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DIFFERENTIAL SUBORDINATION AND

SUPERORDINATION OF ANALYTIC FUNCTIONS

DEFINED BY THE MULTIPLIER TRANSFORMATION

ROSIHAN M. ALI, V. RAVICHANDRAN AND N. SEENIVASAGAN

(communicated by R. Mohapatra)

Abstract. Differential subordination and superordination results are obtained for analytic func-
tions in the open unit disk which are associated with the multiplier transformation. These results
are obtained by investigating appropriate classes of admissible functions. Sandwich-type results
are also obtained.

1. Introduction

Let H (U) be the class of functions analytic in U := {z ∈ C : |z| < 1}
and H [a, n] be the subclass of H (U) consisting of functions of the form f (z) =
a + anzn + an+1zn+1 + · · · , with H0 ≡ H [0, 1] and H ≡ H [1, 1] . Let Ap denote
the class of all analytic functions of the form

f (z) = zp +
∞∑

k=p+1

akz
k (z ∈ U) (1.1)

and let A1 := A . Let f and F be members of H (U). The function f (z) is said
to be subordinate to F(z) , or F(z) is said to be superordinate to f (z) , if there exists
a function w(z) analytic in U with w(0) = 0 and |w(z)| < 1 (z ∈ U) , such that
f (z) = F(w(z)) . In such a case we write f (z) ≺ F(z) . If F is univalent, then
f (z) ≺ F(z) if and only if f (0) = F(0) and f (U) ⊂ F(U) . For two functions f (z)
given by (1.1) and g(z) = zp +

∑∞
k=p+1 bkzk , the Hadamard product (or convolution)

of f and g is defined by

(f ∗ g)(z) := zp +
∞∑

k=p+1

akbkz
k =: (g ∗ f )(z). (1.2)
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Motivated by the multiplier transformation on A , we define the operator Ip(n, λ )
on Ap by the following infinite series

Ip(n, λ )f (z) := zp +
∞∑

k=p+1

(
k + λ
p + λ

)n

akz
k (λ > −p). (1.3)

The operator Ip(n, λ ) is closely related to the Sǎlǎgean derivative operators [11]. The
operator In

λ := I1(n, λ ) was studied recently by Cho and Srivastava [6] and Cho and
Kim [7]. The operator In := I1(n, 1) was studied by Uralegaddi and Somanatha [13].

To prove our results, we need the following definitions and theorems.
Denote by Q the set of all functions q(z) that are analytic and injective on U\E(q)

where
E(q) = {ζ ∈ ∂U : lim

z→ζ
q(z) = ∞},

and are such that q′(ζ) �= 0 for ζ ∈ ∂U \ E(q) . Further let the subclass of Q for
which q(0) = a be denoted by Q(a) , Q(0) ≡ Q0 and Q(1) ≡ Q1 .

DEFINITION 1.1. [9, Definition 2.3a, p. 27] Let Ω be a set in C, q ∈ Q and
n be a positive integer. The class of admissible functions Ψn[Ω, q] consists of those
functions ψ : C3 × U → C that satisfy the admissibility condition ψ(r, s, t; z) �∈ Ω
whenever r = q(ζ), s = kζq′(ζ) , and



{ t

s
+ 1

}
� k


{
ζq′′(ζ)
q′(ζ)

+ 1

}
,

z ∈ U, ζ ∈ ∂U \ E(q) and k � n. We write Ψ1[Ω, q] as Ψ[Ω, q] .

In particular when q(z) = M Mz+a
M+az , with M > 0 and |a| < M , then q(U) =

UM := {w : |w| < M}, q(0) = a, E(q) = ∅ and q ∈ Q . In this case, we set
Ψn[Ω, M, a] := Ψn[Ω, q], and in the special case when the set Ω = UM , the class is
simply denoted by Ψn[M, a] .

DEFINITION 1.2. [10, Definition 3, p. 817] Let Ω be a set in C, q(z) ∈ H [a, n]
with q′(z) �= 0 . The class of admissible functions Ψ′

n[Ω, q] consists of those functions
ψ : C3 × U → C that satisfy the admissibility condition ψ(r, s, t; ζ) ∈ Ω whenever

r = q(z), s = zq′(z)
m , and



{ t

s
+ 1

}
� 1

m



{
zq′′(z)
q′(z)

+ 1

}
,

z ∈ U, ζ ∈ ∂U and m � n � 1 . In particular, we write Ψ′
1[Ω, q] as Ψ′[Ω, q] .

THEOREM 1.1. [9, Theorem 2.3b, p. 28] Let ψ ∈ Ψn[Ω, q] with q(0) = a . If
the analytic function p(z) = a + anzn + an+1zn+1 + · · · satisfies

ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω,

then p(z) ≺ q(z) .
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THEOREM 1.2. [10, Theorem 1, p. 818] Let ψ ∈ Ψ′
n[Ω, q] with q(0) = a . If

p(z) ∈ Q(a) and ψ(p(z), zp′(z), z2p′′(z); z) is univalent in U, then

Ω ⊂ {ψ(p(z), zp′(z), z2p′′(z); z) : z ∈ U}
implies q(z) ≺ p(z) .

In the present investigation, the differential subordination result of Miller and
Mocanu [9, Theorem 2.3b, p. 28] is extended for functions associated with the multiplier
transformation Ip(n, λ ) , and we obtain certain other related results. A similar problem
for analytic functions defined by Dizok-Srivastava linear operator was considered by
Ali et al. [4] (see also [1], [2], [3], [5]). Additionally, the corresponding differential
superordination problem is investigated, and several sandwich-type results are obtained.

