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DIFFERENTIAL INEQUALITY CONDITIONS FOR DOMINANCE

BETWEEN CONTINUOUS ARCHIMEDEAN T–NORMS

SUSANNE SAMINGER-PLATZ, BERNARD DE BAETS AND HANS DE MEYER

(communicated by N. Elezović)

Abstract. Dominance between triangular norms (t-norms) is a versatile relationship. For con-
tinuous Archimedean t-norms, dominance can be verified by checking one of many sufficient
conditions derived from a generalization of the Mulholland inequality. These conditions pertain
to various convexity properties of compositions of additive generators and their inverses. In this
paper, assuming differentiability of these additive generators, we propose equivalent sufficient
conditions that can be expressed as inequalities involving derivatives of the additive generators,
avoiding the need of composing them. We demonstrate the powerfulness of the results by the
straightforward rediscovery of dominance relationships in the Schweizer-Sklar t-norm family,
as well as by unveiling some formerly unknown dominance relationships in the Sugeno-Weber
t-norm family. Finally, we illustrate that the results can also be applied to members of different
parametric families of t-norm.

1. Introduction

The dominance relation was originally introduced in the framework of probabilis-
tic metric spaces [23] and was soon abstracted to operations on a partially ordered
set [21]. The dominance relation, in particular between t-norms, plays a profound
role in various topics, such as the construction of Cartesian products of probabilistic
metric and normed spaces [5, 21, 23], the construction of many-valued equivalence
relations [2, 3, 26] and many-valued order relations [1], and in the preservation of
various properties during (dis-)aggregation processes in flexible querying, preference
modelling and computer-assisted assessment [2, 4, 14, 17]. These applications insti-
gated the study of the dominance relation in the broader context of aggregation func-
tions [12, 14, 17].

Additional to these application aspects, the dominance relation is an interesting
mathematical notion per se. Because of the common neutral element, dominance con-
stitutes a reflexive and antisymmetric relation on the class of t-norms. Since coun-
terexamples for its transitivity were not readily found, it remained an intriguing open
problem [8, 19, 21, 22, 25] for more than 20 years whether or not it was an order rela-
tion. Only recently the question was answered to the negative [18, 20]. However, due
to its relevance in applications, it is still of interest to determine subclasses of t-norms
on which the dominance relation establishes an order relation. Of particular impor-
tance are continuous Archimedean t-norms, as they are the basic elements of which
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all continuous t-norms are composed. Moreover, they can be represented by means of
continuous additive generators.

It was shown in [16], see also [13, 24, 25] for earlier results dealing with strict
t-norms only, that dominance between continuous Archimedean t-norms can be equiv-
alently expressed as a functional inequality involving compositions of the additive gen-
erators (and their inverses) of the corresponding t-norms. This inequality, being a gen-
eralization of the Minkowski inequality, is often referred to as the Mulholland inequal-
ity. Although sufficient and necessary conditions for its fulfilment are already known,
see [13, 16, 24, 25], and can be visualized easily for two t-norms, they have hardly ever
been used for proving resp. disproving dominance between two arbitrary members of a
family or families of t-norms. The aim of the present contribution is to establish easy-
to-check conditions that involve directly the additive generators and their derivatives
(provided they exist).

After a short introduction on t-norms, we summarize the known sufficient and
necessary conditions for dominance. Subsequently, we derive new differential condi-
tions for dominance between continuous Archimedean t-norms and demonstrate their
strength by applying them to some parametric families of triangular norms leading to
new results on dominance between two continuous Archimedean t-norms.

2. Triangular norms and the dominance relation

We briefly summarize some basic properties of t-norms for a thorough understand-
ing of this paper (for further details see, e.g., [7, 8, 9, 10, 11, 15, 17, 18]).

DEFINITION 1. A t-norm T : [0,1]2 → [0,1] is a binary operation on the unit
interval that is commutative, associative, increasing and has 1 as neutral element.

Well-known examples of t-norms are the minimum TM , the product TP , the Łuka-
siewicz t-norm TL and the drastic product TD , defined by TM(u,v)= min(u,v) , TP(u,v)=
u · v , TL(u,v) = max(u+ v−1,0) , and

TD(u,v) =

{
min(u,v), if max(u,v) = 1,

0, otherwise.

Since t-norms are just functions from the unit square to the unit interval, their
comparison is done pointwisely: T1 � T2 if T1(u,v) � T2(u,v) for all u,v ∈ [0,1] ,
expressed as “T1 is weaker than T2 ” or “T2 is stronger than T1 ”. The minimum TM
is the strongest of all t-norms, the drastic product TD is the weakest of all t-norms.
Furthermore, it holds that TP � TL .

Just as triangular norms, the dominance relation finds its origin in the field of prob-
abilistic metric spaces [21, 23]. It was originally introduced for associative operations
(with common neutral element) on a partially ordered set [21], and has been further
investigated for t-norms [15, 19, 20, 25] and aggregation functions [14, 17]. We state
the definition for t-norms only.



DIFFERENTIAL CONDITIONS FOR DOMINANCE BETWEEN CONT. ARCH. T-NORMS 193

DEFINITION 2. Consider two t-norms T1 and T2 . We say that T1 dominates T2

(or T2 is dominated by T1 ), denoted by T1 � T2 , if for all x,y,u,v ∈ [0,1] it holds that

T1(T2(x,y),T2(u,v)) � T2(T1(x,u),T1(y,v)) . (1)

Note that every t-norm is dominated by itself and by TM ; moreover, it dominates
TD . Since all t-norms have neutral element 1, dominance between two t-norms implies
their comparability: T1 � T2 implies T1 � T2 . The converse does not hold, not even
for strict t-norms [8]. Due to the induced comparability it also follows that dominance
is an antisymmetric relation on the class of t-norms.

