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OSTROWSKI’S INEQUALITY IN PRE–HILBERT C∗ –MODULES

LJILJANA ARAMBAŠIĆ AND RAJNA RAJIĆ

(communicated by I. Perić)

Abstract. In this paper we show that Ostrowski’s inequality can be generalized to the case of
pre-Hilbert C∗ -modules. We also obtain some results related to Ostrowski’s inequality for
elements of C∗ -algebras.

1. Introduction and preliminaries

The following result is known as Ostrowski type inequality in an inner-product
space:

THEOREM 1.1. Let (H, (·, ·)) be a real or complex inner-product space and
x, y ∈ H two linearly independent vectors. If z ∈ H is such that (x, z) = 0, then

|(z, y)|2 � ‖z‖2

‖x‖2
(‖x‖2‖y‖2 − |(x, y)|2). (1)

The equality in (1) holds if and only if

z = ν(y − (x, y)
‖x‖2

x),

where ν ∈ C is such that |ν| = ‖x‖‖z‖√
‖x‖2‖y‖2−|(x,y)|2 .

This was proved by H. Šikić and T. Šikić in 2001, [8], by the use of an argument
based on orthogonal projections in inner-product spaces. Also, in [2] the same was
proved by the use of elementary arguments and the Cauchy-Schwarz inequality in
inner-product spaces. (Notice that Theorem 1.1 was proved in [8] under the additional
assumption (z, y) = 1, but replacing y with y

(y,z) we get Theorem 1.1.)
In the special case H = R

n, n ∈ N, the inequality (1) was obtained by Ostrowski
(see [4]). In the case of L2 -functions this result was proved by C.E.M. Pearce, J. Pečarić
and S. Varošanec in [5].

In this paper we extend Theorem 1.1 to elements of a pre-Hilbert C∗ -module.
Pre-Hilbert C∗ -modules generalize inner-product spaces by allowing the inner product
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to take values in a more general C∗ -algebra than the field of complex numbers. Formal
definitions of a C∗ -algebra and a pre-Hilbert C∗ -module are as follows.

A Banach ∗ -algebra is a complex Banach algebra A with a conjugate-linear
involution ∗ : A → A such that a∗∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ A . A
C∗ -algebra is a Banach ∗ -algebra with the additional norm condition ‖a∗a‖ = ‖a‖2.
It easily follows that involution is an isometry. The simplest examples of C∗ -algebras
are the algebras of all bounded linear operators B(H) and all compact operators K(H)
on a Hilbert space H with the usual adjoint operation. General references for the theory
of C∗ -algebras are [1], [6] or [7].

A pre-Hilbert C∗ -module V over a C∗ -algebra A , or a pre-Hilbert A -module
is a (right) A -module together with an A -valued inner product 〈 ·, ·〉 : V × V → A
satisfying the conditions:

(1) 〈 x,αy + βz〉 = α〈 x, y〉 + β〈 x, z〉 for x, y, z ∈ V, α, β ∈ C,
(2) 〈 x, ya〉 = 〈 x, y〉 a for x, y ∈ V, a ∈ A ,
(3) 〈 x, y〉 ∗ = 〈 y, x〉 for x, y ∈ V,
(4) 〈 x, x〉 � 0 for x ∈ V,
(5) 〈 x, x〉 = 0 if and only if x = 0.
It is straightforward that a C∗ -algebra valued inner product is conjugate-linear in

the first variable. We can define a norm on V by ‖x‖ = ‖〈 x, x〉 ‖ 1
2 .

For a pre-Hilbert A -module V the following inequality holds:

‖xa‖ � ‖x‖‖a‖ (x ∈ V, a ∈ A ).

Also, the Cauchy-Schwarz inequality holds, that is,

‖〈 x, y〉 ‖ � ‖x‖‖y‖ (x, y ∈ V). (2)

A pre-Hilbert A -module which is complete with respect to its norm is called a
Hilbert C∗ -module over A , or a Hilbert A -module.