2. Subordination Results involving the Multiplier Transformation

DEFINITION 2.1. Let Ω be a set in C and q(z) ∈ Q0 ∩ H [0, p] . The class of
admissible functions ΦI [Ω, q] consists of those functions φ : C3 ×U → C that satisfy
the admissibility condition

φ(u, v, w; z) �∈ Ω
whenever

u = q(ζ), v =
kζq′(ζ) + λq(ζ)

λ + p
,



{

(λ + p)2w − λ 2u
(λ + p)v − λu

− 2λ
}

� k

{
ζq′′(ζ)
q′(ζ)

+ 1

}
,

z ∈ U, ζ ∈ ∂U \ E(q) and k � p .

THEOREM 2.1. Let φ ∈ ΦI [Ω, q] . If f (z) ∈ Ap satisfies

{φ (Ip(n, λ )f (z), Ip(n + 1, λ )f (z), Ip(n + 2, λ )f (z); z) : z ∈ U} ⊂ Ω, (2.1)

then
Ip(n, λ )f (z) ≺ q(z).

Proof. Define the analytic function p(z) in U by

p(z) := Ip(n, λ )f (z). (2.2)

In view of the relation

(p + λ )Ip(n + 1, λ )f (z) = z[Ip(n, λ )f (z)]′ + λ Ip(n, λ )f (z), (2.3)

from (2.2), we get

Ip(n + 1, λ )f (z) =
zp′(z) + λp(z)

λ + p
. (2.4)

Further computations show that

Ip(n + 2, λ )f (z) =
z2p′′(z) + (2λ + 1)zp′(z) + λ 2p(z)

(λ + p)2 . (2.5)
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Define the transformations from C3 to C by

u = r, v =
s + λ r
λ + p

, w =
t + (2λ + 1)s + λ 2r

(λ + p)2
. (2.6)

Let

ψ(r, s, t; z) = φ(u, v, w; z) = φ
(

r,
s + λ r
λ + p

,
t + (2λ + 1)s + λ 2r

(λ + p)2
; z

)
. (2.7)

The proof shall make use of Theorem 1.1. Using equations (2.2), (2.4) and (2.5), from
(2.7), we obtain

ψ(p(z), zp′(z), z2p′′(z); z) = φ (Ip(n, λ )f (z), Ip(n + 1, λ )f (z), Ip(n + 2, λ )f (z); z) .
(2.8)

Hence (2.1) becomes
ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω.

The proof is completed if it can be shown that the admissibility condition for φ ∈
ΦI [Ω, q] is equivalent to the admissibility condition for ψ as given in Definition 1.1.
Note that

t
s

+ 1 =
(λ + p)2w − λ 2u
(λ + p)v − λu

− 2λ ,

and hence ψ ∈ Ψp[Ω, q] . By Theorem 1.1, p(z) ≺ q(z) or

Ip(n, λ )f (z) ≺ q(z). �

If Ω �= C is a simply connected domain, then Ω = h(U) for some conformal
mapping h(z) of U onto Ω . In this case the class ΦI[h(U), q] is written as ΦI [h, q] .
The following result is an immediate consequence of Theorem 2.1.

THEOREM 2.2. Let φ ∈ ΦI [h, q] . If f (z) ∈ Ap satisfies

φ (Ip(n, λ )f (z), Ip(n + 1, λ )f (z), Ip(n + 2, λ )f (z); z) ≺ h(z), (2.9)

then
Ip(n, λ )f (z) ≺ q(z).

Our next result is an extension of Theorem 2.2 to the case where the behavior of
q(z) on ∂U is not known.

COROLLARY 2.1. Let Ω ⊂ C and let q(z) be univalent in U, q(0) = 0 . Let
φ ∈ ΦI [Ω, qρ] for some ρ ∈ (0, 1) where qρ(z) = q(ρz) . If f (z) ∈ Ap and

φ (Ip(n, λ )f (z), Ip(n + 1, λ )f (z), Ip(n + 2, λ )f (z); z) ∈ Ω,

then
Ip(n, λ )f (z) ≺ q(z).
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Proof. Theorem 2.1 yields Ip(n, λ )f (z) ≺ qρ(z) . The result is now deduced from
qρ(z) ≺ q(z) . �

THEOREM 2.3. Let h(z) and q(z) be univalent in U, with q(0) = 0 and set
qρ(z) = q(ρz) and hρ(z) = h(ρz) . Let φ : C3 × U → C satisfy one of the following
conditions:

(1) φ ∈ ΦI [h, qρ] , for some ρ ∈ (0, 1) , or
(2) there exists ρ0 ∈ (0, 1) such that φ ∈ ΦI[hρ, qρ] , for all ρ ∈ (ρ0, 1) .
If f (z) ∈ Ap satisfies (2.9), then

Ip(n, λ )f (z) ≺ q(z).

Proof. The proof is similar to the proof of [9, Theorem 2.3d, p. 30] and is therefore
omitted. �

The next theorem yields the best dominant of the differential subordination (2.9).

THEOREM 2.4. Let h(z) be univalent in U. Let φ : C3 × U → C . Suppose that
the differential equation

φ
(

q(z),
zq′(z) + λq(z)

λ + p
,
z2q′′(z) + (2λ + 1)zq′(z) + λ 2q(z)

(λ + p)2
; z

)
= h(z) (2.10)

has a solution q(z) with q(0) = 0 and satisfy one of the following conditions:
(1) q(z) ∈ Q0 and φ ∈ ΦI [h, q] ,
(2) q(z) is univalent in U and φ ∈ ΦI[h, qρ] , for some ρ ∈ (0, 1) , or
(3) q(z) is univalent in U and there exists ρ0 ∈ (0, 1) such that φ ∈ ΦI [hρ, qρ] ,

for all ρ ∈ (ρ0, 1) .
If f (z) ∈ Ap satisfies (2.9), then

Ip(n, λ )f (z) ≺ q(z),

and q(z) is the best dominant.