DEFINITION 3. A t-norm T is called Archimedean if for all u,v ∈ ]0,1[ there
exists an n ∈ N such that

T (u, . . . ,u︸ ︷︷ ︸
n times

) < v .

DEFINITION 4.

(i) A t-norm T is called strict if it is continuous and strictly monotone, i.e., for all
u,v,w ∈ [0,1] it holds that

T (u,v) < T (u,w) whenever u > 0 and v < w .

(ii) A t-norm T is called nilpotent if it is continuous and if each u ∈ ]0,1[ is a nilpo-
tent element of T , i.e., there exists some n ∈ N such that

T (u, . . . ,u︸ ︷︷ ︸
n times

) = 0 .

A continuous t-norm T is Archimedean if and only if for all u∈ ]0,1[ it holds that
T (u,u) < u . The class of continuous Archimedean t-norms can be partitioned into two
disjoint subclasses: the class of strict t-norms and the class of nilpotent t-norms. The
product TP is strict, whereas the Łukasiewicz t-norm TL is nilpotent.

Note that for a strict t-norm T it holds that T (u,v)> 0 for all u,v∈ ]0,1] , while for
a nilpotent t-norm T it holds that for every u ∈ ]0,1[ there exists some v ∈ ]0,1[ such
that T (u,v) = 0 (each u ∈ ]0,1[ is a so-called zero divisor). Therefore, for a nilpotent
t-norm T1 and a strict t-norm T2 it can never hold that T1 � T2 and, as a consequence,
never that T1 � T2 .

Of particular interest in the discussion of continuous Archimedean t-norms and
dominance between them is the notion of an additive generator.

DEFINITION 5. An additive generator of a t-norm T is a strictly decreasing func-
tion t : [0,1]→ [0,∞] which is right-continuous in 0 and satisfies t(1) = 0 such that for
all u,v ∈ [0,1] it holds that

T (u,v) = t(−1)(t(u)+ t(v)),

with
t(−1)(u) = t−1(min(t(0),u))

the pseudo-inverse of the decreasing function t .
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An additive generator is uniquely determined up to a positive multiplicative con-
stant. A t-norm T with additive generator t is continuous if and only if t is continuous.
Continuous Archimedean t-norms are exactly those t-norms with a continuous additive
generator. Any additive generator of a strict t-norm satisfies t(0) = ∞ , while that of
a nilpotent t-norm satisfies t(0) < ∞ . In the case of strict t-norms, the pseudo-inverse
t(−1) of an additive generator t coincides with its standard inverse t−1 . In any case,
the following relationships hold between an additive generator t and its pseudo-inverse
t(−1)

t ◦ t(−1)|Ran(t) = idRan(t) and t(−1) ◦ t = id[0,1] .

3. The generalized Mulholland inequality and related conditions

The dominance relation between two continuous Archimedean t-norms can be ex-
pressed in terms of their generators. This was shown for strict t-norms in [25] and was
generalized as follows in [16].

PROPOSITION 1. Consider two continuous Archimedean t-norms T1 and T2 with
additive generators t1 and t2 . Then T1 dominates T2 if and only if the function h =
t1 ◦ t(−1)

2 : [0,∞] → [0,∞] fulfills for all a,b,c,d ∈ [0,t2(0)] the inequality

h(−1)(h(a)+h(c))+h(−1)(h(b)+h(d)) � h(−1)(h(a+b)+h(c+d)) , (2)

with h(−1) = t2 ◦ t(−1)
1 : [0,∞] → [0,∞] the pseudo-inverse of the increasing function h.

Since (1) is trivially fulfilled for arbitrary t-norms T1 and T2 as soon as 0 appears
among the arguments, it suffices to prove that (2) holds for all a,b,c,d ∈ [0,t2(0)[ in
order to show dominance between the continuous Archimedean t-norms considered.

In case some function f : [0,∞] → [0,∞] fulfills (2) for all a,b,c,d ∈ [0,∞] , we
say that it fulfills the generalized Mulholland inequality. In [16] (see also [6, 13, 25]),
sufficient and necessary conditions for the generalized Mulholland inequality to hold
for a function f : [0,∞] → [0,∞] , which is continuous and strictly increasing on some
subdomain [0, t] , with t ∈ [0,∞[ , and for which f (0) = 0 holds, have been investigated.
Properties such as the convexity, the geometric convexity, and the logarithmic convexity
of a function showed up to be most relevant.

DEFINITION 6. A function f : [0,∞[ → [0,∞[ is called geometric convex (geo-
convex for short) on ]0,t[ , with t ∈ ]0,∞[ , if for all x,y ∈ ]0,t[ it holds that

f (
√

xy) �
√

f (x) f (y) .

It is called logarithmic convex (log-convex for short) on ]0,t[ if the function
log◦ f : [0,∞[ → [−∞,∞[ is convex on ]0,t[ .

For a continuous function f such that f (]0,∞[)⊆ ]0,∞[ , its geo-convexity on ]0, t[
is equivalent to the convexity of the function log◦ f ◦ exp on ]−∞, log(t)[ . Clearly, if
f (0) = 0, then the geo-convexity holds also on [0,t[ . Further, if f is increasing, then
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its log-convexity implies its geo-convexity. Moreover, the relationship between the
geo-convexity of a function and that of its derivative can be expressed in the following
way.