Clearly, every inner-product space is a pre-Hilbert C -module (and every Hilbert
space is a Hilbert C -module). Also, every C∗ -algebra is a Hilbert C∗ -module over
itself with the inner product 〈 a, b〉 = a∗b. The Banach space B(H1, H2) of all bounded
linear operators between Hilbert spaces H1 and H2 is a Hilbert B(H1) -module, where
the inner product is defined as 〈T, S〉 = T∗S, and T∗ denotes the adjoint operator of
T. For more details about Hilbert C∗ -modules the reader is referred to [3] or [9].

We say that two elements x, y of a pre-Hilbert C∗ -module are orthogonal if
〈 x, y〉 = 0.

Throughout this paper, if x is an element of a pre-Hilbert A -module V, |x| refers
to the unique positive square root of 〈 x, x〉 . In the case of a C∗ -algebra we get the
usual |a| = (a∗a)

1
2 .

2. The main result

It is well known that in a pre-Hilbert C∗ -module V, besides (2), the following
stronger version of the Cauchy-Schwarz inequality holds:

〈 y, x〉 〈 x, y〉 � ‖x‖2〈 y, y〉 (x, y ∈ V). (3)
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Let us first consider the case of equality in (3).

LEMMA 2.1. Let V be a pre-Hilbert A -module and x, y ∈ V, x 	= 0. Then it
holds

〈 y, x〉 〈 x, y〉 = ‖x‖2〈 y, y〉 ⇔ y =
1

‖x‖2
x〈 x, y〉 .

Proof. We may assume that ‖x‖ = 1.
First, let us suppose that y = x〈 x, y〉 . Then 〈 y, x〉 〈 x, y〉 = 〈 y, x〉 〈 x, x〈 x, y〉 〉 =

〈 y, x〉 〈 x, x〉 〈 x, y〉 which implies that

0 = 〈 x〈 x, y〉 − y, x〈 x, y〉 − y〉
= 〈 x〈 x, y〉 , x〈 x, y〉 〉 − 〈 x〈 x, y〉 , y〉 − 〈 y, x〈 x, y〉 〉 + 〈 y, y〉
= 〈 y, x〉 〈 x, x〉 〈 x, y〉 − 〈 y, x〉 〈 x, y〉 − 〈 y, x〉 〈 x, y〉 + 〈 y, y〉
= 〈 y, y〉 − 〈 y, x〉 〈 x, y〉 .

Hence, 〈 y, x〉 〈 x, y〉 = 〈 y, y〉 .
Conversely, suppose that 〈 y, x〉 〈 x, y〉 = 〈 y, y〉 . Let us prove that y = x〈 x, y〉 .

Since 〈 y, x〉 〈 x, x〉 〈 x, y〉 � ‖〈 x, x〉 ‖〈 y, x〉 〈 x, y〉 = 〈 y, x〉 〈 x, y〉 (see [6, Proposition
1.3.5]), we have

0 � 〈 x〈 x, y〉 − y, x〈 x, y〉 − y〉 � 〈 y, y〉 − 〈 y, x〉 〈 x, y〉 = 0.

Thus, 〈 x〈 x, y〉 − y, x〈 x, y〉 − y〉 = 0, from which it follows y = x〈 x, y〉 . �
Now we prove the statement which generalizes Theorem 1.1 for elements of a

pre-Hilbert C∗ -module.

THEOREM 2.2. Let A be a C∗ -algebra and V a pre-Hilbert C∗ -module over
A . Let x, y ∈ V, x 	= 0. Let z ∈ V, z 	= 0, be such that 〈 x, z〉 = 0. Then

|〈 z, y〉 |2 � ‖z‖2

‖x‖2
(‖x‖2|y|2 − |〈 x, y〉 |2). (4)

The equality in (4) holds if and only if y − 1
‖x‖2 x〈 x, y〉 = 1

‖z‖2 z〈 z, y〉 .