Proof. Following the same arguments in [9, Theorem 2.3e, p. 31], we deduce that
q(z) is a dominant from Theorems 2.2 and 2.3. Since q(z) satisfies (2.10) it is also a
solution of (2.9) and therefore q(z) will be dominated by all dominants. Hence q(z)
is the best dominant. �

In the particular case q(z) = Mz, M > 0 , and in view of the Definition 2.1, the
class of admissible functions ΦI [Ω, q] , denoted by ΦI [Ω, M] , is described below.

DEFINITION 2.2. Let Ω be a set in C and M > 0 . The class of admissible
functions ΦI [Ω, M] consists of those functions φ : C

3 × U → C such that

φ
(

Meiθ ,
k + λ
λ + p

Meiθ ,
L + ((2λ + 1)k + λ 2)Meiθ

(λ + p)2
; z

)
�∈ Ω (2.11)

whenever z ∈ U, θ ∈ R , 
(Le−iθ) � (k − 1)kM for all real θ and k � p .
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COROLLARY 2.2. Let φ ∈ ΦI [Ω, M] . If f (z) ∈ Ap satisfies

φ (Ip(n, λ )f (z), Ip(n + 1, λ )f (z), Ip(n + 2, λ )f (z); z) ∈ Ω,

then
|Ip(n, λ )f (z)| < M.

In the special case Ω = q(U) = {ω : |ω | < M} , the class ΦI [Ω, M] is simply
denoted by ΦI[M] .

COROLLARY 2.3. Let φ ∈ ΦI [M] . If f (z) ∈ Ap satisfies

|φ (Ip(n, λ )f (z), Ip(n + 1, λ )f (z), Ip(n + 2, λ )f (z); z) | < M,

then
|Ip(n, λ )f (z)| < M.

REMARK 2.1. When Ω = U and M = 1 , Corollary 2.2 reduces to [1, Theorem 2,
p. 271]. When Ω = U , λ = a− 1 (a > 0) , p = 1 and M = 1 , Corollary 2.2 reduces
to [8, Theorem 2, p. 231]. When Ω = U, λ = 1 , p = 1 and M = 1 , Corollary 2.2
reduces to [5, Theorem 1, p. 477].

COROLLARY 2.4. If M > 0 and f (z) ∈ Ap satisfies
∣∣(λ + p)2Ip(n + 2, λ )f (z) − (λ + p)Ip(n + 1, λ )f (z) − λ 2Ip(n, λ )f (z)

∣∣
< [(2p − 1)λ + p(p − 1)] M, then |Ip(n, λ )f (z)| < M. (2.12)

Proof. This follows from Corollary 2.2 by taking φ(u, v, w; z) = (λ + p)2w −
(λ + p)v− λ 2u and Ω = h(U) where h(z) = [(2p− 1)λ + p(p− 1)]Mz , M > 0 . To
use Corollary 2.2, we need to show that φ ∈ ΦI [Ω, M] , that is, the admissible condition
(2.11) is satisfied. This follows since

∣∣∣∣φ
(

Meiθ ,
k + λ
λ + p

Meiθ ,
L + ((2λ + 1)k + λ 2)Meiθ

(λ + p)2
; z

)∣∣∣∣
=

∣∣L + ((2λ + 1)k + λ 2)Meiθ − (k + λ )Meiθ − λ 2Meiθ ∣∣
=

∣∣L + (2k − 1)λMeiθ ∣∣
� (2k − 1)λM + 
(Le−iθ)
� (2k − 1)λM + k(k − 1)M � [(2p − 1)λ + p(p − 1)] M

z ∈ U, θ ∈ R , 
(Le−iθ ) � k(k−1)M and k � p . Hence by Corollary 2.2, we deduce
the required result. �

DEFINITION 2.3. Let Ω be a set in C and q(z) ∈ Q0 ∩ H0 . The class of
admissible functions ΦI,1[Ω, q] consists of those functions φ : C3 × U → C that
satisfy the admissibility condition

φ(u, v, w; z) �∈ Ω
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whenever

u = q(ζ), v =
kζq′(ζ) + (λ + p − 1)q(ζ)

λ + p
,



{

(λ + p)2w − (λ + p − 1)2u
(λ + p)v − (λ + p − 1)u

− 2(λ + p − 1)
}

� k

{
ζq′′(ζ)
q′(ζ)

+ 1

}
,

z ∈ U, ζ ∈ ∂U \ E(q) and k � 1.

THEOREM 2.5. Let φ ∈ ΦI,1[Ω, q] . If f (z) ∈ Ap satisfies{
φ

(
Ip(n, λ )f (z)

zp−1
,
Ip(n + 1, λ )f (z)

zp−1
,
Ip(n + 2, λ )f (z)

zp−1
; z

)
: z ∈ U

}
⊂ Ω, (2.13)

then
Ip(n, λ )f (z)

zp−1
≺ q(z).