LEMMA 2. [6, 16] Consider a function f : ]0,∞[ → ]0,∞[ with limx→0 f (x) = 0
and such that f is differentiable on [0,t[ , with t ∈ ]0,∞[ , and f ′(x) > 0 for all x∈ ]0,t[ .
If f ′ is geo-convex on ]0,t[ , then so is f .

Applying these relationships and the results obtained in [16] to the dominance
relation between continuous Archimedean t-norms we can state the following:

PROPOSITION 3. [16] Consider two continuous Archimedean t-norms T1 and T2

with additive generators t1 and t2 . If T1 dominates T2 , then the function h = t1◦t(−1)
2 :

[0,∞] → [0,∞] is convex on ]0,t2(0)[ .

PROPOSITION 4. [16] Consider two continuous Archimedean t-norms T1 and T2

with additive generators t1 and t2 . If the function h = t1 ◦ t(−1)
2 : [0,∞] → [0,∞] is

convex on ]0, t2(0)[ and log- or geo-convex on ]0,t2(0)[ , then h fulfills (2) for all
a,b,c,d ∈ [0, t2(0)] , i.e., T1 dominates T2 .

PROPOSITION 5. [16] Consider two continuous Archimedean t-norms T1 and T2

with additive generators t1 and t2 . If the function h = t1 ◦ t(−1)
2 : [0,∞] → [0,∞] is

differentiable and convex on ]0,t2(0)[ , and h′ is log- or geo-convex on ]0,t2(0)[ , then
h fulfills (2) for all a,b,c,d ∈ [0,t2(0)] , i.e., T1 dominates T2 .

The relationships between the above sufficient conditions for dominance are sum-
marized in Fig. 1.

Consider two continuous Archimedean t-norms T1 and T2 with additive gen-
erators t1 and t2 . If the function

h = t1 ◦ t(−1)
2 : [0,∞] → [0,∞]

is convex on ]0,t2(0)[ and . . .

h′ exists and h′ exists and
h′ is log-convex on ]0,t2(0)[ ⇒ h′ is geo-convex on ]0,t2(0)[

⇓
h is log-convex on ]0,t2(0)[ ⇒ h is geo-convex on ]0,t2(0)[

⇓
T1 � T2

Figure 1. Sufficient conditions for dominance between two continuous
Archimedean t-norms T1 and T2
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Corresponding conditions for the subclass of strict t-norms have already been discussed
in [25]. Although these sufficient conditions can be visualized easily, concrete proofs
might become cumbersome, in particular for two members of a parametric family, be-
cause h is a compound function. In fact, the conditions mentioned above have never
been used for (dis-)proving dominance apart from one particular case: for proving dom-
inance between members of a family of t-norms whose additive generators are powers
of some basic additive generator. In this case the generalized Mulholland inequality
turns into the Minkowski inequality whose solution is well known (see [8] for further
details).

However, if the additive generators have derivatives of sufficiently high order, the
sufficient conditions expressed as properties of h can be reformulated as equivalent
(differential) conditions on the corresponding additive generators. As such we can pro-
vide localized conditions that are equivalent to the global ones and allow to (dis-)prove
dominance between two continuous Archimedean t-norms.

4. Differential inequality conditions

Throughout this section, T1 and T2 are two continuous Archimedean t-norms with
continuous additive generators t1 and t2 . Then the function

h = t1 ◦ t(−1)
2 : [0,∞] → [0,∞]

is continuous and strictly increasing on ]0,t2(0)[ , h(0)= 0 and h(]0,t2(0)[)⊆ ]0,t1(0)[ .
Further, we assume that t1 and t2 are sufficiently often (i.e., once, twice or three times)
differentiable. It then holds in particular that t ′1(u) < 0 and t ′2(u) < 0 for all u ∈ ]0,1[ .
For every x∈ ]0, t2(0)[ , there exists a unique u∈ ]0,1[ such that x = t2(u) and t−1

2 (x) =
u . The identity

d
dxx = d

dx t2(t
−1
2 (x)) = dt2(u)

du

∣∣∣
u=t−1

2 (x)
· dt−1

2 (x)
dx = 1

allows to express the derivatives of h at x in terms of the derivatives of t1 and t2 at
u = t−1

2 (x) . Explicitly,

h(x) = t1(t−1
2 (x)) = t1(u)|u=t−1

2 (x) , (3)

h′(x) = d
dxh(x) = d

dx (t1(t
−1
2 (x))) = dt1(u)

du

∣∣∣
u=t−1

2 (x)
· dt−1

2 (x)
dx

= dt1(u)
du · 1

dt2(u)
du

∣∣∣∣∣
u=t−1

2 (x)

= t′1(u)
t′2(u)

∣∣∣
u=t−1

2 (x)
, (4)

h′′(x) = d
dxh

′(x) = d
dx

t′1(u)
t′2(u)

∣∣∣
u=t−1

2 (x)
= d

du
t′1(u)
t′2(u)

∣∣∣
u=t−1

2 (x)
· dt−1

2 (x)
dx

= t′′1 (u)t′2(u)−t′′2 (u)t′1(u)
t′2

2(u)
· 1

dt2(u)
du

∣∣∣∣∣
u=t−1

2 (x)

= t′′1 (u)t′2(u)−t′′2 (u)t′1(u)
t′2

3(u)

∣∣∣∣
u=t−1

2 (x)
. (5)
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Let us now turn to the convexity, the logarithmic and the geometric convexity of h
and its derivative.

PROPOSITION 6. The function h is convex on ]0, t2(0)[ , i.e.,

h′′(x) � 0 (6)

for all x ∈ ]0, t2(0)[ , if and only if

t ′1(u)t ′′2 (u)− t ′′1 (u)t ′2(u) � 0 (7)

for all u ∈ ]0,1[ .