Proof. Without loss of generality we can assume that ‖x‖ = ‖z‖ = 1.
Let us put v = y − x〈 x, y〉 . Then it holds

〈 v, z〉 = 〈 y − x〈 x, y〉 , z〉 = 〈 y, z〉 − 〈 y, x〉 〈 x, z〉 = 〈 y, z〉 , (5)

from which by using (3) we get

〈 y, z〉 〈 z, y〉 = 〈 v, z〉 〈 z, v〉 � ‖z‖2〈 v, v〉 = 〈 v, v〉 . (6)

Since 〈 y, x〉 〈 x, x〉 〈 x, y〉 � ‖〈 x, x〉 ‖〈 y, x〉 〈 x, y〉 = 〈 y, x〉 〈 x, y〉 , we obtain

〈 v, v〉 = 〈 y − x〈 x, y〉 , y − x〈 x, y〉 〉
= 〈 y, y〉 − 2〈 y, x〉 〈 x, y〉 + 〈 y, x〉 〈 x, x〉 〈 x, y〉
� 〈 y, y〉 − 2〈 y, x〉 〈 x, y〉 + 〈 y, x〉 〈 x, y〉
= 〈 y, y〉 − 〈 y, x〉 〈 x, y〉 .
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From this and (6) it follows that

|〈 z, y〉 |2 = 〈 y, z〉 〈 z, y〉 � 〈 y, y〉 − 〈 y, x〉 〈 x, y〉 = |y|2 − |〈 x, y〉 |2

which proves (4).
It follows from the above calculation that the equality in (4) holds if and only if

the following two conditions are satisfied

〈 v, z〉 〈 z, v〉 = 〈 v, v〉 and 〈 y, x〉 〈 x, x〉 〈 x, y〉 = 〈 y, x〉 〈 x, y〉 . (7)

According to Lemma 2.1 and (5), the first condition of (7) is equivalent to v =
1

‖z‖2 z〈 z, v〉 = z〈 z, v〉 = z〈 z, y〉 , that is,

y − x〈 x, y〉 = z〈 z, y〉 . (8)

To complete the proof, it is enough to show that (8) implies the second condition of (7).
Indeed, since 〈 x, z〉 = 0 by (8) we have

〈 y, x〉 〈 x, y〉 = 〈 y, x〉 〈 x, x〈 x, y〉 + z〈 z, y〉 〉
= 〈 y, x〉 〈 x, x〉 〈 x, y〉 + 〈 y, x〉 〈 x, z〉 〈 z, y〉
= 〈 y, x〉 〈 x, x〉 〈 x, y〉 .

�
Since every C∗ -algebra can be recognized as a Hilbert C∗ -module over itself with

the inner product 〈 a, b〉 = a∗b, the following result is an immediate consequence of
Theorem 2.2.

COROLLARY 2.3. Let A be a C∗ -algebra. Let a, b ∈ A , a 	= 0. Let c ∈ A ,
c 	= 0, be such that a∗c = 0. Then

|c∗b|2 � ‖c‖2

‖a‖2
(‖a‖2|b|2 − |a∗b|2). (9)

The equality in (9) holds if and only if b − 1
‖a‖2 aa∗b = 1

‖c‖2 cc∗b.

In [8] H. Šikić and T. Šikić observed that Ostrowski’s inequality in inner-product
spaces is actually a statement about projections. From Theorem 2.2 we can see the
nature of Ostrowski’s inequality in pre-Hilbert C∗ -modules. To do this, let us first state
some notations and definitions.