Proof. Define an analytic function p(z) in U by

p(z) :=
Ip(n, λ )f (z)

zp−1
. (2.14)

By making use of (2.3), we get,

Ip(n + 1, λ )f (z)
zp−1

=
zp′(z) + (λ + p − 1)p(z)

λ + p
. (2.15)

Further computations show that

Ip(n + 2, λ )f (z)
zp−1

=
z2p′′(z) + [2(λ + p) − 1]zp′(z) + (λ + p − 1)2p(z)

(λ + p)2
. (2.16)

Define the transformations from C3 to C by

u = r, v =
s + (λ + p − 1)r

λ + p
, w =

t + [2(λ + p) − 1]s + (λ + p − 1)2r
(λ + p)2

. (2.17)

Let

ψ(r, s, t; z) = φ(u, v, w; z) (2.18)

= φ
(

r,
s + (λ + p − 1)r

λ + p
,
t + [2(λ + p) − 1]s + (λ + p − 1)2r

(λ + p)2
; z

)
.

The proof shall make use of Theorem 1.1. Using equations (2.14), (2.15) and (2.16),
from (2.18), we obtain

ψ(p(z), zp′(z), z2p′′(z); z) = φ
(

Ip(n, λ )f (z)
zp−1

,
Ip(n + 1, λ )f (z)

zp−1
,
Ip(n + 2, λ )f (z)

zp−1
; z

)
.

(2.19)
Hence (2.13) becomes

ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω.
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The proof is completed if it can be shown that the admissibility condition for φ ∈
ΦI,1[Ω, q] is equivalent to the admissibility condition for ψ as given in Definition 1.1.
Note that

t
s

+ 1 =
(λ + p)2w − (λ + p − 1)2u
(λ + p)v − (λ + p − 1)u

− 2(λ + p − 1),

and hence ψ ∈ Ψ[Ω, q] . By Theorem 1.1, p(z) ≺ q(z) or

Ip(n, λ )f (z)
zp−1 ≺ q(z).

�
If Ω �= C is a simply connected domain, then Ω = h(U) , for some conformal

mapping h(z) of U onto Ω . In this case the class ΦI,1[h(U), q] is written as ΦI,1[h, q] .
In the particular case q(z) = Mz, M > 0 , the class of admissible functions ΦI,1[Ω, q] ,
denoted by ΦI,1[Ω, M] . The following result is an immediate consequence of Theorem
2.5.

THEOREM 2.6. Let φ ∈ ΦI,1[h, q] . If f (z) ∈ Ap satisfies

φ
(

Ip(n, λ )f (z)
zp−1

,
Ip(n + 1, λ )f (z)

zp−1
,
Ip(n + 2, λ )f (z)

zp−1
; z

)
≺ h(z), (2.20)

then
Ip(n, λ )f (z)

zp−1
≺ q(z).

DEFINITION 2.4. Let Ω be a set in C and M > 0 . The class of admissible
functions ΦI,1[Ω, M] consists of those functions φ : C3 × U → C such that

φ
(

Meiθ ,
k + λ + p − 1

λ + p
Meiθ ,

L + [(2(λ + p) − 1)k + (λ + p − 1)2]Meiθ

(λ + p)2
; z

)
�∈ Ω

(2.21)
whenever z ∈ U, θ ∈ R , 
(Le−iθ) � (k − 1)kM for all real θ and k � 1.

COROLLARY 2.5. Let φ ∈ ΦI,1[Ω, M] . If f (z) ∈ Ap satisfies

φ
(

Ip(n, λ )f (z)
zp−1

,
Ip(n + 1, λ )f (z)

zp−1
,
Ip(n + 2, λ )f (z)

zp−1
; z

)
∈ Ω,

then ∣∣∣∣ Ip(n, λ )f (z)
zp−1

∣∣∣∣ < M.

In the special case Ω = q(U) = {ω : |ω | < M} , the class ΦI,1[Ω, M] is simply
denoted by ΦI,1[M] .

COROLLARY 2.6. Let φ ∈ ΦI,1[M] . If f (z) ∈ Ap satisfies∣∣∣∣φ
(

Ip(n, λ )f (z)
zp−1

,
Ip(n + 1, λ )f (z)

zp−1
,
Ip(n + 2, λ )f (z)

zp−1
; z

)∣∣∣∣ < M,

then ∣∣∣∣ Ip(n, λ )f (z)
zp−1

∣∣∣∣ < M.
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REMARK 2.2. When Ω = U , λ = a − 1 (a > 0) , p = 1 and M = 1 , Corollary
2.5 reduces to [8, Theorem 2, p. 231]. When Ω = U , λ = 1 , p = 1 and M = 1 ,
Corollary 2.5 reduces to [5, Theorem 1, p. 477].

COROLLARY 2.7. If f (z) ∈ Ap , then,
∣∣∣∣ Ip(n + 1, λ )f (z)

zp−1

∣∣∣∣ < M ⇒
∣∣∣∣ Ip(n, λ )f (z)

zp−1

∣∣∣∣ < M.

This follows from Corollary 2.6 by taking φ(u, v, w; z) = v .

COROLLARY 2.8. If M > 0 and f (z) ∈ Ap satisfies
∣∣∣∣(λ + p)2 Ip(n + 2, λ )f (z)

zp−1
+ (λ + p)

Ip(n + 1, λ )f (z)
zp−1

− (λ + p − 1)2 Ip(n, λ )f (z)
zp−1

∣∣∣∣

< [3(λ + p) − 1]M, then

∣∣∣∣ Ip(n, λ )f (z)
zp−1

∣∣∣∣ < M. (2.22)

Proof. This follows from Corollary 2.5 by taking φ(u, v, w; z) = (λ +p)2w+(λ +
p)v− (λ + p− 1)2u and Ω = h(U) where h(z) = (3(λ + p)− 1)Mz , M > 0 . To use
Corollary 2.5, we need to show that φ ∈ ΦI,1[Ω, M] , that is, the admissible condition
(2.21) is satisfied. This follows since
∣∣∣∣φ

