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Abstract. In this paper, by using a resolvent operator technique of ( H , η )-monotone mappings
and the property of a fixed-point set of set-valued contractive mappings, we study the behavior
and sensitivity of the solutions of the parametric completely generalized strongly nonlinear mixed
implicit quasi-variational inclusions in Hilbert space. Our results extend and improve some recent
results in this field.

1. Introduction

It is well known that variational inequality theory and complementarity problem
theory play an important and fundamental role in the study of a wide class of problems
arising in differential equations, mechanics, physics, optimization and control, nonlinear
programming, economics and transportation equilibrium, and engineering sciences. For
this reason, various variational inclusions have been intensively studied in recent years.

Sensitivity analysis of a solution set for variational inequalities have been studied
by many authors. Dafermos [16], Mukhherjee and Berma [17], Noor [18], Yen [19] used
the projection technique to dealt with the sensitivity analysis of solutions for variational
inequalities with single-valued mappings. Robinson [20] used the implicit function
approach with normal mappings studied the sensitivity analysis of solutions for varia-
tional inequalities in finite-dimensional spaces. By using resolvent operator technique,
Adly [21], Noor and Noor [22], Agrawal, Cho and Huang [23], Noor [24] studied the
sensitivity analysis of solutions for the quasi-variational inclusions with single-valued
mappings; Ding [25] studied the behavior and sensitivity analysis of solutions for gen-
eralized nonlinear implicit quasi-variational inclusions; Liu, Debnath, Kang and Ume
[26] studied the behavior and sensitivity analysis of solutions for parametric completely
generalized nonlinear implicit quasi-variational inclusions; Peng and Long [30] studied
the behavior and sensitivity analysis of solutions for parametric completely generalized
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strongly nonlinear implicit quasi-variational inclusions; Ding [31] studied the behav-
ior and sensitivity analysis of solutions for parametric completely generalized mixed
implicit quasi-variational inclusions involving h -maximal monotone mappings.

Inspired and motivated by recent research works in this field, in this paper, by
using implicit resolvent operator technique of (H ,η )-monotone mappings and the
property of fixed-point set of set-valued contractive mappings, we study the behavior
and sensitivity analysis of solutions of a new class of parametric completely generalized
strongly nonlinear mixed implicit quasi-variational inclusions with multi-valued and
single-valued nonlinear mappings in Hilbert space. Our results extend, improve and
unify the corresponding results in [17–31] and the reference therein.

2. Preliminaries and Definitions

Let H be a real Hilbert space with norm and inner product denoted by ‖·‖ and
〈 ·, ·〉 , respectively. Let C(H ) denote the families of all nonempty compact subsets
of H , and D̃(·, ·) denote the Hausdorff metric on C(H ) defined by

D̃(A, B) = max{sup
a∈A

d(a, B), sup
b∈B

d(A, b)}, ∀A, B ∈ C(H ),

where d(a, B) = infb∈B ‖a − b‖ , d(A, b) = infa∈A ‖a − b‖ . We first recall some
definitions and lemmas later.

DEFINITION 2.1. ([32, 33]) Let η : H × H −→ H and H : H −→ H be
two single-valued operators and M : H −→ 2H be a set-valued operator. M is said
to be

(i) η -monotone if,

〈 x − y,η(u, v)〉 � 0, ∀u, v ∈ H , x ∈ Mu, y ∈ Mv.

(ii) (H,η) -monotone if M is η -monotone and (H + λM)(H ) = H , for all
λ > 0 .

REMARK 2.1. (1) If η(u, v) = u − v , then the definition of η -monotonicity is
that of monotonicity and the definition of (H,η) -monotonicity becomes that of H -
monotonicity. It is easy to know that if H = I ( the identity map on H ), then the
definition of (I,η) -monotone operators is that of maximal η -monotone operators and
the definition of I -monotone operators is that of maximal monotone operators. Hence,
the class of (H,η) -monotone operators provides a unifying frameworks for classes of
maximalmonotone operators,maximal η -monotone operators, H -monotone operators.

Throughout this paper, unless otherwise stated, we always suppose that Γ is a
nonempty open subset of H in which the parameter λ takes values, N : H ×
H × H × Γ −→ H , W : H × H × Γ −→ H , m, n, i, j : H × Γ −→
H and H : H −→ H , η : H × H −→ H be single-valued mappings and
A, B, C, D, E, F, G, S : H × Γ −→ C(H ) are multi-valued mappings, and M : H ×
H × Γ −→ 2H is a set-valued mapping such that for each given (z, λ ) ∈ H ×
Γ , M(·, z, λ ) : H −→ 2H is an (H,η) -monotone mapping with (G(H , λ )−
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m(H , λ )) ∩ domM(·, z, λ ) 	= ∅ . We consider the following parametric completely
generalized strongly nonlinear mixed implicit quasi-variational inclusion problem (in
short, PCGSNMIQVIP):

For each fixed λ ∈ Γ and w ∈ H , find x(λ ) ∈ H ,

a(λ ) ∈ A(i(x(λ ), λ ), λ ), b(λ ) ∈ B(x(λ ), λ ), c(λ ) ∈ C(x(λ ), λ ),
d(λ ) ∈ D(x(λ ), λ ), e(λ ) ∈ E(x(λ ), λ ), f (λ ) ∈ F(x(λ ), λ ),

g(λ ) ∈ G(x(λ ), λ ), s(λ ) ∈ S(x(λ ), λ )
(2.1)

such that w ∈ W(n(e(λ ), λ ), a(λ ), λ ) − N(j(b(λ ), λ ), c(λ ), d(λ ), λ ) + M(g(λ ) −
m(s(λ ), λ ), f (λ ), λ ) .

