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THE WEAK TYPE INEQUALITY FOR THE MAXIMAL

OPERATOR OF THE MARCINKIEWICZ–FEJÉR MEANS OF

THE TWO–DIMENSIONAL WALSH–KACZMARZ SYSTEM

USHANGI GOGINAVA

(Communicated by J. Pečarić)

Abstract. The main aim of this paper is to prove that the maximal operator σ# of the Marcin-
kiewicz-Fejér means of the two-dimensional Fourier series with respect to the Walsh-Kaczmarz
system is bounded from the martingale Hardy space H1/2 to the space weak-L1/2 and is not
bounded from the martingale Hardy space H1/2 to the space L1/2 provided that the supremum
in the maximal operator is taken over spatial indices.

1. Introduction

In 1939 Marcinkiewicz [4] proved for the two-dimensional trigonometric sys-
tem that the Marcinkiewicz means of a function converge to the function itself al-
most evrywhere for all f ∈ L logL([0,2π ]2). Zhizhiashvili [14] improved this result
for f ∈ L([0,2π ]2).

For the two-dimensional Walsh-Fourier series Weisz [10] proved that the maximal
operator

σ∗ f := sup
n�1

1
n

∣∣∣∣∣n−1

∑
j=0

S j, j ( f )

∣∣∣∣∣
is bounded from the two-dimensional dyadic martingale Hardy space Hp to the space
Lp for p > 2/3. In [3] the author showed that in theorem of Weisz the assumption
p > 2/3 is essential.

In 1948 Šneider [9] introduced the Walsh-Kaczmarz system and showed that the
inequality

limsup
n→∞

Dκ
n (x)

logn
� C > 0

holds a.e. In 1974 Schipp [6] and Young [13] proved that the Walsh-Kaczmarz system
is a convergence system. Skvorcov [8] in 1981 showed that the Fejér means with respect
to the Walsh-Kaczmarz system converge uniformly to f for any continuous functions
f . Gát [1] proved, for any integrable functions, that the Fejér means with respect to the
Walsh-Kaczmarz system converge almost everywhere to the function. Gát’s Theorem
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was extended by Simon [7] to Hp spaces, namely, he proved that the maximal operator
of Fejér means σ∗ of the one-dimensional Fourier series with respect to the Walsh-
Kaczmarz system is bounded from Hardy spaces Hp to the spaces Lp for p > 1/2.
He also showed (Hp,Lp) -boundedness for every p > 0 if the maximal operator of the
Fejér means is considered only of order 2n . In the endpoint case p = 1/2 Weisz [12]
proved that σ∗ is bounded from the Hardy space H1/2 to the space weak-L1/2 .

In [2] it is proved that the maximal operator

σ# f := sup
n�1

1
2n

∣∣∣∣∣2
n−1

∑
j=0

Sk
j, j ( f )

∣∣∣∣∣
is bounded from the Hardy space Hp to the space Lp for p > 1/2. The main aim of
this paper is to prove that for the boudedness of the maximal operator σ# f from the
Hardy space Hp to the space Lp the assumption p > 1/2 is essential, In particular,
we prove that the maximal operator σ# f is not bounded from the Hardy space H1/2 to
the space L1/2 (see Theorem 1). By interpolation it follows that σ# f is not bounded
from the Hardy space Hp to the space weak-Lp for 0 < p < 1/2. In the endpoint case
p = 1/2 we proved that (see Theorem 2) σ# f is bounded from the Hardy space H1/2
to the space weak-L1/2.