(
Meiθ ,

k + λ + p − 1
λ + p

Meiθ ,
L + [(2(λ + p) − 1)k + (λ + p − 1)2]Meiθ

(λ + p)2
; z

)∣∣∣∣
=

∣∣L+[(2(λ + p)−1)k+(λ+p−1)2]Meiθ+(k+λ+p−1)Meiθ−(λ+p−1)2Meiθ ∣∣
=

∣∣L + [(2k + 1)(λ + p) − 1]Meiθ ∣∣ � [(2k + 1)(λ + p) − 1]M + 
(Le−iθ)
� [(2k + 1)(λ + p) − 1]M + k(k − 1)M � (3(λ + p) − 1)M

z ∈ U, θ ∈ R , 
(Le−iθ) � k(k−1)M and k � 1. Hence by Corollary 2.5, we deduce
the required result. �

DEFINITION 2.5. Let Ω be a set in C and q(z) ∈ Q1 ∩ H . The class of
admissible functions ΦI,2[Ω, q] consists of those functions φ : C3 × U → C that
satisfy the admissibility condition

φ(u, v, w; z) �∈ Ω

whenever

u = q(ζ), v =
1

λ + p

(
(λ + p)q(ζ) +

kζq′(ζ)
q(ζ)

)
(q(ζ) �= 0),



{

(λ + p)v(w − v)
v − u

− (λ + p)(2u − v)
}

� k

{
ζq′′(ζ)
q′(ζ)

+ 1

}
,

z ∈ U, ζ ∈ ∂U \ E(q) and k � 1.
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THEOREM 2.7. Let φ ∈ ΦI,2[Ω, q] and Ip(n, λ )f (z) �= 0 . If f (z) ∈ Ap satisfies{
φ

(
Ip(n + 1, λ )f (z)

Ip(n, λ )f (z)
,
Ip(n + 2, λ )f (z)
Ip(n + 1, λ )f (z)

,
Ip(n + 3, λ )f (z)
Ip(n + 2, λ )f (z)

; z

)
: z ∈ U

}
⊂ Ω,

(2.23)
then

Ip(n + 1, λ )f (z)
Ip(n, λ )f (z)

≺ q(z).

Proof. Define an analytic function p(z) in U by

p(z) :=
Ip(n + 1, λ )f (z)

Ip(n, λ )f (z)
. (2.24)

By making use of (2.3) and (2.24), we get

Ip(n + 2, λ )f (z)
Ip(n + 1, λ )f (z)

=
1

λ + p

[
(λ + p)p(z) +

zp′(z)
p(z)

]
. (2.25)

Further computations show that

Ip(n+3, λ )f (z)
Ip(n+2, λ )f (z)

= p(z)+
1

λ+p

⎡
⎢⎣zp′(z)

p(z)
+

(λ + p)zp′(z)+ zp′(z)
p(z) −

(
zp′(z)
p(z)

)2
+ z2p′′(z)

p(z)

(λ + p)p(z)+ zp′(z)
p(z)

⎤
⎥⎦ .

(2.26)
Define the transformations from C3 to C by

u = r, v = r+
1

λ + p

( s
r

)
, w = r+

1
λ + p

[
s
r

+
(λ + p)s + s

r − ( s
r )

2 + t
r

(λ + p)r + s
r

]
. (2.27)

Let

ψ(r, s, t; z) = φ(u, v, w; z) (2.28)

= φ
(

r,
1

λ+p

[
(λ+p)r+

s
r

]
,

1
λ+p

[
(λ+p)r+

s
r
+

(λ+p)s+ s
r−( s

r )
2+ t

r

(λ + p)r+ s
r

]
; z

)
.

The proof shall make use of Theorem 1.1. Using equations (2.24), (2.25) and (2.26),
from (2.28), we obtain

ψ(p(z), zp′(z), z2p′′(z); z) = φ
(

Ip(n+1, λ )f (z)
Ip(n, λ )f (z)

,
Ip(n+2, λ )f (z)
Ip(n+1, λ )f (z)

,
Ip(n+3, λ )f (z)
Ip(n+2, λ )f (z)

; z

)
.

(2.29)
Hence (2.23) becomes

ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω.

The proof is completed if it can be shown that the admissibility condition for φ ∈
ΦI,2[Ω, q] is equivalent to the admissibility condition for ψ as given in Definition 1.1.
Note that

t
s

+ 1 =
(λ + p)v(w − v)

v − u
− (λ + p)(2u − v),
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and hence ψ ∈ Ψ[Ω, q] . By Theorem 1.1, p(z) ≺ q(z) or

Ip(n + 1, λ )f (z)
Ip(n, λ )f (z)

≺ q(z).

�
If Ω �= C is a simply connected domain, then Ω = h(U) , for some conformal

mapping h(z) of U onto Ω . In this case the class ΦI,2[h(U), q] is written as ΦI,2[h, q] .
In the particular case q(z) = 1+Mz, M > 0 , the class of admissible functions ΦI,2[Ω, q]
becomes the class ΦI,2[Ω, M] . Proceeding similarly as in the previous section, the
following result is an immediate consequence of Theorem 2.7.

THEOREM 2.8. Let φ ∈ ΦI,2[h, q] . If f (z) ∈ Ap satisfies

φ
(

Ip(n + 1, λ )f (z)
Ip(n, λ )f (z)

,
Ip(n + 2, λ )f (z)
Ip(n + 1, λ )f (z)

,
Ip(n + 3, λ )f (z)
Ip(n + 2, λ )f (z)

; z

)
≺ h(z), (2.30)

then
Ip(n + 1, λ )f (z)

Ip(n, λ )f (z)
≺ q(z).