Special Cases
Case 1. If j(x, λ ) = x and S(x, λ ) = {x} for all (x, λ ) ∈ H × Γ , and

η(x, y) = x − y for all x, y ∈ H , then for all (z, λ ) ∈ H × Γ , M(·, z, λ ) : H −→
2H is an H -monotone mapping, and the (PCGSNMIQVIP) (2.1) collapses to the
following parametric completely generalized mixed implicit quasi-variational inclusion
problem:

For each fixed λ ∈ Γ and w ∈ H , find x(λ ) ∈ H ,

a(λ ) ∈ A(i(x(λ ), λ ), λ ), b(λ ) ∈ B(x(λ ), λ ), c(λ ) ∈ C(x(λ ), λ ),
d(λ ) ∈ D(x(λ ), λ ), e(λ ) ∈ E(x(λ ), λ ),
f (λ ) ∈ F(x(λ ), λ ), g(λ ) ∈ G(x(λ ), λ )

(2.2)

such that w ∈ W(n(e(λ ), λ ), a(λ ), λ )−N(b(λ ), c(λ ), d(λ ), λ )+M(g(λ )−m(x(λ ), λ ),
f (λ ), λ ).

The problem (2.2) was introduced and studied by Ding [31].
Case 2. If H = I , and for all (x, y, z, λ ) ∈ H × H × H × Γ , n(x, λ ) = x ,

i(x, λ ) = x , and N(x, y, z, λ ) = N(y, z, λ ) , η(x, y) = x − y , then M(·, z, λ ) : H −→
2H is an maximal monotone mapping, and the (PCGSNMIQVIP) (2.1) collapses
to the following parametric completely generalized strongly nonlinear implicit quasi-
variational inclusion problem:

For each fixed λ ∈ Γ and w ∈ H , find x(λ ) ∈ H ,

a(λ ) ∈ A(x(λ ), λ ), c(λ ) ∈ C(x(λ ), λ ), d(λ ) ∈ D(x(λ ), λ ),
e(λ ) ∈ E(x(λ ), λ ), f (λ ) ∈ F(x(λ ), λ ),
g(λ ) ∈ G(x(λ ), λ ), s(λ ) ∈ S(x(λ ), λ )

(2.3)

such that w ∈ W(e(λ ), a(λ ), λ )−N(c(λ ), d(λ ), λ )+M(g(λ )−m(s(λ ), λ ), f (λ ), λ ).
The problem (2.3) was introduced and studied by Peng and Long [30].
It follows from [30,31] that problem (3.2) and (3.3) contains many mathematical

models in [17–26] as special cases.
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Now, for each fixed λ ∈ Γ , the solution set of the (PCGSNMIQVIP) (2.1) is
denoted as

S(λ ) = {x(λ ) ∈ H : ∃a(λ ) ∈ A(i(x(λ ), λ ), λ ), b(λ ) ∈ B(x(λ ), λ ),
c(λ ) ∈ C(x(λ ), λ ), d(λ ) ∈ D(x(λ ), λ ), e(λ ) ∈ E(x(λ ), λ ),
f (λ ) ∈ F(x(λ ), λ ), g(λ ) ∈ G(x(λ ), λ ), s(λ ) ∈ S(x(λ ), λ )
such that w ∈ W(n(e(λ ), λ ), a(λ ), λ ) − N(j(b(λ ), λ ), c(λ ), d(λ ), λ )

+M(g(λ ) − m(s(λ ), λ ), f (λ ), λ )} .

In this paper, our main aim is to study the behavior of the solution set S(λ ) , and
the conditions on the mappings A, B, C, D, E, F, G, S, N, W, H , η , m, n, i, j under which
the function S(λ ) is continuous or Lipschitz continuous with respect to the parameter
λ ∈ Γ .

LEMMA 2.1. ([32]) Let η : H × H → H be a single-valued operator, H :
H → H be a strictly η -monotone operator and M : H → 2H be an (H,η) -
monotone operator. Then, the operator (H + λM)−1 is single-valued.

By Lemma 2.1, we can define the resolvent operator RH,η
M,λ as follows:

DEFINITION 2.2. ([32]) Let η : H × H −→ H be a single-valued operator,
H : H −→ H be a strictly η -monotone operator and M : H −→ 2H be an
(H,η) -monotone operator. Then the resolvent operator RH,η

M,λ : H −→ H is defined
by

RH,η
M,λ (x) = (H + λM)−1(x), ∀x ∈ H .

LEMMA 2.2. ([32]) Let η : H × H −→ H be a single-valued Lipschitz
continuous operator with constant τ > 0 , H : H −→ H be a strongly η -monotone
operator with constant γ > 0 and M : H −→ 2H be an (H,η) -monotone operator.
Then, the resolvent operator RH,η

M,λ : H −→ H is Lipschitz continuous with constant
τ
γ , i.e.,

‖RH,η
M,λ (x) − RH,η

M,λ (y)‖ � τ
γ
‖x − y‖, ∀x, y ∈ H .

LEMMA 2.3. Let η : H ×H → H be a single-valued operator, H : H → H
be a strictly η -monotone operator. For each fixed λ ∈ Γ , x(λ ) ∈ H is a solution of
the (PCGSNMIQVIP) (2.1) if and only if there exist a(λ ) ∈ A(i(x(λ ), λ ), λ ), b(λ ) ∈
B(x(λ ), λ ) , c(λ ) ∈ C(x(λ ), λ ) , d(λ ) ∈ D(x(λ ), λ ) , e(λ ) ∈ E(x(λ ), λ ) , f (λ ) ∈
F(x(λ ), λ ) , g(λ ) ∈ G(x(λ ), λ ) , s(λ ) ∈ S(x(λ ), λ ) , such that the following relation
holds:

g(λ ) = m(s(λ ), λ ) + RH,η
M(·,f (λ ),λ ),ρ[H(g(λ ) − m(s(λ ), λ ))

− ρW(n(e(λ ), λ ), a(λ ), λ ) + ρN(j(b(λ ), λ ), c(λ ), d(λ ), λ ) + ρw],

where RH,η
M(·,f (λ ),λ ),ρ(u) = (H + ρM(·, f (λ ), λ ))−1(u), ∀u ∈ H and ρ > 0 is a

constant.
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Proof. For each fixed λ ∈ Γ , let x(λ ) ∈ H be a solution of the (PCGSN-
MIQVIP) (2.1)with a(λ ) ∈ A(i(x(λ ), λ ), λ ) , b(λ ) ∈ B(x(λ ), λ ) , c(λ ) ∈ C(x(λ ), λ ) ,
d(λ ) ∈ D(x(λ ), λ ) , e(λ ) ∈ E(x(λ ), λ ) , f (λ ) ∈ F(x(λ ), λ ) , g(λ ) ∈ G(x(λ ), λ ) ,
and s(λ ) ∈ S(x(λ ), λ ) if and only if

w ∈W(n(e(λ ), λ ), a(λ ), λ ) − N(j(b(λ ), λ ), c(λ ), d(λ ), λ ) + M(g(λ )
− m(s(λ ), λ ), f (λ ), λ )

