N

(
r, 1

β

)
+ N(r, ak) + N

(
r, 1

ak

)
� N

(
r, 1

F

)
+ 2T(r, β) + O(1) � 3N

(
r, 1

F

)
+ S(r, f ).

Noting (3.21), we obtain

N1)(r, f ) � N

(
r,

1
h

)
� N(r, h) + S(r, f ) � 3N

(
r,

1
F

)
+ S(r, f ). (3.23)

Hence the Theorem 1 holds by (3.9), (3.10) and (3.23).
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�

Proof of (2) . As the above, the simple pole of f near z0 have (3.11)–(3.12) and
(3.15), (3.16). Let

d1(z) =
k + 3
β(z)

,

d0(z) = −k + 3
k + 5

(
a′k(z)
ak(z)

+ (k + 3)
β ′(z)
β(z)

)
1

β(z)
,

then
d1 = d1(z0), d0 = d0(z0),

d0(z)
d1(z)

= − 1
k + 5

· a′k(z)
ak(z)

− k + 3
k + 5

· β
′(z)
β(z)

.

By (3.11)–(3.13) and through the calculating, we deduce

A0(z) = f ′(z) +
1

d1(z)
f 2(z) − 2d0(z) − d′

1(z)
d1(z)

f (z)

is analytic near z0 . Thus let

A1(z) =
2d0(z) − d′

1(z)
d1(z)

, A2(z) = − 1
d1(z)

,

then f satisfies Riccati equation

w′ = A0(z) + A1(z)w + A2(z)w2, (3.24)

where A2(z) �≡ 0 . From the proof of (1), if n = 2 we still have (3.5), (3.6) and (3.10).
Hence we have

T(r, A1) � T(r, β) + T

(
r,

1
β

)
+ S(r, f ) � 2N

(
r,

1
F

)
+ S(r, f ),

T(r, A2) � T(r, β) � N

(
r,

1
F

)
+ S(r, f ),

m(r, A0) � 4m(r, f ) + T(r, β) + S(r, f ) � 5N

(
r,

1
F

)
+ S(r, f ).

Since the simple pole of f is not the pole of A0 , from (3.9) and (3.10) we have

N(r, A0) � 2N(2(r, f ) + 3T(r, β) + S(r, f ) � 7N

(
r,

1
F

)
+ S(r, f ).

It follows that,

T(r, A0) � 12N

(
r,

1
F

)
+ S(r, f ).

Using (3.24) over and over again, we deduce that f (j) is the (j+1) -th polynomial
of f . Thus, F have the form

F = f 2L[f ] − 1 = f 2(k!Ak
2(z)akf

k+1 + · · ·) − 1.
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We define the function of z, w

G(z, w) = w2(k!Ak
2(z)akw

k+1 + · · ·) − 1.

This is a polynomial in w , and G(z, w) ≡ F . Obviously w = w(z) is the solution of
Riccati equation (3.24), it must satisfy

G(z, w(z)) = w(z)2L[w(z)] − 1.

In the sequel, we consider the function equation

G(z, w) = 0, (3.25)

its solutions are the algebroidal function, satisfy (by Lemma 2.2)

T(r, w(z)) = O(
2∑

j=0

T(r, Aj)) � M1N

(
r,

1
F

)
+ S(r, f ) (3.26)

where M1 > 0 is a constant, rewrite (3.3) to β(z)f F + F′ ≡ 0.
Note F ≡ G(z, f (z)) and f satisfies Riccati equation (3.24), we have

β(z)f G(z, f ) + Gz(z, f ) + Gf (z, f )(A0(z) + A1(z)f + A2(z)f 2) ≡ 0.

Thus, let H(z, w) = β(z)wG(z, w) + Gz(z, w) + Gw(z, w)(A0(z) + A1(z)w +
A2(z)w2) , then H(z, f ) ≡ 0 . Since H(z, f ) is a polynomial in f with the coeffi-
cients of A0(z), A1(z), A2(z) and its derivatives, then H(z, f ) ≡ 0 means that all the
coefficients are identically zero or at least two terms not identically zero, for the latter,
we have

T(r, f ) = O(
2∑

j=0

T(r, Aj)) � M2N

(
r,

1
F

)
+ S(r, f ), (3.27)

where M2 > 0 is a constant. If all the coefficients of H(z, f ) are identically zero, then

β(z)wG(z, w) + Gz(z, w) + Gw(z, w)(A0(z) + A1(z)w + A2(z)w2) ≡ 0

for arbitrary z and w .
If let w = p(z) be the solution of (3.25), then it satisfies (3.24), therefore there is

a unique positive integer λ such that

G(z, w) = (w − p(z))λG∗(z, w), G∗(z, p) �≡ 0.