DEFINITION 2.6. Let Ω be a set in C . The class of admissible functions
ΦI,2[Ω, M] consists of those functions φ : C3 × U → C such that

φ
(

1 + Meiθ , 1 +
k + (λ + p)(1 + Meiθ )

(λ + p)(1 + Meiθ )
Meiθ , 1 +

k + (λ + p)(1 + Meiθ )
(λ + p)(1 + Meiθ )

Meiθ

+
(M + e−iθ)[Le−iθ + [λ + p + 1]kM + (λ + p)kM2eiθ ] − k2M2

(λ + p)(M + e−iθ)[(λ + p)e−iθ + (2(λ + p) + k)M + (λ + p)M2eiθ ]
; z

)
�∈ Ω

(2.31)

z ∈ U, θ ∈ R, 
(Le−iθ) � (k − 1)kM for all real θ and k � 1.

COROLLARY 2.9. Let φ ∈ ΦI,2[Ω, M] . If f (z) ∈ Ap satisfies

φ
(

Ip(n + 1, λ )f (z)
Ip(n, λ )f (z)

,
Ip(n + 2, λ )f (z)
Ip(n + 1, λ )f (z)

,
Ip(n + 3, λ )f (z)
Ip(n + 2, λ )f (z)

; z

)
∈ Ω,

then
Ip(n + 1, λ )f (z)

Ip(n, λ )f (z)
≺ 1 + Mz.

When Ω = {ω : | ω − 1| < M} = q(U) , the class ΦI,2[Ω, M] is denoted by
ΦI,2[M]

COROLLARY 2.10. Let φ ∈ ΦI,2[M] . If f (z) ∈ Ap satisfies∣∣∣∣φ
(

Ip(n + 1, λ )f (z)
Ip(n, λ )f (z)

,
Ip(n + 2, λ )f (z)
Ip(n + 1, λ )f (z)

,
Ip(n + 3, λ )f (z)
Ip(n + 2, λ )f (z)

; z

)
− 1

∣∣∣∣ < M,

then ∣∣∣∣ Ip(n + 1, λ )f (z)
Ip(n, λ )f (z)

− 1

∣∣∣∣ < M.
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COROLLARY 2.11. If M > 0 and f (z) ∈ Ap satisfies∣∣∣∣ Ip(n + 2, λ )f (z)
Ip(n + 1, λ )f (z)

− Ip(n + 1, λ )f (z)
Ip(n, λ )f (z)

∣∣∣∣ <
M

(λ + p)(1 + M)
,

then ∣∣∣∣ Ip(n + 1, λ )f (z)
Ip(n, λ )f (z)

− 1

∣∣∣∣ < M.

This follows from Corollary 2.9 by taking φ(u, v, w; z) = v − u and Ω = h(U)
where h(z) = M

(λ+p)(1+M)z .

3. Superordination of the Multiplier Transformation

The dual problem of differential subordination, that is, differential superordination
of the multiplier transformation is investigated in this section. For this purpose the class
of admissible functions is given in the following definition.

DEFINITION 3.1. Let Ω be a set in C and q(z) ∈ H [0, p] with zq′(z) �= 0 . The
class of admissible functions Φ′

I [Ω, q] consists of those functions φ : C3 × U → C

that satisfy the admissibility condition

φ(u, v, w; ζ) ∈ Ω

whenever

u = q(z), v =
(zq′(z)/m) + λq(z)

λ + p
,



{

(λ + p)2w − λ 2u
(λ + p)v − λu

− 2λ
}

� 1
m



{
zq′′(z)
q′(z)

+ 1

}
,

z ∈ U, ζ ∈ ∂U and m � p

THEOREM 3.1. Let φ ∈ Φ′
I [Ω, q] . If f (z) ∈ Ap, Ip(n, λ )f (z) ∈ Q0 and

φ (Ip(n, λ )f (z), Ip(n + 1, λ )f (z), Ip(n + 2, λ )f (z); z)

is univalent in U, then

Ω ⊂ {φ (Ip(n, λ )f (z), Ip(n + 1, λ )f (z), Ip(n + 2, λ )f (z); z) : z ∈ U} (3.1)

implies
q(z) ≺ Ip(n, λ )f (z).

Proof. From (2.8) and (3.1) , we have

Ω ⊂ {
ψ

(
p(z), zp′(z), z2p′′(z); z

)
: z ∈ U

}
.

From (2.6), we see that the admissibility condition for φ ∈ Φ′
I [Ω, q] is equivalent to

the admissibility condition for ψ as given in Definition 1.2. Hence ψ ∈ Ψ′
p[Ω, q], and

by Theorem 1.2, q(z) ≺ p(z) or

q(z) ≺ Ip(n, λ )f (z).
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�

If Ω �= C is a simply connected domain, then Ω = h(U) for some conformal
mapping h(z) of U onto Ω . In this case the class Φ′

I[h(U), q] is written as Φ′
I [h, q] .

Proceeding similarly as in the previous section, the following result is an immediate
consequence of Theorem 3.1.

THEOREM 3.2. Let q(z) ∈ H [0, p] , h(z) is analytic on U and φ ∈ Φ′
I [h, q] . If

f (z) ∈ Ap , Ip(n, λ )f (z) ∈ Q0 and φ (Ip(n, λ )f (z), Ip(n + 1, λ )f (z), Ip(n + 2, λ )f (z); z)
is univalent in U, then

h(z) ≺ φ (Ip(n, λ )f (z), Ip(n + 1, λ )f (z), Ip(n + 2, λ )f (z); z) (3.2)

implies
q(z) ≺ Ip(n, λ )f (z).