⇐⇒ ρN(j(b(λ ), λ ), c(λ ), d(λ ), λ ) − ρW(n(e(λ ), λ ), a(λ ), λ ) + ρw ∈ ρM(g(λ )
− m(s(λ ), λ ), f (λ ), λ )

⇐⇒ H(g(λ ) − m(s(λ ), λ )) + ρN(j(b(λ ), λ ), c(λ ), d(λ ), λ )
− ρW(n(e(λ ), λ ), a(λ ), λ ) + ρw

∈ H(g(λ ) − m(s(λ ), λ )) + ρM(g(λ ) − m(s(λ ), λ ), f (λ ), λ )
⇐⇒ H(g(λ ) − m(s(λ ), λ )) + ρN(j(b(λ ), λ ), c(λ ), d(λ ), λ )

− ρW(n(e(λ ), λ ), a(λ ), λ ) + ρw

∈ (H + ρM(·, f (λ ), λ ))[g(λ ) − m(s(λ ), λ )]

⇐⇒g(λ ) − m(s(λ ), λ ) = RH,η
M(·,f (λ ),λ ),ρ[H(g(λ ) − m(s(λ ), λ ))

+ ρN(j(b(λ ), λ ), c(λ ), d(λ ), λ ) − ρW(n(e(λ ), λ ), a(λ ), λ ) + ρw]

⇐⇒ g(λ ) = m(s(λ ), λ ) + RH,η
M(·,f (λ ),λ ),ρ[H(g(λ ) − m(s(λ ), λ ))

− ρW(n(e(λ ), λ ), a(λ ), λ ) + ρN(j(b(λ ), λ ), c(λ ), d(λ ), λ ) + ρw].

This completes the proof. �

REMARK 2.2. Lemma 2.1 improves and extends Theorem 3.1 in [31], Lemma 2.1
in [26], Theorem 3.1 in [25], Lemma 2.1 in [24], Lemma 2.1 in [23], Lemma 3.1 in [21],
Lemma 2.1 in [22], Lemma 3.1 in [12], Lemma 2.1 in [27], Lemma 2.1 in [30].

LEMMA 2.4. ([28]) Let (X, d) be a complete metric space and T1, T2 : X −→
C(X) be two set-valued contractive mappings with same contractive constant θ ∈
(0, 1) , i.e.,

D̃(Ti(x), Ti(y)) � θd(x, y), ∀x, y ∈ X, i = 1, 2,

Then

D̃(F(T1), F(T2)) � 1
1 − θ

sup
x∈X

D̃(T1(x), T2(x)),

where F(T1) and F(T2) are fixed-point sets of T1 and T2 , respectively.

DEFINITION 2.3. ([25, 26]) A set-valued mapping E : H × Γ −→ C(H ) is
said to be

(i) strongly monotone in the first argument if there exists a constant δ > 0 such
that

〈 s1 − s2, x − y〉 � δ‖x − y‖2, ∀(x, y, λ ) ∈ H × H ×Γ, s1 ∈ E(x, λ ), s2 ∈ E(y, λ ).
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(ii) Lipschitz continuous in the first argument if there exists a constant σ > 0 such
that

D̃(E(x, λ ), E(y, λ )) � σ‖x − y‖, ∀(x, y, λ ) ∈ H × H ×Γ.

(iii) continuous in the first argument if for any x ∈ X and given ε > 0 , there exists
a δ > 0 , such that for any y ∈ X and ‖ x − y ‖< δ , we have D̃(E(x, λ ), E(y, λ )) <
ε, ∀λ ∈ Γ.

DEFINITION 2.4. ([25, 26]) Let C, D : H × Γ −→ C(H ) be two set-valued
mappings and N : H × H × H × Γ −→ H be single-valued mapping.

(i) N is said to be Lipschitz continuous in the first argument if there exists a
constant L(N,1) > 0 such that

‖N(x, c, d, λ ) − N(y, c, d, λ )‖ � L(N,1)‖x − y‖,
∀(x, y, c, d, λ ) ∈ H × H × H × H ×Γ.

(ii) N is said to be relaxed Lipschitz continuous in the second argument with
respect to C if there exists a constant s > 0 such that

〈N(b, u, d, λ ) − N(b, v, d, λ ), x − y〉 � −s‖x − y‖2,

∀(b, d, x, y, λ ) ∈ H × H × H × H ×Γ, u ∈ C(x, λ ), v ∈ C(y, λ ).

(iii) N is said to be generalized pseudo-contractive in the third argument with
respect to D if there exists a constant t > 0 such that

〈N(b, c, u, λ ) − N(b, c, v, λ ), x − y〉 � t‖x − y‖2,

∀(b, c, x, y, λ ) ∈ H × H × H × H ×Γ, u ∈ D(x, λ ), v ∈ D(y, λ ).

In a similar way, we can define the Lipschitz continuity of N in the second and
third argument.

ASSUMPTION 2.1. There is a constant μ > 0 such that

‖RH,η
M(·,x,λ ),ρ(w) − RH,η

M(·,y,λ ),ρ(w)‖ � μ‖x − y‖, ∀(x, y, w, λ ) ∈ H × H × H ×Γ.