Proof. Since h′′(x) can be expressed by (5) and t ′2(u) < 0 for all u ∈ ]0,1[ , it
follows immediately that

∀x ∈ ]0, t2(0)[ : h′′(x) � 0 ⇔ ∀u ∈ ]0,1[ : t ′1(u)t ′′2 (u)− t ′′1 (u)t ′2(u) � 0 .

PROPOSITION 7. The function h is log-convex on ]0, t2(0)[ , i.e.,

h(x)h′′(x)−h′2(x) � 0 (8)

for all x ∈ ]0, t2(0)[ , if and only if

t ′1
2(u)t ′2(u)+ t1(u)

(
t ′1(u)t ′′2 (u)− t ′′1 (u)t ′2(u)

)
� 0 (9)

for all u ∈ ]0,1[ .

Proof. The function h is log-convex on ]0,t2(0)[ if and only if

(log◦h)′′(x) =
h(x)h′′(x)−h′2(x)

h2(x)
� 0

for all x ∈ ]0, t2(0)[ . Since h(x) > 0 for all x > 0, we can write equivalently

h(x)h′′(x)−h′2(x) � 0

for all x ∈ ]0, t2(0)[ . Using (3)–(5), the latter turns out to be equivalent to

t1(u) t′′1 (u)t′2(u)−t′′2 (u)t′1(u)
t′2

3(u)
− t′1

2(u)
t′2

2(u)
� 0,

or also
t ′1

2(u)t ′2(u)+ t1(u)
(
t ′1(u)t ′′2 (u)− t ′′1 (u)t ′2(u)

)
� 0

for all u ∈ ]0,1[ .
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PROPOSITION 8. The function h is geo-convex on ]0,t2(0)[ , i.e.,

h(x)h′(x)+ x
(
h(x)h′′(x)−h′2(x)

)
� 0 (10)

for all x ∈ ]0, t2(0)[ , if and only if

t ′1
2(u)− t1(u)t ′′1 (u)

t1(u)t ′1(u)
� t ′2

2(u)− t2(u)t ′′2 (u)
t2(u)t ′2(u)

(11)

for all u ∈ ]0,1[ .

Proof. First, we show that the geometric convexity of h on ]0,t2(0)[ is equivalent
to Eq. (10) for all x∈ ]0,t2(0)[ . The geometric convexity of h on ]0,t2(0)[ is equivalent
to the convexity of the function χ = log◦h ◦ exp: [−∞, log(t2(0))] → [−∞, log(t1(0))]
on ]−∞, log(t2(0))[ . Since h is twice differentiable, also χ is twice differentiable and

χ ′(v) = h′(ev)
h(ev) ev;

χ ′′(v) =
(

h′(ev)
h(ev)

+ ev h(ev)h′′(ev)−h′(ev)2

h(ev)2

)
ev

=
ev

h(ev)2

(
h′(ev)h(ev)+ ev(h(ev)h′′(ev)−h′(ev)2)

)
.

Since always ev

h(ev)2 > 0, χ ′′(v) � 0 is equivalent to h′(ev)h(ev) + ev(h(ev)h′′(ev)−
h′(ev)2) � 0, or, replacing ev by x , to

h(x)h′(x)+ x
(
h(x)h′′(x)−h′2(x)

)
� 0 .

Using Eqs. (3)–(5), the validity of Eq. (10) for all x ∈ ]0,t2(0)[ turns out to be
equivalent to

t1(u) · t′1(u)
t′2(u) + t2(u)

(
t1(u) · t′′1 (u)t′2(u)−t′′2 (u)t′1(u)

t′2
3(u)

− t′1
2(u)

t′2
2(u)

)
� 0 ,

or also
t ′1

2(u)− t1(u)t ′′1 (u)
t1(u)t ′1(u)

� t ′2
2(u)− t2(u)t ′′2 (u)

t2(u)t ′2(u)

for all u ∈ ]0,1[ .

REMARK 9. Investigating the differential formulations of the convexity, log-convexity
and geo-convexity of h , it becomes evident that the log-convexity of h implies its con-
vexity as well as its geo-convexity. Indeed, if h is log-convex, i.e.

t ′1
2(u)t ′2(u)+ t1(u)

(
t ′1(u)t ′′2 (u)− t ′′1 (u)t ′2(u)

)
� 0 ,
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it follows that

t1(u)
(
t ′1(u)t ′′2 (u)− t ′′1 (u)t ′2(u)

)
� −t ′1

2(u)t ′2(u) � 0 ,

since t ′2(u) < 0 for all u ∈ ]0,1[ . As t1(u) > 0 for all u ∈ ]0,1[ , it must hold that
t ′1(u)t ′′2 (u)− t ′′1 (u)t ′2(u) � 0 for all u ∈ ]0,1[ , i.e., h is convex.

Again assume that h is log-convex, i.e. h(x)h′′(x)−h′2(x) � 0 for all x∈ ]0,t2(0)[ .
Since for any such x it holds that x , h(x) and h′(x) are positive, it also holds that

h(x)h′(x)+ x
(
h(x)h′′(x)−h′2(x)

)
� 0

for all x ∈ ]0, t2(0)[ , i.e. h is geo-convex on ]0,t2(0)[ .