By V we denote a pre-Hilbert C∗ -module over a C∗ -algebra A . Recall that a
map T : V → V is A -linear if T(xa) = T(x)a for all x ∈ V, a ∈ A . We shall say
that a bounded A -linear map T : V → V is positive if 〈Tx, x〉 � 0 for all x ∈ V.
If T : V → V is a positive map, we write T � 0. Also, if T, S : V → V are two
linear maps satisfying S − T � 0, we shall write T � S. Let us mention here that in
the case of a Hilbert C∗ -module V, the algebra B(V) of all adjointable operators on
V (i.e., the set of all maps A : V → V for which there is a map A∗ : V → V such that
〈Ax, y〉 = 〈 x, A∗y〉 for all x, y ∈ V ) is a C∗ -algebra. Every element T ∈ B(V) is
a bounded A -linear map [3, p. 8] and T is positive as an element of the C∗ -algebra
B(V) if and only if 〈Tx, x〉 � 0 for all x ∈ V (see [3, Lemma 4.1]).
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Let us now introduce a class of operators analogous to the finite-rank operators on
an inner-product space. For x, y ∈ V we define θx,y : V → V by

θx,y(z) = x〈 y, z〉 (z ∈ V).

Obviously, θx,y is an A -linear map and ‖θx,y‖ � ‖x‖‖y‖ for all x, y ∈ V. It is
straightforward that for such maps it holds

θx,yθz,v = θx〈 y,z〉 ,v (x, y, z, v ∈ V). (10)

Observe that θx,x is positive for all x ∈ V. Namely,

〈 θx,x(y), y〉 = 〈 x〈 x, y〉 , y〉 = 〈 y, x〉 〈 x, y〉 = |〈 x, y〉 |2 � 0 (y ∈ V). (11)

Thus, the inequality (4) from Theorem 2.2 can be expressed in the following form.

COROLLARY 2.4. Let A be a C∗ -algebra and V a pre-Hilbert C∗ -module over
A . Let x, z ∈ V be such that ‖x‖ = ‖z‖ = 1 and 〈 x, z〉 = 0. Then

θx,x + θz,z � I,

where I : V → V denotes the identity operator.

Proof. By definition θx,x + θz,z � I if and only if

〈 θx,x(y), y〉 + 〈 θz,z(y), y〉 � 〈 y, y〉 (y ∈ V),

that is, by (11), if and only if

|〈 x, y〉 |2 + |〈 z, y〉 |2 � |y|2 (y ∈ V).

Therefore, our statement follows from (4) of Theorem 2.2. �

REMARK 2.5. (a) Observe that the condition 〈 x, z〉 = 0 is equivalent to θx,xθz,z =
0. Indeed, if 〈 x, z〉 = 0 then it follows from (10) that θx,xθz,z = θx〈 x,z〉 ,z = θ0,z = 0.
Conversely, if θx,xθz,z = 0 then 〈 z, x〉 〈 x, z〉 〈 z, x〉 = 〈 z, θx,xθz,z(x)〉 = 0 from which
we get

‖〈 x, z〉 ‖4 = ‖〈 z, x〉 〈 x, z〉 ‖2 = ‖〈 z, x〉 〈 x, z〉 〈 z, x〉 〈 x, z〉 ‖ = 0,

that is, 〈 x, z〉 = 0.

(b) Note that for a (unit) vector x ∈ V, θ2
x,x 	= θx,x in general. But, if V is an

inner-product space and x ∈ V, ‖x‖ = 1, then by (10) it holds θ2
x,x = θx〈 x,x〉 ,x = θx,x,

so θx,x is a rank one projection on the subspace of V spanned by x. Thus, in the case
of an inner-product space V, the inequality (4) from Theorem 2.2 can be stated in terms
of rank one projections as follows:

Whenever x, z are two orthogonal unit vectors of an inner-product space V, then
θx,x and θz,z are two orthogonal projections whose product is zero, so θx,x + θz,z � I.
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(c) The condition 〈 x, z〉 = 0 from Theorem 2.2 is not a necessary condition on
elements x and z for Ostrowski’s inequality to hold. As an example, we can take a C∗ -
algebra A = M3(C) of all 3× 3 complex matrices, regarded as a Hilbert C∗ -module
over itself. Then we choose the elements

A =

⎡
⎣

1
2 0 0
0 0 0
0 0 1

⎤
⎦ , B =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ , C =

⎡
⎣

1
2 0 0
0 1 0
0 0 0

⎤
⎦

of this algebra. We get ‖A‖ = ‖B‖ = ‖C‖ = 1 ,

|C∗B|2 =

⎡
⎣

1
4 0 0
0 1 0
0 0 0

⎤
⎦ �

⎡
⎣

3
4 0 0
0 1 0
0 0 0

⎤
⎦ =

‖C‖2

‖A‖2
(‖A‖2|B|2 − |A∗B|2),

which is (9) from Corollary 2.3, but A∗C =

⎡
⎣

1
4 0 0
0 0 0
0 0 0

⎤
⎦ 	= 0.