3. Main Results

THEOREM 3.1. Let η : H × H → H be a Lipschitz continuous operator with
constant σ . Let H : H → H be strongly η -monotone, Lipschitz continuous with
constants γ , LH , respectively. Let A, B, C, D, E, F, G, S : H × Γ −→ C(H ) be set-
valued mappings such that A, B, C, D, E, F, G and S are Lipschitz continuous in the
first argument with constants LA , LB , LC , LD , LE , LF , LG and LS , respectively,
and G be strongly monotone in the first argument with constant δ > 0 . Let N :
H × H × H × Γ −→ H be relaxed Lipschitz continuous in the second argument
with respect to C and generalized pseudo-contractive in the third argument with respect
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to D with constants s and t , respectively. N(·, ·, ·, ·) be Lipschitz continuous in the first,
second and third arguments with constants L(N,1) , L(N,2) and L(N,3) , respectively. Let
W : H ×H × Γ −→ H be Lipschitz continuous in thefirst and second argumentswith
constants L(W,1) and L(W,2) , respectively. Let m, n, i, j : H × Γ −→ H be Lipschitz
continuous in the first argument with constants Lm , Ln , Li and Lj , respectively.
Let M : H × H × Γ −→ 2H be a set-valued mapping such that for each given
(z, λ ) ∈ H × Γ , M(·, z, λ ) : H −→ 2H is an (H,η) -monotone mapping with
(G(H , λ )− m(H , λ )) ∩domM(·, z, λ ) 	= ∅ . Suppose Assumption 2.1 holds and
there exists a constant ρ > 0 such that

a =
√

1 − 2δ + L2
G + LmLS +

σ
γ

(1 + LH(LG + LmLS)) + μLF < 1,

p = L(N,2)LC + L(N,3)LD > L(N,1)LjLB + L(W,1)LnLE + L(W,2)LALi = q,

s > t +
γ q
σ

(1 − a) +

√
(p2 − q2)

[
1 − γ 2

σ2 (1 − a)2

]
, (3.1)

∣∣∣∣ρ − s − t − γ q
σ (1 − a)

p2 − q2

∣∣∣∣ <

√
[s − t − γ q

σ (1 − a)]2 − (p2 − q2)[1 − γ 2

σ2 (1 − a)2]

p2 − q2
.

Then, for each λ ∈ Γ , we have the following:
(1) the solution set S(λ ) of the (PCGSNMIQVIP) (2.1) is nonempty;
(2) S(λ ) is a closed set in H .

Proof. (1) Define a set-valued mapping K : H × Γ −→ 2H by

K(x, λ ) =
⋃

a∈A(i(x,λ ),λ ),b∈B(x,λ ),c∈C(x,λ ),d∈D(x,λ ),e∈E(x,λ ),f ∈F(x,λ ),g∈G(x,λ ),s∈S(x,λ )

[
x − g(λ )

+ m(s(λ ), λ ) + RH,η
M(·,f (λ ),λ ),ρ

(
H(g(λ ) − m(s(λ ), λ ))

− ρW(n(e(λ ), λ ), a(λ ), λ ) + ρN(j(b(λ ), λ ), c(λ ), d(λ ), λ ) + ρw
)]

,

∀(x, λ ) ∈ H ×Γ.

For any (x, λ ) ∈ H × Γ , since A(i(x, λ ), λ ) , B(x, λ ) , C(x, λ ) , D(x, λ ) , E(x, λ ) ,
F(x, λ ) , G(x, λ ) , S(x, λ ) ∈ C(H ) , m(·, λ ) and RH,η

M(·,f (λ ),λ ),ρ are Lipschitz con-
tinuous, we have K(x, λ ) ∈ C(H ) . Now for each fixed λ ∈ Γ , we prove that
K(x, λ ) is a set-valued contractive mapping. For any (x, λ ), (y, λ ) ∈ H ×Γ and
any u ∈ K(x, λ ) , there exist a1 ∈ A(i(x, λ ), λ ), b1 ∈ B(x, λ ), c1 ∈ C(x, λ ), d1 ∈
D(x, λ ), e1 ∈ E(x, λ ), f 1 ∈ F(x, λ ), g1 ∈ G(x, λ ), s1 ∈ S(x, λ ) such that

u = x − g1 + m(s1, λ ) + RH,η
M(·,f 1,λ ),ρ[H(g1 − m(s1, λ )) − ρW(n(e1, λ ), a1, λ )

+ ρN(j(b1, λ ), c1, d1, λ ) + ρw].

Since A(i(y, λ ), λ ) , B(y, λ ) , C(y, λ ) , D(y, λ ) , E(y, λ ) , F(y, λ ) , G(y, λ ) , S(y, λ ) ∈
C(H ) , so there exist a2 ∈ A(i(y, λ ), λ ), b2 ∈ B(y, λ ), c2 ∈ C(y, λ ), d2 ∈ D(y, λ ), e2 ∈
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E(y, λ ), f 2 ∈ F(y, λ ), g2 ∈ G(y, λ ), s2 ∈ S(y, λ ) such that

‖a1 − a2‖ � D̃(A(i(x, λ ), λ ), A(i(y, λ ), λ )),

‖b1 − b2‖ � D̃(B(x, λ ), B(y, λ )),
‖c1 − c2‖ � D̃(C(x, λ ), C(y, λ )), (3.2)
‖d1 − d2‖ � D̃(D(x, λ ), D(y, λ )),

‖e1 − e2‖ � D̃(E(x, λ ), E(y, λ )),
‖f 1 − f 2‖ � D̃(F(x, λ ), F(y, λ )),

‖g1 − g2‖ � D̃(G(x, λ ), G(y, λ )),
‖s1 − s2‖ � D̃(S(x, λ ), S(y, λ )).

Let

v = y − g2 + m(s2, λ ) + RH,η
M(·,f 2,λ ),ρ[H(g2 − m(s2, λ )) − ρW(n(e2, λ ), a2, λ )

+ ρN(j(b2, λ ), c2, d2, λ ) + ρw],

then we have v ∈ K(y, λ ) . It follows that

‖u − v‖ = ‖x − g1 + m(s1, λ ) + RH,η
M(·,f 1,λ ),ρ[H(g1 − m(s1, λ )) − ρW(n(e1, λ ), a1, λ )

+ ρN(j(b1, λ ), c1, d1, λ ) + ρw]

− [y − g2 + m(s2, λ ) + RH,η
M(·,f 2,λ ),ρ[H(g2 − m(s2, λ )) − ρW(n(e2, λ ), a2, λ )

+ ρN(j(b2, λ ), c2, d2, λ ) + ρw]]‖
� ‖x − g1 + m(s1, λ ) − (y − g2 + m(s2, λ ))‖

+ ‖RH,η
M(·,f 1,λ ),ρ[H(g1 − m(s1, λ )) − ρW(n(e1, λ ), a1, λ )

+ ρN(j(b1, λ ), c1, d1, λ ) + ρw] − RH,η
M(·,f 2,λ ),ρ[H(g2 − m(s2, λ ))

