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Abstract. In this paper we obtain variation of parameters formula for differential equations with
causal maps.

1. Introduction

The concept of causal operator allows a unified treatment of awide array of dynamic
systems described by functional equations, such as ordinary differential equations,
integrodifferential equations, differential equations with finite or infinite delay, Volterra
equations, and neutral functional equations, to name only a few. See Corduneanu [1]
for a recent monograph on the subject.

Because of its generality, the causal operator has attracted much attention, and the
theory of dynamic systems with such operators has already been the subject of a number
of investigations [2, 3, 4, 5]. In this paper, we obtain nonlinear variation of parameters
formula in the general set-up of differential equations with causal operators, and as a
prerequisite we obtain the continuity and differentiability of solutions with respect to
initial values.

2. Preliminaries

Let E = C[J, Rn], where J = [t0, t0 + T] .

DEFINITION 2.1. Suppose Q ∈ C[E, E] , then Q is said to be a causal map or a
nonanticipative map if u(s) = v(s) , t0 � s � t , where u, v ∈ E implies (Qu)(s) =
(Qv)(s) , t0 � s � t .

Consider the differential equation{
u′(t) = (Qu)(t)
u(t0) = u0

(2.1)

where Q ∈ C[D, E] is a causal operator and D is an open set in E .
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We begin with the basic comparison theorem, a necessary tool in our work.

THEOREM 2.2. Assume that
(a) v, w ∈ C1[J, Rn] , Q ∈ C[E, E] ,

v′(t) � (Qv)(t)
w′(t) � (Qw)(t), t ∈ J,

and for any u, v ∈ E such that u � v , t ∈ J , (Qu)(t)−(Qv)(t) � L(u−v)(t)
for some L > 0 ;

(b) for t1 ∈ J , v(t) � u(t) , t0 � t � t1 implies (Qv)(t1) � (Qu)(t1). Then,
v(t0) � w(t0) implies v(t) � w(t) , t � t0 , t ∈ J .

Proof. We shall first prove the result for strict inequalities and later extend it to
nonstrict inequalities. Suppose the result does not hold. Then there exists a t1 ∈ J ,
t1 > t0 such that v(t) < w(t) , t0 < t < t1 and v(t1) = w(t1) .

This implies from assumption (b) that (Qv)(t1) � (Qw)(t1) .
Also, for h < 0 , v(t1 + h) < w(t1 + h) . Hence, we obtain

D v(t1) � D w(t1).

Further, we have v′(t1) � (Qv)(t1) � (Qw)(t1) < w′(t1) , which is a contradiction to the
earlier statement. Hence, the conclusion holds. For the proof of nonstrict inequalities,
set

ŵ(t) = w(t) + εe2Lt, ε > 0.

Then,
ŵ′(t) > (Qŵ)(t)

and
ŵ(t0) > w(t0) � v(t0).

Thus, we have
ŵ′(t) > (Qŵ)(t),
v′(t) � (Qv)(t), t ∈ J,
v(t0) < ŵ(t0).

Hence, we conclude that

v(t) < ŵ(t) = w(t) + εe2Lt.

Letting ε → 0 , we have
v(t) � w(t), t ∈ J,

and hence the proof. �
We first define the norm

‖u − v‖0(t) = max
t0�s�t

‖u(s) − v(s)‖,

and next list some known results which are needed later. We begin with an existence
and uniqueness result, which is a special case of Theorem 3.5 in [2].
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THEOREM 2.3. Assume that
(a) Q ∈ C[B, E] is a causal map where

B = B[u0, b] = {u ∈ E : ‖u − u0‖0(t) � b}
and ‖Qu‖0(t) � M1, on B ;

(b) g ∈ C[J × [0, 2b], R+] where J = [t0, t0 + T] , g(t, w) � M2 on J × [0, 2b] ,
g(t, 0) ≡ 0 , g(t, w) is nondecreasing in w for each t ∈ J and w(t) ≡ 0 is
the only solution of the scalar differential equation

w′ = g(t, w), w(t0) = 0 on J; (2.2)

(c) ‖(Qu)(t) − (Qv)(t)‖ � g(t, ‖u − v‖0(t)) on B.
Then, there exists a unique solution u(t, t0, u0) of (2.1) on J0 = [t0, t0 + η] where

η = min[T, b
M ], and M = max{M1, M2} .

The next result, on the continuous dependence of the solutions of (2.1) with respect
to the initial conditions (t0, u0) is a special case of Theorem 3.8 in [2].

THEOREM 2.4. Assume that
(a) the assumptions of Theorem 2.3 hold;
(b) the solutions w(t, t0, w0) of (2.2) through every point (t0, w0) are continuous

with respect to (t0, w0) .
Then, the solutions u(t, t0, u0) of (2.1) are continuous with respect to (t0, u0) .

Next, we state a result on the dependence of solutions of (2.1) with respect to a
parameter.