Substituting the above into H(z, w) ≡ 0 , we know w = p(z) satisfies Riccati equation
(3.24) and p(j) = j!Aj

2(z)p
j+1 + · · · , j = 1, 2, · · · . Thus w = p(z) satisfies equation

w2L[w] − 1 = 0 .
We claim the equation (3.25) cannot only be a solution w = p(z) . Otherwise,

G(z, w) = k!Ak
2(z)ak(w − p(z))k+3 , but G(z, w) have not 1-th term, we get a contra-

diction. The Eq. (3.25) also can’t have two different solutions p1(z), p2(z) , otherwise
G(z, w) = k!Ak

2(z)(w − p1(z))λ1(w − p2(z))λ2 , λ1, λ2 are the positive integers, also
G(z, w) has not 1-th term, we get

λ1p1(z) + λ2p2(z) ≡ 0.
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Hence, the two solutions of equation (3.25) are p1(z) and − λ2
λ1

p1(z) , substituting them
into the equation(3.25) respectively, we deduce

p2
1(z)L[p1(z)] − 1 = 0,

−
(
λ2

λ1

)3

p2
1(z)L[p1(z)] − 1 = 0.

Therefore 1 + ( λ2
λ1

)3 = 0 , it is impossible. Hence, the equation (3.25) at least has three
different solutions p1, p2, p3 , and they all are the solutions of Riccati equation(3.24),
and f also satisfies (3.25), this is to say, Riccati equation (3.24) at least have four
different solutions f , p1, p2, p3 . Since arbitrary four solution’s cross ratio of Riccati
equation is a constant (see. [6]), f can be written in the rational functions of p1, p2, p3 ,
hence

T(r, f ) � M3(T(r, p1) + T(r, p2) + T(r, p3)), M3 > 0

where M3 is a constant. Because p1, p2, p3 all are the solutions of (3.25), they satisfy
(3.26),

T(r, f ) � 3M1 × M3N

(
r,

1
F

)
+ S(r, f ) = MN

(
r,

1
F

)
+ S(r, f ), (3.28)

where M > 0 is a constant, thus we completes the proof of Theorem 1.2 by (3.27) and
(3.28).

�

4. Proof of Theorem 1.3

Proof. We shall divide our argument into two cases:
Case (i). k = 1

By assumption, we have N
(
r, 1

f

)
= N(2

(
r, 1

f

)
+ S(r, f ) � 1

2N
(
r, 1

f

)
+ S(r, f ) .

From this and (2.11), we obtain

7T(r, f ) < 2N

(
r,

1
f

)
+ 4N

(
r,

1
f 2f ′ − 1

)

+3N1)

(
r,

1
f

)
+ 3N(2

(
r,

1
f

)
+ S(r, f )

= 2N

(
r,

1
f

)
+ 4N

(
r,

1
f 2f ′ − 1

)
+

3
2
N

(
r,

1
f

)
+ S(r, f )

� 7
2
N

(
r,

1
f

)
+ 4N

(
r,

1
f 2f ′ − 1

)
+ S(r, f ),

Hence we have

T(r, f ) <
8
7
N

(
r,

1
f 2f (k) − 1

)
+ S(r, f ). (4.1)
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Case (ii). k � 2 .

By assumption, we have N
(
r, 1

f

)
= N(2

(
r, 1

f

)
+ S(r, f ) � 1

2N
(
r, 1

f

)
+ S(r, f ) .

From this and (2.11), we obtain

7T(r, f ) < 2N

(
r,

1
f

)
+ 4N

(
r,

1
f 2f (k) − 1

)

+ 3Nk)

(
r,

1
f

)
+ 3N(k+1

(
r,

1
f

)
+ S(r, f )

= 2N

(
r,

1
f

)
+ 4N

(
r,

1
f 2f (k) − 1

)
+ 3N

(
r,

1
f

)
+ S(r, f )

� 5N

(
r,

1
f

)
+ 4N

(
r,

1
f 2f (k) − 1

)
+ S(r, f ),

Hence we have

T(r, f ) < 2N

(
r,

1
f 2f (k) − 1

)
+ S(r, f ). (4.2)

We complete the proof of the theorem. �

5. Final Remark

Though Theorem 1.3 has the better coefficient 2, form Theorem 1.2 we know
the condition of the simple zero is not necessary. Hence how to remove the restricted
condition is an interesting question.
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