− ρW(n(e2, λ ), a2, λ ) + ρN(j(b2, λ ), c2, d2, λ ) + ρw]‖.
(3.3)

From the definition of RH,η
M(·,f ,λ ),ρ and Assumption 2.1, we have

‖RH,η
M(·,f 1,λ ),ρ[H(g1 − m(s1, λ )) − ρW(n(e1, λ ), a1, λ ) + ρN(j(b1, λ ), c1, d1, λ ) + ρw]

−RH,η
M(·,f 2,λ ),ρ[H(g2−m(s2, λ ))−ρW(n(e2, λ ), a2, λ )+ρN(j(b2, λ ), c2, d2, λ )+ρw]‖

� ‖RH,η
M(·,f 1,λ ),ρ[H(g1−m(s1, λ ))−ρW(n(e1, λ ), a1, λ )+ρN(j(b1, λ ), c1, d1, λ )+ρw]

−RH,η
M(·,f 1,λ ),ρ[H(g2−m(s2, λ ))−ρW(n(e2, λ ), a2, λ )+ρN(j(b2, λ ), c2, d2, λ )+ρw]‖

+‖RH,η
M(·,f 1,λ ),ρ[H(g2−m(s2, λ ))−ρW(n(e2, λ ), a2, λ )+ρN(j(b2, λ ), c2, d2, λ )+ρw]

−RH,η
M(·,f 2,λ ),ρ[H(g2−m(s2, λ ))−ρW(n(e2, λ ), a2, λ )+ρN(j(b2, λ ), c2, d2, λ )+ρw]‖

� σ
γ
‖H(g1 − m(s1, λ )) − ρW(n(e1, λ ), a1, λ ) + ρN(j(b1, λ ), c1, d1, λ ) + ρw

− [H(g2 − m(s2, λ )) − ρW(n(e2, λ ), a2, λ ) + ρN(j(b2, λ ), c2, d2, λ ) + ρw]‖
+ μ‖f 1 − f 2‖
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� σ
γ
‖x − y − [H(g1 − m(s1, λ )) − H(g2 − m(s2, λ ))]‖

+
σ
γ
‖x − y + ρ[N(j(b1, λ ), c1, d1, λ ) − N(j(b2, λ ), c2, d2, λ )]‖

+
σρ
γ

‖W(n(e1, λ ), a1, λ ) − W(n(e2, λ ), a2, λ )‖ + μ‖f 1 − f 2‖

� σ
γ

(‖x − y‖ + ‖H(g1 − m(s1, λ )) − H(g2 − m(s2, λ ))‖)

+
σ
γ
‖x − y + ρ[N(j(b1, λ ), c1, d1, λ ) − N(j(b1, λ ), c2, d2, λ )]‖

+
σρ
γ

‖N(j(b1, λ ), c2, d2, λ ) − N(j(b2, λ ), c2, d2, λ )‖

+
σρ
γ

‖W(n(e1, λ ), a1, λ ) − W(n(e2, λ ), a2, λ )‖ + μ‖f 1 − f 2‖. (3.4)

From (3.3) and (3.4), we have

‖u − v‖ � ‖x − y − (g1 − g2)‖ + ‖m(s1, λ ) − m(s2, λ )‖
+

σ
γ

(‖x − y‖ + ‖H(g1 − m(s1, λ )) − H(g2 − m(s2, λ ))‖)

+
σ
γ
‖x − y + ρ[N(j(b1, λ ), c1, d1, λ ) − N(j(b1, λ ), c2, d2, λ )]‖

+
σρ
γ

‖N(j(b1, λ ), c2, d2, λ ) − N(j(b2, λ ), c2, d2, λ )‖

+
σρ
γ

‖W(n(e1, λ ), a1, λ ) − W(n(e2, λ ), a2, λ )‖ + μ‖f 1 − f 2‖.
(3.5)

Since G is strongly monotone and Lipschitz continuous in the first argument, we have

‖x − y − (g1 − g2)‖2 = ‖x − y‖2 − 2〈 g1 − g2, x − y〉 + ‖g1 − g2‖2

� ‖x − y‖2 − 2δ‖x − y‖2 + [D̃(G(x, λ ), G(y, λ ))]2

� ‖x − y‖2 − 2δ‖x − y‖2 + L2
G‖x − y‖2

= (1 − 2δ + L2
G)‖x − y‖2. (3.6)

By the Lipschitz continuity of m and S in the first argument and the Lipschitz continuity
of H , we obtain

‖m(s1, λ ) − m(s2, λ )‖ � Lm‖s1 − s2‖ � LmD̃(S(x, λ ), S(y, λ )) � LmLS‖x − y‖. (3.7)

And

‖H(g1 − m(s1, λ )) − H(g2 − m(s2, λ ))‖ � LH‖g1 − m(s1, λ ) − [g2 − m(s2, λ )]‖
� LH(‖g1 − g2‖ + ‖m(s1, λ ) − m(s2, λ )‖) � LH(‖g1 − g2‖ + Lm‖s1 − s2‖)
� LH(D̃(G(x, λ ), G(y, λ )) + LmD̃(S(x, λ ), S(y, λ ))) � LH(LG + LmLS).

(3.8)
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Since C and D are Lipschitz continuous in the first argument, N(·, ·, ·, ·) is Lipschitz
continuous and relaxed Lipschitz continuous with respect to C in the second argument,
and N(·, ·, ·, ·) is Lipschitz continuous and generalized pseudo-contractivewith respect
to D in the third argument, we have

‖x − y + ρ[N(j(b1, λ ), c1, d1, λ ) − N(j(b1, λ ), c2, d2, λ )]‖2

= ‖x − y‖2 + 2ρ〈N(j(b1, λ ), c1, d1, λ ) − N(j(b1, λ ), c2, d2, λ ), x − y〉
+ ρ2‖N(j(b1, λ ), c1, d1, λ ) − N(j(b1, λ ), c2, d2, λ )‖2