THEOREM 2.5. Let Q ∈ C[E × R, E] and lim
μ→μ0

(Q(u,μ))(t) = (Q(u,μ0))(t)

uniformly in t and u . Suppose further that

‖(Q(u,μ))(t) − (Q(v,μ))(t)‖ � g(t, ‖u − v‖0(t))

for (u,μ) , (v,μ) ∈ E × R and t ∈ J, where g satisfies condition (b) of Theorem 2.3.
Let μ0 ∈ R . Then, given ε > 0 , there exists a δ = δ(ε) > 0 such that for every μ
with |μ − μ0| < δ, the IVP

u′(t) = (Q(u,μ))(t), u(t0) = u0 ∈ R
n

admits a unique solution u(t, t0, u0,μ0) satisfying

‖u(t, t0, u0,μ) − u(t, t0, u0,μ0)‖ < ε, t ∈ J0.

The proof of this result can be constructed on the basis of the corresponding
theorem for differential systems in [5]. We omit the details.

For an operator Q ∈ C[E, E] , which is Frechet differentiable, the integral mean
value theorem can be expressed by the following result, which is useful in our work.

THEOREM 2.6. Let Q ∈ C[B, E] . Assume that the Frechet derivative (Qu)u exists
and is continuous on B . Then, for u1, u2 ∈ B and t ∈ J0 ,

(Qu1)(t) − (Qu2)(t) =
∫ 1

0
[Q(λu1 + (1 − λ )u2)]u(t) (u2 − u1)(t)dλ .
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3. Differentiability

We begin with the following theorem, which establishes the continuity and differ-
entiability of the solutions with respect to initial values.

For convenience, we rewrite equations (2.1) as

{
u′(t) = (Qt0u)(t)
u(t0) = u0

(3.1)

where Qt0 ∈ C[D, E] denotes a causal operator.

THEOREM 3.1. Let u(t, t0, u0) be the unique solution of (2.1), existing on some
interval J0 = [t0, t0 + η] . Assume that the Frechet derivative (Qt0u)u ≡ L (t, t0, u0)
exists and is continuous on D . Then,

(a) Φ(t, t0, u0) = ∂u(t,t0,u0)
∂u0

exists and is a solution of

z′(t) = L (t, t0, u0)(z) such that Φ(t0, t0, u0) = I, (3.2)

where L (t, t0, u0) is a linear operator and I is the identity matrix;

(b) Ψ(t, t0, u0) = ∂u(t,t0,u0)
∂t0

exists and is a solution of

y′(t) = L (t, t0, u0)(y) − (Q̂t0u)(t),
y(t0) = −(Qt0u)(t0)

(3.3)

where (Q̂t0)(t) is the term in (Qu)(t) that depends on the initial time t0 ;
(c) the functions Φ(t, t0, u0) and Ψ(t, t0, u0) satisfy the relation

Ψ(t, t0, u0) + Φ(t, t0, u0)(Qt0u)(t0) =
∫ t

t0

R(t, s; t0, u0)(Q̂t0u)(s)ds. (3.4)

where R(t, s; t0, u0) is the solution of the IVP

∂R(t, s; t0, u0)
∂s

+ L (t, t0, u0)(R(t, s; t0, u0)) = 0, (3.5)

R(t, t; t0, u0) = I , t0 � s � t and R(t, t0; t0, u0) = Φ(t, t0, u0) .

Proof. Under the assumptions on Q , it is clear that solutions u(t, t0, u0) of (3.1)
exist, are unique and continuous in t, t0, and u0 on some interval. Consequently, the
operator L (t, t0, u0) is continuous in t, t0, and u0 on that interval. Therefore, the
solutions of the linear initial-value problems (3.2) and (3.3) exist and are unique over
the same interval.

To prove (a), let ek = (e1
k
, e2

k
, . . . , en

k
) be the vector such that e j

k
= 0 if j �= k and

e k
k

= 1 . Then for some k, ũ(t, h) = u(t, t0, u0 +ekh) is defined on J0 and lim
h→0

ũ(t, h) =
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u(t, t0, u0) uniformly on J0 . Let u(t) = u(t, t0, u0) and u(t, h) = ũ(t, h) − u(t) . Then
differentiating u(t, h) with respect to t and using Theorem 2.6, it follows that

d
dt u(t, h) = ũ′(t, h) − u′(t)

= (Qt0 ũ − Qt0u)(t)

=
∫ 1

0
[Qt0(λ ũ + (1 − λ )u)]u(t)dλ (ũ(t, h) − u(t))

≡ L (t, t0, u0, h)(ũ(t + h) − u(t))

Dividing by h, h �= 0,

u′(t, h)
h

= L (t, t0, u0, h)
u(t, h)

h
,

and since
u(t0, h)

h
=

u(t0, t0, u0 + ekh) − u(t0, t0, u0)
h

= ek,

it is clear that u(t,h)
h is a solution of the following initial-value problem

{
z′(t) = L (t, t0, u0, h)z,
z(t0) = ek,

(3.6)

where L (t, t0, u0, h) =
∫ 1

0
[Qt0(λ ũ + (1 − λ )u)]u(t)dλ . Since lim

h→0
ũ(t, h) = u(t)

uniformly on J0 , continuity of (Qt0u)u implies that lim
h→0

L (t, t0, u0, h) = L (t, t0, u0)

uniformly on J0 . Also observe that L (t, t0, u0, h) satisfies the second condition of
Theorem 2.5 with g(t, ||ũ − u||0(t)) = ||L (t, t0, u0, h)|| ||ũ − u||0(t) . Hence, by
Theorem 2.5, we conclude that (3.6) admits a unique solution, which is continuous with
respect to h for fixed t, t0, u0 .