Similarly as for Eqs. (3)–(5), for all x∈ ]0,t2(0)[ , the third derivative of h at x can
be expressed as

h′′′(x) = d
dxh

′′(x) = d
du

(
t′′1 (u)t′2(u)−t′′2 (u)t′1(u)

t′32 (u)

)∣∣∣
u=t−1

2 (x)
· dt−1

2 (x)
dx

= t′32 (u)(t′′′1 (u)t′2(u)−t′′′2 (u)t′1(u))−3t′2
2(u)t′′2 (u)(t′′1 (u)t′2(u)−t′′2 (u)t′1(u))

t′62 (u)
· 1

dt2(u)
du

∣∣∣∣∣
u=t−1

2 (x)

= 1
t′52 (u)

(
3t ′1(u)t ′′2

2(u)− t ′1(u)t ′2(u)t ′′′2 (u)−3t ′′1 (u)t ′2(u)t ′′2 (u)+ t ′′′1 (u)t ′2
2(u)

)∣∣∣
u=t−1

2 (x)
.

Substitution in the corresponding formulas and reshuffling the inequalities leads to the
following corollaries which we state without their easy but tedious and cumbersome
proofs.

COROLLARY 10. The function h′ is log-convex on ]0, t2(0)[ , i.e.,

h′(x)h′′′(x)−h′′2(x) � 0 (12)

for all x ∈ ]0, t2(0)[ , if and only if

t ′1
2(u)

(
2t ′′2

2(u)− t ′2(u)t ′′′2 (u)
)

� t ′2
2(u)

(
t ′′1

2(u)− t ′1(u)t ′′′1 (u)
)

+ t ′1(u)t ′′1 (u)t ′2(u)t ′′2 (u) (13)

for all u ∈ ]0,1[ .

COROLLARY 11. The function h′ is geo-convex on ]0,t2(0)[ , i.e.,

h′(x)h′′(x)+ x
(
h′(x)h′′′(x)−h′′2(x)

)
� 0 (14)

for all x ∈ ]0, t2(0)[ , if and only if

t2(u)
(
t ′1(u)t ′2(u)

(
t ′′′1 (u)t ′2(u)− t ′′′2 (u)t ′1(u)

)
−(

t ′′1 (u)t ′2(u)− t ′′2 (u)t ′1(u)
)(

2t ′1(u)t ′′2 (u)+ t ′′1 (u)t ′2(u)
))

� t ′1(u)t ′2
2(u)

(
t ′1(u)t ′′2 (u)− t ′′1 (u)t ′2(u)

)
(15)

for all u ∈ ]0,1[ .
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5. Dominance within a single parametric family of t-norms

Although the differential inequality conditions look cumbersome at first sight, they
often reduce to easy-to-check inequalities when applied to members of parametric fam-
ilies of t-norms, as we will demonstrate in this and the following section. First, we con-
sider the family of Schweizer-Sklar t-norms. Although it is known [22] that dominance
within this family is in accordance with the ordering of the parameters, we provide
an alternative (and easier) proof based on the new differential inequality conditions in
order to illustrate their strength. Second, we examine dominance within the family of
Sugeno-Weber t-norms, leading to relationships not yet established so far, since most of
its members are nilpotent t-norms. We tackle these problems by following the scheme
of sufficient conditions displayed in Fig. 3. We will provide the differential inequality
for the necessary convexity of h as well as the differential inequality corresponding to
the strongest sufficient condition leading to the discovery of a dominance relationship.

5.1. The family of Schweizer-Sklar t-norms

The family of Schweizer-Sklar t-norms (T SS
λ )λ∈[−∞,∞] is given by

T SS
λ (u,v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

TM(u,v), if λ = −∞,

TP(u,v), if λ = 0,

TD(u,v), if λ = ∞,

max(uλ + vλ −1,0)1/λ , if λ ∈ ]−∞,0[∪ ]0,∞[ .

For λ ∈ ]−∞,∞[ , T SS
λ is a continuous Archimedean t-norm with additive generator

tSS
λ (u) = 1−uλ

λ , if λ ∈ ]−∞,0[∪ ]0,∞[ , and tSS
0 (u) = − logu , if λ = 0

for all u ∈ [0,1] ; parameters λ ∈ ]−∞,0] lead to strict t-norms, while parameters λ ∈
]0,∞[ lead to nilpotent t-norms.

In the sequel of this section, we omit the superscript indicating the family when
discussing properties of additive generators. Since we deal with Schweizer-Sklar
t-norms only, no ambiguity can occur.

Clearly, the derivatives of the additive generators exist and are given, for all λ ∈
]−∞,∞[ and all u ∈ ]0,1[ , by:

t ′λ (u) = −uλ−1,

t ′′λ (u) = −(λ −1)uλ−2,

t ′′′λ (u) = −(λ −1)(λ −2)uλ−3 .

The family of Schweizer-Sklar t-norms is ordered according to its parameter:
TSS
λ � T SS

μ if and only if λ � μ . Moreover, since TM dominates every t-norm, and
every t-norm dominates itself as well as TD , it suffices to investigate dominance be-
tween two Schweizer-Sklar t-norms T SS

λ and TSS
μ with parameters −∞ < λ < μ < ∞ .
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Note that the function h = tλ ◦t(−1)
μ : [0,∞]→ [0,∞] is continuous, strictly increas-

ing and differentiable on
]
0,tμ(0)

[
and fulfills h(0) = 0. If h is convex on

]
0,tμ(0)

[
and if either h or h′ is log- or geo-convex on

]
0,tμ(0)

[
, then T SS

λ dominates TSS
μ .

Convexity of h . The function h is convex on
]
0,tμ(0)

[
if and only if, for all u ∈

]0,1[ ,

t ′λ (u)t ′′μ(u)− t ′′λ (u)t ′μ(u) � 0 ⇔
(μ−1)uλ+μ−3− (λ −1)uλ+μ−3 � 0 ⇔

(μ−λ )uλ+μ−3 � 0 ⇔
μ � λ .