2. Definitions and Notation

Let P denote the set of positive integers, N := P∪{0}. Denote Z2 the discrete
cyclic group of order 2, that is Z2 = {0,1}, where the group operation is the modulo
2 addition and every subset is open. The Haar measure on Z2 is given such that the
measure of a singletion is 1/2. Let G be the complete direct product of the countable
infinite copies of the compact groups Z2. The elements of G are of the form x =
(x0,x1, ...,xk, ...) with xk ∈ {0,1}(k ∈ N) . The group operation on G is the coordinate-
wise addition, the measure (denote by μ ) and the topology are the product measure
and topology. The compact Abelian group G is called the Walsh group. A base for the
neighborhoods of G can be given in the following way:

I0 (x) := G, In (x) := In (x0, ...,xn−1) := {y ∈ G : y = (x0, ...,xn−1,yn,yn+1, ...)} ,

(x ∈ G,n ∈ N) .

These sets are called the dyadic intervals. Let 0 = (0 : i ∈ N) ∈ G denote the null
element of G, In := In (0) (n ∈ N) . Set en := (0, ...,0,1,0, ...) ∈ G the n th coordinate
of which is 1 and the rest are zeros (n ∈ N) . Denote In := G\ In.

For k ∈ N and x ∈ G denote

rk (x) := (−1)xk

the k -th Rademacher function. If n ∈ N , then n =
∞
∑
i=0

ni2i, where ni ∈ {0,1} (i ∈ N) ,

i. e. n is expressed in the number system of base 2. Denote |n| := max{ j ∈N :n j �= 0} ,
that is, 2|n| � n < 2|n|+1.
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The Walsh-Paley system is defined as the sequence of Walsh-Paley functions:

wn (x) :=
∞

∏
k=0

(rk (x))nk = r|n| (x)(−1)

|n|−1
∑

k=0
nkxk

(x ∈ G,n ∈ P) .

The Walsh-Kaczmarz functions are defined by κ0 := 1 and for n � 1

κn(x) := r|n|(x)
|n|−1

∏
k=0

(r|n|−1−k(x))
nk .

For A ∈ N define the transformation τA : G → G by

τA(x) := (xA−1,xA−2, ...,x0,xA,xA+1, ...).

By the definition of τA (see [8]), we have

κn(x) = r|n|(x)wn−2|n|(τ|n|(x)) (n ∈ N,x ∈ G).

The Dirichlet kernels are defined by

Dα
n (x) :=

n−1

∑
k=0

αk(x),

where αk = wk or κk. Recall that

D2n(x) := Dw
2n(x) = Dκ

2n(x) =

{
2n, if x ∈ In,

0, if x ∈ In.
(1)

The Fourier coefficients (if f is an integrable function), the partial sums of Fourier
series, the Fejér means and the Fejér kernels are defined as follows:

f̂ α(n) :=
∫

G
fαn, Sαn ( f ,x) :=

n−1

∑
k=0

f̂ α(k)αk(x)

σα
n ( f ,x) :=

1
n

n−1

∑
k=0

Sαk ( f ,x), Kα
n (x) :=

1
n

n−1

∑
k=0

Dα
k (x).

Next, we introduce some notation with respect to the theory of two-dimensional
Walsh system. The group G×G is called the two-dimensional Walsh group. The
Kroneker product (αm,n : m,n ∈ N)of the two Walsh(Kaczmarz) system is said to be
the two-dimensional Walsh(Kaczmarz) system. Thus

αm,n
(
x1,x2) := αm

(
x1)αn

(
x2) .

The two-dimensional Fourier coefficients, the rectangular partial sums of the Fourier
series, the Marcinkiewicz means, the Dirichlet kernels and the Matcinkiewicz kernels
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are defined as follows

f̂ α(n1,n2) :=
∫

G×G
fαn1,n2 , Sαn1,n2

f (x1,x2) :=
n1−1

∑
k1=0

n2−1

∑
k2=0

f̂ α(k1,k2)αk1,k2(x
1,x2),

σα
n f (x1,x2) :=

1
n

n−1

∑
k=0

Sαk,k f (x1,x2),

Dα
k,l(x

1,x2) := Dα
k (x1)Dα

l (x2), Kα
n (x1,x2) :=

1
n

n−1

∑
k=0

Dα
k,k(x

1,x2).