Theorem 3.1 and 3.2 can only be used to obtain subordinants of differential super-
ordination of the form (3.1) or (3.2). The following theorem proves the existence of
the best subordinant of (3.2) for certain φ .

THEOREM 3.3. Let h(z) be analytic in U and φ : C3 × U → C . Suppose that
the differential equation

φ
(

q(z),
zq′(z) + λq(z)

λ + p
,
z2q′′(z) + (2λ + 1)zq′(z) + λ 2q(z)

(λ + p)2
; z

)
= h(z) (3.3)

has a solution q(z) ∈ Q0 . If φ ∈ Φ′
I [h, q] , f (z) ∈ Ap , Ip(n, λ )f (z) ∈ Q0 and

φ (Ip(n, λ )f (z), Ip(n + 1, λ )f (z), Ip(n + 2, λ )f (z); z)

is univalent in U, then

h(z) ≺ φ (Ip(n, λ )f (z), Ip(n + 1, λ )f (z), Ip(n + 2, λ )f (z); z)

implies
q(z) ≺ Ip(n, λ )f (z)

and q(z) is the best subordinant.

Proof. The proof is similar to the proof of Theorem 2.4 and is therefore omitted.
�

Combining Theorems 2.2 and 3.2, we obtain the following sandwich theorem.

COROLLARY 3.1. Let h1(z) and q1(z) be analytic functions in U, h2(z) be uni-
valent function in U , q2(z) ∈ Q0 with q1(0) = q2(0) = 0 and φ ∈ ΦI [h2, q2] ∩
Φ′

I [h1, q1] . If f (z) ∈ Ap , Ip(n, λ )f (z) ∈ H [0, p] ∩ Q0 and

φ (Ip(n, λ )f (z), Ip(n + 1, λ )f (z), Ip(n + 2, λ )f (z); z)

is univalent in U, then

h1(z) ≺ φ (Ip(n, λ )f (z), Ip(n + 1, λ )f (z), Ip(n + 2, λ )f (z); z) ≺ h2(z),

implies
q1(z) ≺ Ip(n, λ )f (z) ≺ q2(z).
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DEFINITION 3.2. Let Ω be a set in C and q(z) ∈ H0 with zq′(z) �= 0 . The class
of admissible functions Φ′

I,1[Ω, q] consists of those functions φ : C3 × U → C that
satisfy the admissibility condition

φ(u, v, w; ζ) ∈ Ω

whenever

u = q(z), v =
(zq′(z)/m) + (λ + p − 1)q(z)

λ + p
,



{

(λ + p)2w − (λ + p − 1)2u
(λ + p)v − (λ + p − 1)u

− 2(λ + p − 1)
}

� 1
m



{
zq′′(z)
q′(z)

+ 1

}
,

z ∈ U, ζ ∈ ∂U and m � 1.

Now we will give the dual result of Theorem 2.5 for differential superordination.

THEOREM 3.4. Let φ ∈ Φ′
I,1[Ω, q] . If f (z) ∈ Ap,

Ip(n,λ )f (z)
zp−1 ∈ Q0 and

φ
(

Ip(n, λ )f (z)
zp−1

,
Ip(n + 1, λ )f (z)

zp−1
,
Ip(n + 2, λ )f (z)

zp−1
; z

)

is univalent in U, then

Ω ⊂
{
φ

(
Ip(n, λ )f (z)

zp−1
,
Ip(n + 1, λ )f (z)

zp−1
,
Ip(n + 2, λ )f (z)

zp−1
; z

)
: z ∈ U

}
(3.4)

implies

q(z) ≺ Ip(n, λ )f (z)
zp−1

.

Proof. From (2.19) and (3.4), we have

Ω ⊂ {
ψ

(
p(z), zp′(z), z2p′′(z); z

)
: z ∈ U

}
.

From (2.17), we see that the admissibility condition for φ ∈ Φ′
I,1[Ω, q] is equivalent to

the admissibility condition for ψ as given in Definition 1.2. Hence ψ ∈ Ψ′[Ω, q], and
by Theorem 1.2, q(z) ≺ p(z) or

q(z) ≺ Ip(n, λ )f (z)
zp−1

. �
If Ω �= C is a simply connected domain, and Ω = h(U) for some conformalmap-

ping h(z) of U onto Ω and the class Φ′
I,1[h(U), q] is written as Φ′

I,1[h, q] . Proceeding
similarly as in the previous section, the following result is an immediate consequence
of Theorem 3.4.

THEOREM 3.5. Let q(z) ∈ H0 , h(z) is analytic on U and φ ∈ Φ′
I,1[h, q] .

If f (z) ∈ Ap , Ip(n, λ )f (z) ∈ Q0 and φ
(

Ip(n,λ )f (z)
zp−1 ,

Ip(n+1,λ )f (z)
zp−1 ,

Ip(n+2,λ )f (z)
zp−1 ; z

)
is

univalent in U, then

h(z) ≺ φ
(

Ip(n, λ )f (z)
zp−1

,
Ip(n + 1, λ )f (z)

zp−1
,
Ip(n + 2, λ )f (z)

zp−1
; z

)
(3.5)



SUBORDINATION AND SUPERORDINATION FOR ANALYTIC FUNCTIONS 137

implies

q(z) ≺ Ip(n, λ )f (z)
zp−1

.

Combining Theorems 2.6 and 3.5, we obtain the following sandwich theorem.