Geo-convexity of h′ . Substituting the expressions for the derivatives of the additive
generators in (15) shows that the function h′ is geo-convex on

]
0,tμ(0)

[
if and only if,

for all u ∈ ]0,1[ ,

tμ(u)
(
uλ+μ−2((λ −1)(λ −2)uλ+μ−4− (μ−1)(μ−2)uλ+μ−4)
−(

(λ −1)uλ+μ−3− (μ−1)uλ+μ−3)(2(μ−1)uλ+μ−3 +(λ −1)uλ+μ−3))
� −uλ+2μ−3

(
(μ−1)uλ+μ−3− (λ −1)uλ+μ−3

)
,

with rearrangements and simple calculations leading to

tμ(u)μ(μ−λ ) � −uμ(μ−λ ) .

In case μ = 0, the latter condition reduces to 0 � λ , or, equivalently, μ � λ . In case
μ �= 0, the condition reads explicitly

( 1−uμ
μ )μ(μ−λ ) � −uμ(μ−λ ) ⇔

(μ−λ )(1−uμ +uμ) � 0 ⇔
μ � λ .

Hence, neither the convexity of h nor the geo-convexity of h′ imposes further
restrictions on λ and μ .

COROLLARY 12. Consider the family of Schweizer-Sklar t-norms (T SS
λ )λ∈[−∞,∞] .

For all λ ,μ ∈ [−∞,∞] it holds that T SS
λ dominates TSS

μ if and only if λ � μ .

We stress that this result is obtained here much more economically than in [22].

5.2. The family of Sugeno-Weber t-norms

The second family we consider is the family of Sugeno-Weber t-norms. Two argu-
ments support its consideration: first, dominance relationships between two members
of this family have not yet been laid bare; second, it is of particular interest as all but
two of its menbers are nilpotent t-norms.
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The family of Sugeno-Weber t-norms (T SW
λ )λ∈[0,∞] is given by

TSW
λ (u,v) =

⎧⎪⎨
⎪⎩

TP(u,v), if λ = 0,

TD(u,v), if λ = ∞,

max(0,(1−λ )uv+λ (u+ v−1)), if λ ∈ ]0,∞[ .

For λ ∈ [0,∞[ , T SW
λ is a continuous Archimedean t-norm with additive generator

tSW
λ (u) =

{
−(1−λ ) log(λ +(1−λ )u), if λ ∈ [0,∞[\ {1},
1−u, if λ = 1

for all u ∈ [0,1] ; parameters λ ∈ ]0,∞[ lead to nilpotent t-norms (with T SW
1 = TL as

special case), while TSW
0 = TP is the only strict member. Note that, for better readabil-

ity, we again omit the superscript indicating the family when discussing properties of
additive generators.

Clearly, the derivatives of the additive generators exist and are, for all λ ∈ [0,∞[\
{1} and all u ∈ ]0,1[ , given by:

t ′λ (u) = − (1−λ )2

λ+(1−λ )u ,

t ′′λ (u) = (1−λ )3

(λ+(1−λ )u)2 ,

t ′′′λ (u) = − 2(1−λ )4

(λ+(1−λ )u)3 .

In case λ = 1, it holds that t ′1(u) = −1 and t ′′1 (u) = t ′′′1 (u) = 0 for all u ∈ ]0,1[ .
The family of Sugeno-Weber t-norms is ordered according to its parameter: T SW

λ �
TSW
μ if and only if λ � μ . Moreover, since every t-norm dominates itself as well as

TD , it suffices to investigate dominance between two Sugeno-Weber t-norms T SW
λ and

TSW
μ with parameters 0 � λ < μ < ∞ .

Note that the function h = tλ ◦t(−1)
μ : [0,∞]→ [0,∞] is continuous, strictly increas-

ing and differentiable on
]
0,tμ(0)

[
and fulfills h(0) = 0. If h is convex on

]
0,tμ(0)

[
and if either h or h′ is log- or geo-convex on

]
0,tμ(0)

[
, then T SW

λ dominates T SW
μ .

Convexity of h . The function h is convex on
]
0,tμ(0)

[
if and only if, for all u ∈

]0,1[ ,

t ′λ (u)t ′′μ(u)− t ′′λ (u)t ′μ(u) � 0 .

In case λ �= 1 �= μ , the latter inequality is equivalent to

(1−λ )3

(λ +(1−λ )u)2

(1− μ)2

μ+(1− μ)u
� (1−λ )2

λ +(1−λ )u
(1− μ)3

(μ+(1− μ)u)2 ⇔
1−λ

λ +(1−λ )u
� 1−μ

μ+(1−μ)u ⇔
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(1−λ )(μ+(1− μ)u) � (1− μ)(λ +(1−λ )u) ⇔
μ � λ .

In case λ = 1, the condition reduces to −t ′′μ(u) � 0 being equivalent to μ � 1 = λ . In
case μ = 1, the condition becomes t ′′λ (u) � 0, i.e., λ � 1 = μ . Summarizing, in all
cases h is convex if and only if μ � λ .

Log-convexity of h′ . Substituting the expressions for the derivatives of the additive
generators in (13) and applying basic transformations shows that for all λ �= 1 �= μ the
function h′ is log-convex on

]
0,tμ(0)

[
if and only if, for all u ∈ ]0,1[ ,

(1−λ )5(1− μ)4(μ−λ )
(λ +(1−λ )u)4(μ+(1− μ)u)3 � 0 ⇔ (μ−λ )(1−λ ) � 0 .