The σ -algebra generated by the dyadic 2-dimensional Ik × Ik cube of measure
2−k ×2−k will be denoted by Fk (k ∈ N) .

Denote by f =
(

f (n),n ∈ N
)

one-parametermartingalewith respect to (Fn,n ∈ N)
(for details see, e. g. [11] The maximal function of a martingale f is defined by

f ∗ = sup
n∈N

∣∣∣ f (n)
∣∣∣ .

In case f ∈ L1 (G×G) , the maximal function can also be given by

f ∗
(
x1,x2)= sup

n∈N

1
μ (In(x1)× In(x2))

∣∣∣∣∣∣∣
∫

In(x1)×In(x2)

f
(
u1,u2)dμ (u1,u2)

∣∣∣∣∣∣∣ ,(
x1,x2) ∈ G×G.

For 0 < p <∞ the martingale Hardy space Hp(G×G) consists all martingales for
which

‖ f‖Hp
:= ‖ f ∗‖p <∞.

If f ∈ L1 (G×G) then it is easy to show that the sequence (S2n,2n ( f ) : n ∈ N) is
a martingale. If f is a martingale, that is f = ( f (0), f (1), ...) then the Walsh-Fourier
coefficients must be defined in a little bit different way:

f̂ α (i, j) = lim
k→∞

∫
G×G

f (k) (x1,x2)αi
(
x1)α j

(
x2)dμ (x1,x2) .

The Walsh-Fourier coefficients of f ∈ L1 (G×G) are the same as the ones of the
martingale (S2n,2n ( f ) : n ∈ N) obtained from f .

For the martingale f we consider the maximal operator

σ# f (x1,x2) = sup
A

|σ k
2A f (x1,x2)|.

A boundedmeasurable function a is a p -atom, if there exists a dyadic 2-dimensional
cube I2, such that
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a)
∫
I2

adμ = 0;

b) ‖a‖∞ � μ(I2)−1/p ;
c) supp a ⊂ I2 .

3. Formulation of Main Results

THEOREM 1. The maximal operator σ# is not bounded from the Hardy space
H1/2 (G×G) to the space L1/2 (G×G) .

THEOREM 2. The maximal operator σ# is bounded from the Hardy space
H1/2 (G×G) to the space weak-L1/2 (G×G) .

4. Auxiliary Propositions

We shall need the following lemmas (see [2, 5, 11]).

LEMMA 1. (Weisz) Suppose that an operator V is sublinear and, for some 0 <
p < 1

sup
ρ>0

ρ pμ {x ∈ (G×G)\ (I× I) : |Va(x)| > ρ} � cp < ∞,

for every p-atom a, where I denote the support of the atom. If V is bounded from Lp1

to Lp1 for a fixed 1 < p1 � ∞, then

‖V f‖weak-Lp(G×G) � cp ‖ f‖Hp
.

LEMMA 2. (Nagy) Let A,s, l ∈ N,s � l < A,
(
x1,x2

) ∈ (Is \ Is+1)× (Il \ Il+1) .
Then

Kw
2A

(
x1,x2)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if ∃ i ∈ B1, x1
i �= x2

i ,

0 if ∀ i ∈ B1, x1
i = x2

i , ∃ m ∈ B2, x1 − es− em /∈ Il+1, x1
m = 1,

2s+m−2 if ∀ i ∈ B1, x1
i = x2

i , ∃ m ∈ B2, x1− es− em ∈ Il+1, x1
m = 1,

22s−1 if x1− es ∈ Il+1
(∀ i ∈ B1, x1

i = x2
i

)
,

where B1 = {l +1, ...,A−1}, B2 = {s+1, ..., l} .