� ‖x − y‖2 + 2ρ〈N(j(b1, λ ), c1, d1, λ ) − N(j(b1, λ ), c2, d1, λ ), x − y〉
+ 2ρ〈N(j(b1, λ ), c2, d1, λ ) − N(j(b1, λ ), c2, d2, λ ), x − y〉
+ ρ2(‖N(j(b1, λ ), c1, d1, λ ) − N(j(b1, λ ), c2, d1, λ )‖
+ ‖N(j(b1, λ ), c2, d1, λ ) − N(j(b1, λ ), c2, d2, λ )‖)2

� ‖x − y‖2 − 2ρs‖x− y‖2 + 2ρt‖x − y‖2 + ρ2(L(N,2)LC + L(N,3)LD)2‖x − y‖2

= [1 − 2ρ(s − t) + ρ2(L(N,2)LC + L(N,3)LD)2]‖x − y‖2. (3.9)

Since B and j are Lipschitz continuous in the first argument, N(·, ·, ·, ·) is Lipschitz
continuous in the first argument, we have

‖N(j(b1, λ ), c2, d2, λ ) − N(j(b2, λ ), c2, d2, λ )‖
� L(N,1)‖j(b1, λ ) − j(b2, λ )‖ � L(N,1)Lj‖b1 − b2‖
� L(N,1)LjD̃(B(x, λ ), B(y, λ )) � L(N,1)LjLB‖x − y‖.

(3.10)

Since A , E , n , and i are Lipschitz continuous in the first argument, W(·, ·, ·) is
Lipschitz continuous in the first and second arguments, we have

‖W(n(e1, λ ), a1, λ ) − W(n(e2, λ ), a2, λ )‖
� ‖W(n(e1, λ ), a1, λ ) − W(n(e2, λ ), a1, λ )‖
+ ‖W(n(e2, λ ), a1, λ ) − W(n(e2, λ ), a2, λ )‖
� L(W,1)‖n(e1, λ ) − n(e2, λ )‖ + L(W,2)‖a1 − a2‖
� L(W,1)Ln‖e1 − e2‖ + L(W,2)D̃(A(i(x, λ ), λ ), A(i(y, λ ), λ ))

� L(W,1)LnD̃(E(x, λ ), E(y, λ )) + L(W,2)LA‖i(x, λ ) − i(y, λ )‖
� L(W,1)LnLE‖x − y‖ + L(W,2)LALi‖x − y‖
= (L(W,1)LnLE + L(W,2)LALi)‖x − y‖.

(3.11)

Since F is Lipschitz continuous in the first argument, we have

‖f 1 − f 2‖ � LF‖x − y‖. (3.12)

Combining (3.5)–(3.12), we obtain

‖u − v‖ � [
√

1 − 2δ + L2
G + LmLS +

σ
γ

(1 + LH(LG + LmLS))

+
σ
γ

√
1 − 2ρ(s − t) + ρ2(L(N,2)LC + L(N,3)LD)2 +

σρ
γ

(L(N,1)LjLB
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+ L(W,1)LnLE + L(W,2)LALi) + μLF]‖x − y‖
= (a + t(ρ))‖x − y‖ = θ‖x − y‖,

where

a =
√

1 − 2δ + L2
G + LmLS +

σ
γ

(1 + LH(LG + LmLS)) + μLF,

t(ρ) =
σ
γ

[
√

1 − 2ρ(s − t) + ρ2(L(N,2)LC + L(N,3)LD)2

+ ρ(L(N,1)LjLB + L(W,1)LnLE + L(W,2)LALi)],

and θ = a + t(ρ) .
It follows from condition (3.1) that θ < 1 . Then, we have

d(u, K(y, λ )) = inf
v∈K(y,λ )

‖u − v‖ � θ‖x − y‖.

Since u ∈ K(x, λ ) is arbitrary, we have

sup
u∈K(x,λ )

d(u, K(y, λ )) � θ‖x − y‖.

By using same argument, we can prove

sup
v∈K(y,λ )

d(K(x, λ ), v) � θ‖x − y‖.

By the definition of the Hausdorffmetric D̃ on C(H ) , we obtain that for all (x, y, λ ) ∈
H × H ×Γ , D̃(K(x, λ ), K(y, λ )) � θ‖x − y‖ . That is K(x, λ ) is a set-valued
contractive mapping which is uniform with respect to λ ∈ Γ . By a fixed-point
theorem of Nadler [28], for each λ ∈ Γ , K(x, λ ) has a fixed point x(λ ) ∈ H , i.e.,
x(λ ) ∈ K(x, λ ) . By the definition of K and Lemma 2.3, x(λ ) ∈ S(λ ) is a solution of
the problem (2.1) and so S(λ ) 	= ∅ for each λ ∈ Γ .

(2) For each λ ∈ Γ , let {xn} ⊂ S(λ ) and xn −→ x0 as n −→ ∞ . Then we have
xn ∈ K(xn, λ ) for all n = 1, 2, · · · . By the proof of Conclusion (1), we have

D̃(K(xn, λ ), K(x0, λ )) � θ‖xn − x0‖.
It follows that

d(x0, K(x0, λ )) � ‖xn − x0‖ + d(xn, K(x0, λ ))
� ‖xn − x0‖ + sup

u∈K(xn,λ )
d(u, K(x0, λ ))

� ‖xn − x0‖ + D̃(K(xn, λ ), K(x0, λ )) � (1 + θ)‖xn − x0‖ −→ 0.

as n −→ ∞ .
Hence, we have x0 ∈ K(x0, λ ) and x0 ∈ S(λ ) . Therefore, S(λ ) is a closed set in

H . �

REMARK 3.1. It is easily to know that δ � LG .
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THEOREM 3.2. Under the hypotheses of Theorem 3.1, further assume
(i) For any x ∈ H , A(x, λ ) , B(x, λ ) , C(x, λ ) , D(x, λ ) , E(x, λ ) , F(x, λ ) ,

G(x, λ ) , S(x, λ ) , m(x, λ ) , n(x, λ ) , i(x, λ ) , and j(x, λ ) are Lipschitz continuous(or
continuous) in the second argumentwith constants �A, �B, �C, �D, �E, �F, �G, �S, �m, �n, �i,
and �j , respectively;

(ii) For any u, v, w, p, q, f , z ∈ H , λ �−→ W(u, v, λ ) , λ �−→ N(w, p, , q, λ ) ,
λ �−→ RH,η

M(·,f ,λ ),ρ(z) are Lipschitz continuous(or continuous) with Lipschitz constants
�W , �N , �R , respectively.