This inequality clearly holds whenever λ < 1 and μ > λ . In case λ = 1 < μ , we
obtain in a similar way the condition

2t ′′μ
2(u)− t ′μ(u)t ′′′μ (u) = 2

(1− μ)6

(μ+(1− μ)u)4 −
2(1− μ)6

(μ +(1− μ)u)4 � 0 ,

which trivially holds. Finally, in case λ < μ = 1, we end up with the following equiv-
alent inequality

t ′′λ
2(u)− t ′λ (u)t ′′′λ (u) = − (1−λ )6

(λ +(1−λ )u)4 � 0 ,

which is also obviously fulfilled.
The above results can be summarized as follows.

COROLLARY 13. Consider the family of Sugeno-Weber t-norms (T SW
λ )λ∈[0,∞] .

For all λ ,μ ∈ [0,∞] such that
λ � min(1,μ)

it holds that TSW
λ � T SW

μ .

This means in particular that any Sugeno-Weber t-norm greater than or equal to the
Łukasiewicz t-norm dominates any other, but smaller Sugeno-Weber t-norm. Naturally,
this raises the question whether dominance is also in accordance with the ordering of
the parameters when both t-norms are smaller than the Łukasiewicz t-norm, i.e, when
1 < λ < μ . However, in general this need not be the case as the following example
demonstrates.

EXAMPLE 1. Consider the Sugeno-Weber t-norms T SW
51 and TSW

101 and let x =
y = u = v = 975

1000 . Then T SW
51 (x,x) = 147

160 and T SW
101 (x,x) = 142

160 such that

T SW
51 (T SW

101 (x,x),T SW
101 (x,x)) = 182

1280 < 227
1280 = TSW

101 (T SW
51 (x,x),T SW

51 (x,x)) ,

showing that T SW
51 does not dominate TSW

101 , although λ = 51 � 101 = μ .
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So far, we have only exploited the log-convexity of h′ . Of course, the remaining
sufficient conditions can still be applied. We provide them in two forms: first, after
substituting the expressions for the derivatives of the additive generators, and second,
in their simplest form after applying several transformations. Further, we discuss the
case 1 < λ < μ only in order to gain additional insight into dominance between two
Sugeno-Weber t-norms.

Geo-convexity of h′ . The function h′ is geo-convex on
]
0,tμ(0)

[
if and only if, for

all u ∈ ]0,1[ ,

− (1−λ )5(1−μ)5(μ−λ ) log(μ+(1−μ)u)
(λ +(1−λ )u)4(μ+(1−μ)u)3

� − (1−λ )4(1−μ)6(μ−λ )
(λ +(1−λ )u)3(μ +(1−μ)u)4

⇔

(μ−λ )(1−λ )
(
μ+(1−μ)u

1−μ
log(μ+(1−μ)u)− λ +(1−λ )u

1−λ

)
� 0 .

In case 1 < λ < μ , we need to show that, for all u ∈ ]0,1[ ,

μ+(1− μ)u
μ−1

log(μ +(1− μ)u) � λ +(1−λ )u
λ −1

. (16)

Note that for all u∈ [0,1] , it holds that the function fu : ]1,∞[→ ]0,∞[ , fu(t)= t+(1−t)u
t−1

is decreasing, since d fu
dt (t) = − 1

(t−1)2 < 0. Therefore, for μ � λ it holds that

μ+(1− μ)u
μ−1

� λ +(1−λ )u
λ −1

.

Hence, as long as the factor log(μ + (1− μ)u) , which is always positive for μ > 1,
is upper bounded by 1, also (16) follows. This requires that μ +(1− μ)u � e for all
u ∈ ]0,1[ , i.e. μ � e . We conclude that h′ is geo-convex at least when 1 < λ < μ � e .

Log-convexity of h . The function h is log-convex on
]
0,tμ(0)

[
if and only if, for all

u ∈ ]0,1[ ,

− (1−λ )4(1−μ)2

(λ +(1−λ )u)2(μ +(1−μ)u)
� (1−λ )3(μ−λ )(1−μ)2 log(λ +(1−λ )u)

(λ +(1−λ )u)2(μ +(1−μ)u)2
⇔

μ +(1−μ)u+
μ−λ
1−λ

log(λ +(1−λ )u) � 0 .

As u approaches 1, the left-hand side approaches 1 as well. Therefore, h can never
be log-convex.

Geo-convexity of h . The function h is geo-convex on
]
0,tμ(0)

[
if and only if, for

all u ∈ ]0,1[ ,

(λ −1)(log(λ +(1−λ )u)+1)
(λ +(1−λ )u) log(λ +(1−λ )u)

� (μ−1)(log(μ+(1− μ)u)+1)
(μ +(1− μ)u) log(μ +(1− μ)u)

. (17)
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In case 1 < λ < μ , we consider the function gu : ]1,∞[ → ]0,∞[ ,

gu(t) =
(t−1)(log(t +(1− t)u)+1)
(t +(1− t)u) log(t +(1− t)u)

,

which is increasing whenever

dgu

dt
(t) =

log2(t +(1− t)u)+ log(t +(1− t)u)+ (t−1)(u−1)(
(t +(1− t)u) log(t +(1− t)u)

)2

is positive for all t ∈ ]1,∞[ . Note that for t > 1 it holds that log(t +(1− t)u) > 0 for
all u ∈ ]0,1[ , and hence, dgu

dt (t) is positive whenever

p(t) = log2(t)+ log(t)− t +1 � 0 .

Numerical investigations (using Maple) show that this is the case for 1 � t � 6.00914
(with 6.00914 denoting the second root of p(t) = 0). Therefore, h is geo-convex at
least when 1 < λ < μ � 6.00914.