LEMMA 3. (Nagy) Let A ∈ N,
(
x1,x2

) ∈ G×G. Then

2AKκ
2A

(
x1,x2) = 1+

A−1

∑
j=0

2 jD2 j ,2 j

(
x1,x2)+ A−1

∑
j=0

2 jD2 j

(
x1) r j

(
x2)Kw

2 j

(
τ j
(
x2))

+
A−1

∑
j=0

2 jD2 j

(
x2) r j

(
x1)Kw

2 j

(
τ j
(
x1))

+
A−1

∑
j=0

2 jr j
(
x1 + x2)Kw

2 j

(
τ j
(
x1) ,τ j

(
x2)) .
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LEMMA 4. (Gát, Goginava, Nagy) Let x ∈ IN (x0, ...,xl−1,xl = 1,0, ...,0) and
j > N. Then ∫

IN

Kw
2 j (τ j (x+ t))dμ (t) � c

2l 1IN (0,...,0,xl=1,0,...,0) (x) .

LEMMA 5. (Gát, Goginava, Nagy) Let

x1 ∈ IN
(
x1
0, ...,x

1
s−1,x

1
s = 1,0, ...,0

)
,

x2 ∈ IN
(
x2
0, ...,x

2
l−1,x

2
l = 1,0, ...,0

)
,

0 � s � l < N.

Then for j > N we have∫
IN×IN

Kw
2 j

(
τ j
(
x1 + t1

)
,τ j
(
x2 + t2

))
dμ
(
t1,t2

)
� c

l

∑
m=s

2−l−m1IN(x1
0,...,x1

s−1,x
1
s =1,0,...,0,x2

m=1,0,...,0,x2
l =1,0,...,0)

(
x2) .

LEMMA 6. (Gát, Goginava, Nagy) Let
(
x1,x2

)∈ IN×IN
(
x2
0, ...,x

2
l−1,x

2
l = 1,0, ...,0

)
,

l = 0, ...,N−1 . Then for j > N we have∫
IN×IN

Kw
2 j

(
τ j
(
x1 + t1

)
,τ j
(
x2 + t2

))
dμ
(
t1, t2

)
� c

N−1

∑
s=l

2−l−s1IN(0,...,0,x2
l =1,0,...,0,x2

s =1,0,...,0)
(
x2) .

5. Proofs of Main Results

Proof of Theorem 1. Let A ∈ P and

fA
(
x1,x2) :=

(
D2A+1

(
x1)−D2A

(
x1))(D2A+1

(
x2)−D2A

(
x2)) .

It is evident that

f̂ k
A (i, j) =

{
1, if i, j = 2A, ...,2A+1−1,
0, otherwise.

Then we can write that

Sk
j, j fA

(
x1,x2)=

⎧⎪⎨⎪⎩
0, if j = 0, ...,2A,(
Dj
(
x1
)−D2A

(
x1
))(

Dj
(
x2
)−D2A

(
x2
))

, if j = 2A+1, ...,2A+1−1

fA
(
x1,x2

)
, j � 2A+1.

(2)
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We have

f ∗A
(
x1,x2) = sup

j

∣∣S2 j ,2 j fA
(
x1,x2)∣∣= ∣∣ fA (x1,x2)∣∣ , (3)

‖ fA‖Hp
= ‖ f ∗A‖p = ‖D2A‖2

p = 22A(1−1/p).

Since
Dk

j+2A (x)−Dk
2A (x) = w2A (x)Dw

j (τA (x)) , j = 1,2, ...,2A,

from (2) we obtain

σ# fA
(
x1,x2) = sup

n
|σ k

2n fA(x1,x2)|. �
∣∣σ2A+1 fA(x1,x2)

∣∣ (4)

=
1

2A+1

∣∣∣∣∣2
A+1−1

∑
j=0

Sk
j, j

(
fA;x1,x2)∣∣∣∣∣

=
1

2A+1

∣∣∣∣∣2
A+1−1

∑
j=2A+1

(
Dk

j

(
x1)−D2A

(
x1))(Dk

j

(
x2)−D2A

(
x2))∣∣∣∣∣

=
1

2A+1

∣∣∣∣∣2
A−1

∑
j=1

(
Dk

j+2A

(
x1)−D2A

(
x1))(Dk

j+2A

(
x2)−D2A

(
x2))∣∣∣∣∣

=
1

2A+1

∣∣∣∣∣2
A−1

∑
j=1

Dw
j

(
τA
(
x1))Dw

j

(
τA
(
x2))∣∣∣∣∣

=
1
2

∣∣Kw
2A

(
τA
(
x1) ,τA (x2))∣∣ .