Next, consider the family of initial-value problems defined by (3.6), with a small
parameter h , for k = 1, 2, · · · , n . Since the solutions corresponding to this family of
initial-value problems are all continuous functions of h for fixed t, t0, u0 , it follows
that, lim

h→0

u(t,h)
h = ∂

∂u0
u(t, t0, u0) , which is the solution of (3.2) with ∂

∂u0
u(t0, t0, u0) = I.

Also, in view of the assumptions on L (t, t0, u0) , it is clear that ∂
∂u0

u(t, t0, u0) is also
continuous with respect to its arguments.

To prove (b), define û(t, h) = u(t, t0 + h, u0) . Then, differentiating with respect
to t we have

u(t, h) = û(t, h) − u(t)

u′(t, h) = (Qt0+hû)(t) − (Qt0u)(t)

= (Qt0+hû)(t) − (Qt0+hu)(t) − (Qt0u)(t0 + h)

=
∫ 1

0
[Qt0+h(λ û + (1 − λ )u)]u(t)dλ ](û(t, h) − u(t)) − (Qt0u)(t0 + h)

≡ L̂ (t, t0, u0, h)(û(t, h) − u(t)) − (Q̂t0u)(t)
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It is clear that u(t,h)
h is solution of the following initial-value problem⎧⎨

⎩
y′(t) = L̂ (t, t0, u0, h)(z) − (Q̂t0y)(t)

y(t0 + h) = u(t0+h,h)
h = − 1

h

∫ t0+h

t0
(Qt0u)(s)ds.

(3.7)

where L̂ (t, t0, u0, h) =
∫ 1

0
[Qt0+h(λ û + (1 − λ )u)]u(t)dλ .

Noting that lim
h→0

1
h

∫ t0+h

t0
(Qt0u)(s)ds = (Qt0u)(t0) and using an argument similar

the argument used in the proof of (a), we see that ∂
∂t0

u(t, t0, u0) exists, is continuous in

its arguments, and is a solution of (3.3).
The result in (c) follows from the fact that Φ(t, t0, u0) and Ψ(t, t0, u0) are solutions

of (3.2) and (3.3), respectively, and the fact that R(t, s; t0, u0) is the solution of the IVP
(3.5), which is a linear equation. Observe that (3.2) is the homogeneous linear equation
corresponding to (3.3). �

4. Variation of Parameters

Having established the continuity and differentiability of the solutions of (2.1) with
respect to initial values, we now proceed to obtain the nonlinear variation of parameters
formula for solutions r(t, t0, u0) of the perturbed system{

r′(t) = (Qt0r)(t) + Pt0r)(t)
r(t0) = u0.

(4.1)

where Pt0 ∈ C[D, E] .

THEOREM 4.1. Suppose the hypotheses of Theorem 3.1 hold. Let r(t, t0, u0) be
any solution of (4.1) existing on J0 . Then r(t, t0, u0) satisfies the integral equation

r(t, t0, u0) = u(t, t0, u0) +
∫ t

t0

∫ t
s R(s, t; t0, u0)(Q̂su)(σ)dσds

+
∫ t

t0
Φ(t, s, r(s))(Pt0 r)(s)ds

(4.2)

where R(s, t; t0, u0) is the solution of the IVP (3.5).

Proof. Setting p(s) = u(t, s, r(s)) where r(s) = r(s, t0, u0) , we have

p′(s) = ∂u(t,s,r(s))
∂t0

+ ∂u(t,s,r(s))
∂u0

r′(s)

= Ψ(t, s, r(s)) + Φ(t, s, r(s))[(Qt0 r)(s) + (Pt0r)(s)].

Integrating from t0 to t , we have

p(t) − p(t0) =
∫ t

t0
[Ψ(t, s, r(s)) + Φ(t, s, r(s))(Qt0 r)(s)]ds

+
∫ t

t0
Φ(t, s, r(s))(Pt0 r)(s)ds.

=
∫ t

t0

∫ t
s R(t, s; t0, u0)(Q̂su)(σ)dσds

+
∫ t

t0
Φ(t, s, r(s))(Pt0 r)(s)ds.
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Thus, using the fact that

u(t, t, r(t)) = r(t, t0, u0) and u(t, t0, r(t0)) = u(t, t0, u0),

we have

r(t, t0, u0) = u(t, t0, u0) +
∫ t

t0

∫ t
s R(s, t; t0, u0)(Q̂su)(σ)dσds

+
∫ t

t0
Φ(t, s, r(s))(Pt0 r)(s)ds,

completing the proof. �
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