Then the solution set S(λ ) of the (PCGSNMIQVIP) (2.1) is a Lipschitz continuous
(or continuous) mapping from Γ to H .

Proof. For any λ , λ ∈ Γ , it follows from Theorem 3.1 that S(λ ) and S(λ) are
both nonempty closed subset. By the proof of Theorem 3.1, K(x, λ ), K(x, λ ) are both
set-valued contractive mappings with same contractive constant θ ∈ (0, 1) . By Lemma
2.4, we have

D̃(S(λ ), S(λ)) � 1
1 − θ

sup
x∈H

D̃(K(x, λ ), K(x, λ )). (3.13)

Taking any u ∈ K(x, λ ) , there exist a(λ ) ∈ A(i(x, λ ), λ ), b(λ ) ∈ B(x, λ ), c(λ ) ∈
C(x, λ ), d(λ ) ∈ D(x, λ ), e(λ ) ∈ E(x, λ ), f (λ ) ∈ F(x, λ ), g(λ ) ∈ G(x, λ ), s(λ ) ∈
S(x, λ ) such that

u = x − g(λ ) + m(s(λ ), λ ) + RH,η
M(·,f (λ ),λ ),ρ[H(g(λ ) − m(s(λ ), λ ))

− ρW(n(e(λ ), λ ), a(λ ), λ ) + ρN(j(b(λ ), λ ), c(λ ), d(λ ), λ ) + ρw].
(3.14)

It is easy to see that there exist a(λ ) ∈ A(i(x, λ ), λ ) , b(λ) ∈ B(x, λ ) , c(λ ) ∈ C(x, λ ) ,
d(λ ) ∈ D(x, λ ) , e(λ ) ∈ E(x, λ) , f (λ ) ∈ F(x, λ) , g(λ ) ∈ G(x, λ ) , s(λ ) ∈ S(x, λ)
such that

‖a(λ ) − a(λ)‖ � D̃(A(i(x, λ ), λ ), A(i(x, λ ), λ )),

‖b(λ ) − b(λ)‖ � D̃(B(x, λ ), B(x, λ)),

‖c(λ ) − c(λ )‖ � D̃(C(x, λ ), C(x, λ )),

‖d(λ ) − d(λ )‖ � D̃(D(x, λ ), D(x, λ )), (3.15)

‖e(λ ) − e(λ )‖ � D̃(E(x, λ ), E(x, λ)),

‖f (λ ) − f (λ )‖ � D̃(F(x, λ ), F(x, λ)),

‖g(λ ) − g(λ)‖ � D̃(G(x, λ ), G(x, λ )),

‖s(λ ) − s(λ )‖ � D̃(S(x, λ ), S(x, λ)).

Let

v = x − g(λ ) + m(s(λ ), λ ) + RH,η
M(·,f (λ ),λ),ρ

[H(g(λ) − m(s(λ ), λ ))

− ρW(n(e(λ ), λ ), a(λ ), λ) + ρN(j(b(λ ), λ ), c(λ ), d(λ ), λ ) + ρw],
(3.16)

then v ∈ K(x, λ ) .
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It follows that

‖u − v‖ = ‖x − g(λ ) + m(s(λ ), λ ) + RH,η
M(·,f (λ ),λ ),ρ[H(g(λ ) − m(s(λ ), λ ))

− ρW(n(e(λ ), λ ), a(λ ), λ ) + ρN(j(b(λ ), λ ), c(λ ), d(λ ), λ ) + ρw]

− (x − g(λ) + m(s(λ ), λ ) + RH,η
M(·,f (λ ),λ ),ρ

[H(g(λ ) − m(s(λ ), λ ))

− ρW(n(e(λ), λ ), a(λ ), λ ) + ρN(j(b(λ ), λ ), c(λ ), d(λ ), λ) + ρw])‖
� ‖g(λ ) − g(λ)‖ + ‖m(s(λ ), λ ) − m(s(λ ), λ)‖

+ ‖RH,η
M(·,f (λ ),λ ),ρ[H(g(λ ) − m(s(λ ), λ )) − ρW(n(e(λ ), λ ), a(λ ), λ )

+ ρN(j(b(λ ), λ ), c(λ ), d(λ ), λ )+ρw]−RH,η
M(·,f (λ ),λ ),ρ

[H(g(λ )−m(s(λ ), λ ))

− ρW(n(e(λ), λ ), a(λ ), λ ) + ρN(j(b(λ ), λ ), c(λ ), d(λ ), λ) + ρw]‖
� ‖g(λ ) − g(λ)‖ + ‖m(s(λ ), λ ) − m(s(λ ), λ)‖

+ ‖RH,η
M(·,f (λ ),λ ),ρ[H(g(λ ) − m(s(λ ), λ )) − ρW(n(e(λ ), λ ), a(λ ), λ )

+ ρN(j(b(λ ), λ ), c(λ ), d(λ ), λ ) + ρw]

− RH,η
M(·,f (λ ),λ ),ρ[H(g(λ) − m(s(λ ), λ )) − ρW(n(e(λ), λ ), a(λ ), λ )

+ ρN(j(b(λ ), λ ), c(λ ), d(λ ), λ) + ρw]‖
+ ‖RH,η

M(·,f (λ ),λ ),ρ[H(g(λ ) − m(s(λ ), λ )) − ρW(n(e(λ ), λ ), a(λ), λ )

+ ρN(j(b(λ ), λ ), c(λ ), d(λ ), λ) + ρw]

− RH,η
M(·,f (λ ),λ ),ρ

[H(g(λ) − m(s(λ ), λ )) − ρW(n(e(λ), λ ), a(λ ), λ )

+ ρN(j(b(λ ), λ ), c(λ ), d(λ ), λ) + ρw]‖
+ ‖RH,η

M(·,f (λ),λ ),ρ
[H(g(λ ) − m(s(λ ), λ ))

− ρW(n(e(λ), λ ), a(λ ), λ ) + ρN(j(b(λ ), λ ), c(λ ), d(λ ), λ) + ρw]

− RH,η
M(·,f (λ ),λ ),ρ

[H(g(λ) − m(s(λ ), λ )) − ρW(n(e(λ), λ ), a(λ ), λ )