However, if x, z ∈ V, ‖x‖ = ‖z‖ = 1, are elements of a pre-Hilbert A -module
such that 〈 x, x〉 or 〈 z, z〉 is a projection and the inequality (4) holds, then it must be
〈 x, z〉 = 0. Namely, if 〈 x, x〉 is a projection, by putting y := x in (4) we get

|〈 z, x〉 |2 � |x|2 − |〈 x, x〉 |2 = 〈 x, x〉 − 〈 x, x〉 2 = 0,

so 〈 x, z〉 = 0. Similarly, in the case when 〈 z, z〉 is a projection, it is enough to put
y := z in (4) to conclude 〈 x, z〉 = 0.

In what follows we apply Theorem 2.2 to the case of a particular Hilbert C∗ -
module.

First, let A be an arbitrary C∗ -algebra. Then we define

�2(A ) = {(ai)i∈N : ai ∈ A , ∀i ∈ N,
∑
i∈N

a∗i ai converges in A }.

With the operations λ (ai)i + (bi)i = (λai + bi)i, (ai)ia = (aia)i and

〈 (ai)i, (bi)i〉 =
∑
i∈N

a∗i bi,

�2(A ) becomes a Hilbert C∗ -module over A . Then the following corollary holds.

COROLLARY 2.6. Let A be a C∗ -algebra and (ai)i, (bi)i ∈ �2(A ),
∑

i∈N
a∗i ai 	=

0. Then for every (ci)i ∈ �2(A ) such that
∑

i∈N
c∗i ci 	= 0 and

∑
i∈N

c∗i ai = 0 it holds

∑
i∈N

c∗i bi

∑
i∈N

b∗i ci �
‖∑

i∈N
c∗i ci‖

‖∑
i∈N

a∗i ai‖ (‖
∑
i∈N

a∗i ai‖
∑
i∈N

b∗i bi −
∑
i∈N

b∗i ai

∑
i∈N

a∗i bi),

with the equality if and only if

bj =
1

‖∑
i∈N

a∗i ai‖aj

∑
i∈N

a∗i bi +
1

‖∑
i∈N

c∗i ci‖cj

∑
i∈N

c∗i bi,

for every j ∈ N.
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Similarly, for Hilbert A -modules V1, . . . , Vn we define their direct sum

V = V1 ⊕ · · · ⊕ Vn = {(v1, . . . , vn) : vi ∈ Vi, ∀i = 1, . . . n}
which is a Hilbert A -module with 〈 (vi), (wi)〉 =

∑n
i=1〈 vi, wi〉 (see [3, p. 5]). In the

special case when Vi = B(H1, H2) for all i = 1, . . . , n we get the following corollary.

COROLLARY 2.7. Let H1 and H2 be Hilbert spaces and n ∈ N. Then for ev-
ery A1, . . . , An, B1, . . . , Bn, C1, . . . , Cn ∈ B(H1, H2) such that

∑n
i=1 A∗

i Ai 	= 0,∑n
i=1 C∗

i Ci 	= 0 and
∑n

i=1 C∗
i Ai = 0 it holds

n∑
i=1

C∗
i Bi

n∑
i=1

B∗
i Ci � ‖∑n

i=1 C∗
i Ci‖

‖∑n
i=1 A∗

i Ai‖ (‖
n∑

i=1

A∗
i Ai‖

n∑
i=1

B∗
i Bi −

n∑
i=1

B∗
i Ai

n∑
i=1

A∗
i Bi),

with the equality if and only if

Bj =
1

‖∑n
i=1 A∗

i Ai‖Aj

n∑
i=1

A∗
i Bi +

1

‖∑n
i=1 C∗

i Ci‖Cj

n∑
i=1

C∗
i Bi,

for every j = 1, . . . , n.