Of course, this does not contradict the findings on the geo-convexity of h′ . Inter-
estingly, the geo-convexity investigation allows us to extend Corollary 13.

COROLLARY 14. Consider the family of Sugeno-Weber t-norms (T SW
λ )λ∈[0,∞] .

For all λ ,μ ∈ [0,∞] such that

(i) either λ � min(1,μ) ,

(ii) or 1 < λ � μ � 6.00914 ,

it holds that TSW
λ � T SW

μ .

Having in mind the geo-convexity study of h , it is intuitively clear that as λ approaches
1 from the right in (17), even larger values of μ will do (knowing that for λ = 1, μ
can be arbitrarily large). However, this problem becomes numerically intractable.

6. Dominance between two parametric families of t-norms

Finally, we turn to the investigation of dominance between a member of the family
of Dombi t-norms and a member of the family of Yager t-norms. Since (apart from the
limit cases) the Dombi t-norms are strict and the Yager t-norms are nilpotent, it suffices
to investigate when a Dombi t-norm dominates a Yager t-norm. The investigation of
such a mixed case (strict versus nilpotent) is possible thanks to the new conditions
applicable to all continuous Archimedean t-norms.

The family of Dombi t-norms (TD
λ )λ∈[0,∞] is given by

TD
λ (u,v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

TD(u,v), if λ = 0,

TM(u,v), if λ = ∞,
1

1+
((

1−u
u

)λ
+

(
1−v
v

)λ)1/λ , if λ ∈ ]0,∞[ .
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For λ ∈ ]0,∞[ , TD
λ is a strict t-norm with generator tDλ (u) = ( 1−u

u )λ for all u ∈ [0,1] .
The derivatives of the additive generators are, for all λ ∈ ]0,∞[ and all u ∈ [0,1] , given
by:

(tDλ )′(u) = − λ (1−u)λ−1

uλ+1 ,

(tDλ )′′(u) = (λ +1−2u)λ (1−u)λ−2

uλ+2 .

Similarly, the family of Yager t-norms (TY
μ )μ∈[0,∞] is defined by

TY
μ (u,v) =

⎧⎪⎨
⎪⎩

TD(u,v), if μ = 0,

TM(u,v), if μ = ∞,

max(1− ((1−u)μ +(1− v)μ)1/μ ,0), if μ ∈ ]0,∞[ .

For μ ∈ ]0,∞[ , TY
μ is a nilpotent t-norm with additive generator tYμ (u) = (1−u)μ for

all u ∈ [0,1] . The derivatives of the additive generators are, for all μ ∈ ]0,∞[ and all
u ∈ ]0,1[ , given by:

(tYμ )′(u) = −μ(1−u)μ−1 ,

(tYμ )′′(u) = μ(μ−1)(1−u)μ−2 .

Note that for both families it holds that the additive generators of the continu-
ous Archimedean members are powers of the basic additive generators tD1 (u) = 1−u

u
and tY1 (u) = 1− u . Investigating dominance within each of these families then turns
the generalized Mulholland inequality into the Minkowski inequality and dominance
within each family is in accordance with the ordering of the parameters (see also [8]),
i.e.,

TD
λ1

� TD
λ2

⇔ λ1 � λ2 and TY
μ1

� TY
μ2

⇔ μ1 � μ2 .

We will now investigate for which λ and μ it holds that the Dombi t-norm
TD
λ dominates the Yager t-norm TY

μ . Since for both families the limiting members
are TD and TM , it suffices to consider λ ,μ ∈ ]0,∞[ only. Note that the function
h = tDλ ◦ (tYμ )(−1) : [0,∞] → [0,∞] is continuous, strictly increasing and differentiable
on

]
0, tYμ (0)

[
and fulfills h(0) = 0. If h is convex on

]
0,tYμ (0)

[
and if either h or h′ is

log- or geo-convex on
]
0,tYμ (0)

[
, then TD

λ dominates TY
μ . For the sake of brevity we

will further omit the indication of the families; λ and μ therefore not only indicate the
specific parameter but also the corresponding family.

Convexity of h . The function h is convex on
]
0,tμ(0)

[
if and only if, for all u ∈

]0,1[ ,

t ′λ (u)t ′′μ(u)− t ′′λ (u)t ′μ(u) � 0 ⇔
−λμ(μ−1) (1−u)λ+μ−3

uλ+1 +(λ +1−2u)λμ (1−u)λ+μ−3

uλ+2 � 0, ⇔
λμ (1−u)λ+μ−3

uλ+2 (λ +1−u(μ+1)) � 0, ⇔
λ +1 � u(μ+1) .

This inequality is fulfilled for all u ∈ ]0,1[ if and only if λ � μ .
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Geo-convexity of h . The function h is geo-convex on
]
0,tμ(0)

[
if and only if, for

all u ∈ ]0,1[ ,

t ′λ
2(u)− tλ (u)t ′′λ (u)

tλ (u)t ′λ (u)
�

t ′μ
2(u)− tμ(u)t ′′μ(u)

tμ(u)t ′μ(u)

being equivalent to

(λ − (λ +1−2u)) 1
u(u−1) � (μ−(μ−1))

(u−1) ⇔
2u−1

u(u−1) � 1
(u−1) ⇔

u � 1,

which obviously is fulfilled for all u ∈ ]0,1[ .

COROLLARY 15. Consider the families of Dombi t-norms (TD
λ )λ∈[0,∞] and of

Yager t-norms (TY
μ )μ∈[0,∞] . For all λ ,μ ∈ [0,∞] it holds that TD

λ dominates TY
μ if

and only if λ � μ .
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