+ ρN(j(b(λ ), λ ), c(λ ), d(λ ), λ) + ρw]‖
� ‖g(λ ) − g(λ)‖ + ‖m(s(λ ), λ ) − m(s(λ ), λ)‖

+
σ
γ
‖H(g(λ ) − m(s(λ ), λ )) − ρW(n(e(λ ), λ ), a(λ ), λ )

+ ρN(j(b(λ ), λ ), c(λ ), d(λ ), λ ) + ρw − [H(g(λ) − m(s(λ ), λ ))

− ρW(n(e(λ), λ ), a(λ ), λ ) + ρN(j(b(λ ), λ ), c(λ ), d(λ ), λ) + ρw]‖
+ μ‖f (λ ) − f (λ )‖ + �R‖λ − λ‖

� ‖g(λ ) − g(λ)‖ + ‖m(s(λ ), λ ) − m(s(λ ), λ)‖
+

σ
γ
‖H(g(λ ) − m(s(λ ), λ )) − H(g(λ) − m(s(λ ), λ ))‖

+
σρ
γ

‖W(n(e(λ ), λ ), a(λ ), λ ) − W(n(e(λ ), λ ), a(λ ), λ)‖
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+
σρ
γ

‖N(j(b(λ ), λ ), c(λ ), d(λ ), λ ) − N(j(b(λ ), λ ), c(λ ), d(λ ), λ )‖

+ μ‖f (λ ) − f (λ )‖ + �R‖λ − λ‖
� (1 +

σLH

γ
)(‖g(λ ) − g(λ )‖ + ‖m(s(λ ), λ ) − m(s(λ ), λ )‖)

+
σρ
γ

‖W(n(e(λ ), λ ), a(λ ), λ ) − W(n(e(λ ), λ ), a(λ ), λ)‖

+
σρ
γ

‖N(j(b(λ ), λ ), c(λ ), d(λ ), λ ) − N(j(b(λ ), λ ), c(λ ), d(λ ), λ )‖

+ μ‖f (λ ) − f (λ )‖ + �R‖λ − λ‖. (3.17)

By the Lipschitz continuity of G in the second argument, we have

‖g(λ ) − g(λ )‖ � D̃(G(x, λ ), G(x, λ )) � �G‖λ − λ‖. (3.18)

By the Lipschitz continuity of m in the first and second arguments and the Lipschitz
continuity of S in the second argument, we have

‖m(s(λ ), λ ) − m(s(λ ), λ )‖
� ‖m(s(λ ), λ ) − m(s(λ ), λ )‖ + ‖m(s(λ ), λ ) − m(s(λ ), λ )‖
� Lm‖s(λ ) − s(λ )‖ + �m‖λ − λ‖ � LmD̃(S(x, λ ), S(x, λ)) + �m‖λ − λ‖
� Lm�S‖λ − λ‖ + �m‖λ − λ‖ � (Lm�S + �m)‖λ − λ‖.

(3.19)
By the Lipschitz continuity of W in the first, second, and third arguments, the Lipschitz
continuity of n and A in the first and second arguments, and the Lipschitz continuity
of E and i in the second argument, we have

‖W(n(e(λ ), λ ), a(λ ), λ )− W(n(e(λ ), λ), a(λ ), λ )‖
� ‖W(n(e(λ ), λ ), a(λ ), λ ) − W(n(e(λ ), λ ), a(λ ), λ )‖

+ ‖W(n(e(λ ), λ ), a(λ ), λ ) − W(n(e(λ ), λ ), a(λ ), λ )‖
+ ‖W(n(e(λ ), λ ), a(λ), λ ) − W(n(e(λ ), λ ), a(λ ), λ )‖

� L(W,1)‖n(e(λ ), λ ) − n(e(λ), λ )‖ + L(W,2)‖a(λ ) − a(λ )‖ + �W‖λ − λ‖
� L(W,1)(Ln�E + �n)‖λ − λ‖ + L(W,2)(LA�i + �A)‖λ − λ‖ + �W‖λ − λ‖
� [L(W,1)(Ln�E + �n) + L(W,2)(LA�i + �A) + �W ]‖λ − λ‖.

(3.20)
By the Lipschitz continuity of N in the first, second, third and fourth arguments, the
Lipschitz continuity of j in the first and second arguments, and the Lipschitz continuity
of B, C, D in the second argument, we have

‖N(j(b(λ ), λ ), c(λ ), d(λ ), λ ) − N(j(b(λ ), λ ), c(λ ), d(λ), λ )‖
� [L(N,1)(Lj�B + �j) + L(N,2)�C + L(N,3)�D + �N ]‖λ − λ‖. (3.21)
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By the Lipschitz continuity of F in the second argument, we have

‖f (λ ) − f (λ )‖ � D̃(F(x, λ ), F(x, λ)) � �F‖λ − λ‖. (3.22)

In view of (3.17) − (3.22) , we obtain that

‖u − v‖ � Λ‖λ − λ‖,
where

Λ =
(

1 +
σLH

γ

)
(�G + Lm�S + �m) +

σρ
γ

[L(W,1)(Ln�E + �n) + L(W,2)(LA�i + �A) + �W

+ L(N,1)(Lj�B + �j) + L(N,2)�C + L(N,3)�D + �N ] + μ�F + �R.

Then, we obtain
sup

u∈K(x,λ )
d(u, K(x, λ)) � Λ‖λ − λ‖.

By using a similar argument as above, we have

sup
v∈K(x,λ)

d(K(x, λ ), v) � Λ‖λ − λ‖.

It follows that
D̃(K(x, λ ), K(x, λ )) � Λ‖λ − λ‖.

By Lemma 2.4,

D̃(S(λ ), S(λ)) � Λ
1 − θ

‖λ − λ‖.
This proves that the solution set S(λ ) of (PCGSNMIQVIP) (2.1) is Lipschitz continu-
ous in λ ∈ Γ . If, each mapping in Condition (i) and (ii) is assumed to be continuous in
λ ∈ Γ , then by similar argument as above, we can show that S(λ ) is also continuous
in λ ∈ Γ . This completes the proof. �

REMARK 3.2. Theorems 3.1 and 3.2 extend, improve and unify the corresponding
results in [16–31].
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