3. Some applications to C∗ -algebras

Our next results are some consequences of Theorem2.2 in the case of a C∗ -algebra
regarded as a Hilbert C∗ -module over itself. Before stating the results, we prove the
following technical lemma that will be useful in the sequel.

LEMMA 3.1. Let A be a C∗ -algebra and a, b ∈ A . Then we have:

ab∗ = 0 ⇔ |a||b| = 0.

Proof. Let us suppose first that ab∗ = 0. Then we have |a|2|b|2 = a∗ab∗b = 0.
Therefore, |a|2|b|2 = |b|2|a|2 = 0. Since |b|2 commutes with |a|2, we have |a|2|b| =
|b||a|2 and then similarly |a||b| = |b||a|. Now, |a||b| is positive, as the product of two
commuting positive elements, and (|a||b|)2 = |a|2|b|2 = 0. Thus, we get |a||b| = 0.

Conversely, let us suppose that |a||b| = 0. Then |a|2|b|2 = 0, from which it
follows that

(ba∗)(ba∗)∗(ba∗)(ba∗)∗ = ba∗ab∗ba∗ab∗ = b|a|2|b|2|a|2b∗ = 0.

Therefore, (ba∗)(ba∗)∗ = 0 and then ba∗ = 0. Hence, ab∗ = 0. �
Inwhat follows σ(a) will stand for the spectrumof an arbitrary element a of a C∗ -

algebra. By C(S) we denote the algebra of all continuous complex functions on some
compact set S ⊂ C with pointwise operations and the norm ‖f ‖ = sup{|f (t)| : t ∈ S}.

PROPOSITION 3.2. Let A be a C∗ -algebrawith the unit e and a, b ∈ A nonzero
normal elements such that ab∗ = 0. Then, for every f ∈ C(σ(a)) and g ∈ C(σ(b))
such that f (0) = g(0) = 0 and f (a) 	= 0, g(b) 	= 0 it holds |f (a)||g(b)| = 0 and

|f (a)|
‖f (a)‖ +

|g(b)|
‖g(b)‖ � e,
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with the equality if and only if there is an orthogonal projection p ∈ A such that

|f (a)| = ‖f (a)‖p and |g(b)| = ‖g(b)‖(e − p).

Proof. Since f ∈ C(σ(a)) and g ∈ C(σ(b)), by the Weierstrass approximation
theorem, there are sequences of polynomials pn and qn such that pn → f and qn → g
uniformly on σ(a) and σ(b), respectively. In particular, pn(0) → f (0) = 0 and
qn(0) → g(0) = 0, as 0 ∈ σ(a) and 0 ∈ σ(b). (Namely, from ab∗ = 0 it follows
b = 0 if 0 /∈ σ(a), and a = 0 if 0 /∈ σ(b). )

Since ab∗ = 0, it follows that pn(a)b∗ = pn(0)b∗ (n ∈ N), so from functional
calculus we obtain f (a)b∗ = 0. Thus, bf (a)∗ = 0, so qn(b)f (a)∗ = qn(0)f (a)∗

(n ∈ N), from which it follows g(b)f (a)∗ = 0 and then f (a)g(b)∗ = 0. Therefore, if
we replace a, b and c in Corollary 2.3 with f (a)∗, e and g(b)∗ respectively, then we
get

|f (a)|2
‖f (a)‖2

+
|g(b)|2
‖g(b)‖2

� e.

By Lemma 3.1 we have |f (a)||g(b)| = 0, so
( |f (a)|
‖f (a)‖ +

|g(b)|
‖g(b)‖

)2

=
|f (a)|2
‖f (a)‖2

+
|g(b)|2
‖g(b)‖2

� e.