COROLLARY 3.2. Let h1(z) and q1(z) be analytic functions in U, h2(z) be uni-
valent function in U , q2(z) ∈ Q0 with q1(0) = q2(0) = 0 and φ ∈ ΦI,1[h2, q2] ∩
Φ′

I,1[h1, q1] . If f (z) ∈ Ap , Ip(n,λ )f (z)
zp−1 ∈ H0 ∩ Q0 and

φ
(

Ip(n, λ )f (z)
zp−1

,
Ip(n + 1, λ )f (z)

zp−1
,
Ip(n + 2, λ )f (z)

zp−1
; z

)

is univalent in U, then

h1(z) ≺ φ
(

Ip(n, λ )f (z)
zp−1

,
Ip(n + 1, λ )f (z)

zp−1
,
Ip(n + 2, λ )f (z)

zp−1
; z

)
≺ h2(z),

implies

q1(z) ≺ Ip(n, λ )f (z)
zp−1

≺ q2(z).

Now we will give the dual result of Theorem2.7 for the differential superordination.

DEFINITION 3.3. Let Ω be a set in C , q(z) �= 0 , zq′(z) �= 0 and q(z) ∈ H . The
class of admissible functions Φ′

I,2[Ω, q] consists of those functions φ : C3 × U → C

that satisfy the admissibility condition

φ(u, v, w; ζ) ∈ Ω

whenever

u = q(z), v =
1

λ + p

(
(λ + p)q(z) +

zq′(z)
mq(z)

)
,



{

(λ + p)v(w − v)
v − u

− (λ + p)(2u − v)
}

� 1
m



{
zq′′(z)
q′(z)

+ 1

}
,

z ∈ U, ζ ∈ ∂U and m � 1.

THEOREM 3.6. Let φ ∈ Φ′
I,2[Ω, q] . If f (z) ∈ Ap,

Ip(n+1,λ )f (z)
Ip(n,λ )f (z) ∈ Q1 and

φ
(

Ip(n + 1, λ )f (z)
Ip(n, λ )f (z)

,
Ip(n + 2, λ )f (z)
Ip(n + 1, λ )f (z)

,
Ip(n + 3, λ )f (z)
Ip(n + 2, λ )f (z)

; z

)

is univalent in U, then

Ω ⊂
{
φ

(
Ip(n + 1, λ )f (z)

Ip(n, λ )f (z)
,
Ip(n + 2, λ )f (z)
Ip(n + 1, λ )f (z)

,
Ip(n + 3, λ )f (z)
Ip(n + 2, λ )f (z)

; z

)
: z ∈ U

}
(3.6)

implies

q(z) ≺ Ip(n + 1, λ )f (z)
Ip(n, λ )f (z)

.
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Proof. From (2.29) and (3.6 ), we have

Ω ⊂ {
ψ

(
p(z), zp′(z), z2p′′(z); z

)
: z ∈ U

}
.

From (2.28), we see that the admissibility condition for φ ∈ Φ′
I,2[Ω, q] is equivalent to

the admissibility condition for ψ as given in Definition 1.2. Hence ψ ∈ Ψ′[Ω, q], and
by Theorem 1.2, q(z) ≺ p(z) or

q(z) ≺ Ip(n + 1, λ )f (z)
Ip(n, λ )f (z)

.

�
If Ω �= C is a simply connected domain, then Ω = h(U) for some conformal

mapping h(z) of U onto Ω . In this case the class Φ′
I,2[h(U), q] is written as Φ′

I,2[h, q] .
The following result is an immediate consequence of Theorem 3.6.

THEOREM 3.7. Let h(z) be analytic in U and φ ∈ Φ′
I,2[h, q] . If f (z) ∈ Ap ,

Ip(n+1,λ )f (z)
Ip(n,λ )f (z) ∈ Q1 , and φ

(
Ip(n+1,λ )f (z)

Ip(n,λ )f (z) ,
Ip(n+2,λ )f (z)
Ip(n+1,λ )f (z) ,

Ip(n+3,λ )f (z)
Ip(n+2,λ )f (z) ; z

)
is univalent in U,

then

h(z) ≺ φ
(

Ip(n + 1, λ )f (z)
Ip(n, λ )f (z)

,
Ip(n + 2, λ )f (z)
Ip(n + 1, λ )f (z)

,
Ip(n + 3, λ )f (z)
Ip(n + 2, λ )f (z)

; z

)
, (3.7)

implies

q(z) ≺ Ip(n + 1, λ )f (z)
Ip(n, λ )f (z)

.

Combining Theorems 2.8 and 3.7, we obtain the following sandwich theorem.

COROLLARY 3.3. Let h1(z) and q1(z) be analytic functions in U, h2(z) be uni-
valent function in U , q2(z) ∈ Q1 with q1(0) = q2(0) = 1 and φ ∈ ΦI,2[h2, q2] ∩
Φ′

I,2[h1, q1] . If f (z) ∈ Ap , Ip(n+1,λ )f (z)
Ip(n,λ )f (z) ∈ H ∩ Q1 , Ip(n, λ )f (z) �= 0 and

φ
(

Ip(n + 1, λ )f (z)
Ip(n, λ )f (z)

,
Ip(n + 2, λ )f (z)
Ip(n + 1, λ )f (z)

,
Ip(n + 3, λ )f (z)
Ip(n + 2, λ )f (z)

; z

)

is univalent in U, then

h1(z) ≺ φ
(

Ip(n + 1, λ )f (z)
Ip(n, λ )f (z)

,
Ip(n + 2, λ )f (z)
Ip(n + 1, λ )f (z)

,
Ip(n + 3, λ )f (z)
Ip(n + 2, λ )f (z)

; z

)
≺ h2(z),

implies

q1(z) ≺ Ip(n + 1, λ )f (z)
Ip(n, λ )f (z)

≺ q2(z).
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