Then from Lemma 2 we obtain∫
G×G

∣∣Kw
2A

(
τA
(
x1) ,τA (x2))∣∣1/2

dμ
(
x1,x2) (5)

=
∫

G×G

∣∣Kw
2A

(
x1,x2)∣∣1/2

dμ
(
x1,x2)

�
A−1

∑
m1=0

1

∑
x1
m1+1

=0

· · ·
1

∑
x1
A−1=0

∫
IA

(
0,...,0,x1

m1=1,x1
m1+1

,...,x1A−1

)
×IA

(
0,...,0,x1

m1=1,x1
m1+1

,...,x1A−1

)

∣∣K2A

(
x1,x2)∣∣1/2

dμ
(
x1,x2)

� c
A−1

∑
m1=0

2m1
1

∑
x1
m1+1

=0

· · ·
1

∑
x1
A−1=0

∫
G×G

1
IA
(
0,...,0,x1

m1=1,x1
m1+1

,...,x1
A−1

) (x1)
×1

IA
(
0,...,0,x1

m1=1,x1
m1+1

,...,x1
A−1

) (x2)dμ (x1,x2)
� c

A−1

∑
m1=0

2m1
2A−m1 1

22A � cA
2A ,
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Combining (3), (4) and (5) we have∥∥σ# fA
∥∥

1/2

‖ fA‖H1/2

� cA2

22A22A(1−2) � cA2 → ∞ as A → ∞.

Theorem 1 is proved. �

Proof of Theorem 2. We shall apply Lemma 1, we may suppose that a ∈ L∞ is a
1/2-atom with support IN . Since σ2Aa

(
x1,x2

)
if A � N we may assume that A > N.

Suppose that ρ = c2λ for some λ ∈ N.
It is evident that

μ
{(

x1,x2) ∈ IN × IN :
∣∣σ#a

(
x1,x2)∣∣> c2λ

}
(6)

= μ
{(

x1,x2) ∈ IN × IN :
∣∣σ#a

(
x1,x2)∣∣> c2λ

}
+μ
{(

x1,x2) ∈ IN × IN :
∣∣σ#a

(
x1,x2)∣∣> c2λ

}
+μ
{(

x1,x2) ∈ IN × IN :
∣∣σ#a

(
x1,x2)∣∣> c2λ

}
= A+B+C.

Using Lemma 3 for
(
x1,x2

) ∈ IN × IN we write

σ2Aa
(
x1,x2)

=
1
2A

∫
IN×IN

a
(
t1, t2

)(
1+

A−1

∑
j=0

2 jD2 j ,2 j

(
x1 + t1,x2 + t2

)
+

A−1

∑
j=0

2 jD2 j

(
x1 + t1

)
r j
(
x2 + t2

)
Kw

2 j

(
τ j
(
x2 + t2

))
+

A−1

∑
j=0

2 jD2 j

(
x2 + t2

)
r j
(
x1 + t1

)
Kw

2 j

(
τ j
(
x1 + t1

))
+

A−1

∑
j=0

2 jr j
(
x1 + t1 + x2 + t2

)
Kw

2 j

(
τ j
(
x1 + t1

)
,τ j
(
x2 + t2

)))
dt1dt2

=
1
2A

∫
IN×IN

a
(
t1, t2

) A−1

∑
j=N+1

2 jD2 j

(
x1+t1

)
r j
(
x2+t2

)
Kw

2 j

(
τ j
(
x2+t2

))
dt1dt2

+
1
2A

∫
IN×IN

a
(
t1,t2

) A−1

∑
j=N+1

2 jD2 j

(
x2+t2

)
r j
(
x1+t1

)
Kw

2 j

(
τ j
(
x1+t1

))
dt1dt2

+
1
2A

∫
IN×IN

a
(
t1,t2

) A−1

∑
j=N+1

2 jr j
(
x1+t1+x2+t2

)
Kw

2 j

(
τ j
(
x1+t1

)
,τ j
(
x2+t2

))
dt1dt2

= σ (1)
2A a

(
x1,x2)+σ (2)