From this, by using [6, Proposition 1.3.8], it follows that |f (a)|
‖f (a)‖ + |g(b)|

‖g(b)‖ � e since
|f (a)|
‖f (a)‖ + |g(b)|

‖g(b)‖ is positive.

Furthermore, if the equality |f (a)|
‖f (a)‖ + |g(b)|

‖g(b)‖ = e holds, then we have

( |f (a)|
‖f (a)‖

)2

− |f (a)|
‖f (a)‖ =

|f (a)|
‖f (a)‖

( |f (a)|
‖f (a)‖ − e

)
= − |f (a)|

‖f (a)‖
|g(b)|
‖g(b)‖ = 0,

i.e.,

(
|f (a)|
‖f (a)‖

)2

= |f (a)|
‖f (a)‖ and analogously

(
|g(b)|
‖g(b)‖

)2

= |g(b)|
‖g(b)‖ . Thus, |f (a)|

‖f (a)‖ and |g(b)|
‖g(b)‖

are two orthogonal projections whose sum is e. The converse is obvious. �
We conclude this paper by applying the previous proposition on some special

functions f and g.

COROLLARY 3.3. Let A be a C∗ -algebra with the unit e and a, b ∈ A such
that ‖a‖ = ‖b‖ = 1 and ab∗ = 0. Then, for all α, β > 0 it holds |a|α |b|β = 0 and

|a|α + |b|β � e

with the equality if and only if |a|α = p and |b|β = e − p for some orthogonal
projection p ∈ A . Also,

|a|α
α

+
|b|β
β

� max

{
1
α

,
1
β

}
e

with the equality if and only if α = β and there is an orthogonal projection p ∈ A
such that |a|α = p and |b|α = e − p.
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Proof. Let us define the functions f , g : [0,∞) → R by putting f (t) = tα

and g(t) = tβ for some α, β > 0. Clearly, f ∈ C(σ(|a|)), g ∈ C(σ(|b|)) and
f (0) = g(0) = 0. So, |a|α = f (|a|) and |b|β = g(|b|) are well-defined elements of
the C∗ -algebras generated by |a| and |b|, respectively.

Since f (t) � 0, t ∈ σ(|a|) and g(t) � 0, t ∈ σ(|b|), the elements |a|α = f (|a|)
and |b|β = g(|b|) must be positive.

Furthermore, since 1 = ‖a‖ = ‖|a|‖ ∈ σ(|a|) ⊆ [0, ‖|a|‖] = [0, 1] and 1 =
‖b‖ = ‖|b|‖ ∈ σ(|b|) ⊆ [0, ‖|b|‖] = [0, 1] we obtain

‖|a|α‖ = ‖f (|a|)‖ = sup{|f (t)| : t ∈ σ(|a|)} = sup{tα : t ∈ σ(|a|)} = 1

and similarly ‖|b|β‖ = 1. By Lemma 3.1 we have |a||b| = 0. It remains to apply
Proposition 3.2 on the elements |a| and |b| and the functions f and g to get the first
statement of this corollary.

Now we have

|a|α
α

+
|b|β
β

� max

{
1
α

,
1
β

}
(|a|α + |b|β) � max

{
1
α

,
1
β

}
e.

Let us consider the case of equality. So, suppose that |a|α
α + |b|β

β = max{ 1
α , 1

β }e.
We may assume that max{ 1

α , 1
β } = 1

α . Then we get |b|β = β
α (e − |a|α), so

0 = |a|α |b|β =
β
α

(|a|α − (|a|α)2).

Thus, |a|α = (|a|α)2, i.e., p := |a|α is an orthogonal projection. Since e − p is a
nonzero orthogonal projection, we have ‖e − p‖ = 1 and

1 = ‖|b|β‖ =
β
α
‖e − p‖ =

β
α

.

It follows that α = β and then |b|α = e − p. The converse is obvious. �
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