2A a
(
x1,x2)+σ (3)

2A a
(
x1,x2) . (7)
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Let
(
x1,x2

)∈ IN
(
x1
0, ...,x

1
s−1,x

1
s = 1,0, ...,0

)×IN
(
x2
0, ...,x

2
l−1,x

2
l = 1,0, ...,0

)
, 0 �

s � l < N . Using (1), Lemma 5 and the fact that |a|� c24N we have

σ (1)
2A a

(
x1,x2)= 0, (8)

σ (2)
2A a

(
x1,x2)= 0, (9)∣∣∣σ (3)

2A a
(
x1,x2)∣∣∣

� 1
2A

A−1

∑
j=N+1

2 j
∫

IN×IN

∣∣a(t1,t2)∣∣∣∣Kw
2 j

(
τ j
(
x1 + t1

)
,τ j
(
x2 + t2

))∣∣dμ (t1, t2)
� c

24N

2A

A−1

∑
j=N+1

2 j
l

∑
m=s

2−l−m1IN(x1
0,...,x

1
s−1,x1

s =1,0,...,0,x2
m=1,0,...,0,x2

l =1,0,...,0)
(
x2) (10)

� c
24N

2l

l

∑
m=s

2−m1IN(x1
0,...,x1

s−1,x
1
s =1,0,...,0,x2

m=1,0,...,0,x2
l =1,0,...,0)

(
x2) .

Let λ > 4N. Then it is evident that

μ
{(

x1,x2) ∈ IN × IN : sup
A>N

∣∣∣σ (3)
2A a

(
x1,x2)∣∣∣� c2λ

}
= 0.

Hence we can suppose that λ � 4N.
Let 2N < λ � 4N. Then by (10) and from the simple calculation we can write

μ
{(

x1,x2) ∈ IN × IN : sup
A>N

∣∣∣σ (3)
2A a

(
x1,x2)∣∣∣� c2λ

}
(11)

�
2N−[λ/2]

∑
s=0

2N−[λ/2]

∑
m=s

4N−[λ ]−m

∑
l=m

2s

22N +
3N−[λ ]

∑
s=0

2N−[λ/2]

∑
l=s

l

∑
m=s

2s

22N

+
3N−[λ ]

∑
s=0

N

∑
l=2N−[λ/2]

4N−[λ ]−l

∑
m=s

2s

22N +
2N−[λ/2]

∑
s=3N−[λ ]

2N−[λ/2]

∑
l=s

l

∑
m=s

2s

22N

+
2N−[λ/2]

∑
s=3N−[λ ]

4N−[λ ]−s

∑
l=2N−[λ/2]

4N−[λ ]−l

∑
m=s

2s

22N

� c
2N−[λ/2]

∑
s=0

(2N−λ/2− s+1)2

22N−s

� c

2λ/2
.

Let 0 < λ � 2N . Then we have

μ
{(

x1,x2) ∈ IN × IN : sup
A>N

∣∣∣σ (3)
2A a

(
x1,x2)∣∣∣� c2λ

}
(12)

� c
N

∑
s=0

N

∑
l=s

l

∑
m=s

2s

22N � c
2N � c

2λ/2
.
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Combining (8)-(12) we obtain that

A � c

2λ/2
. (13)

Let
(
x1,x2

) ∈ IN × IN
(
x2
0, ...,x

2
l−1,x

2
l = 1,0, ...,0

)
, 0 � l < N . Then we can write

σ2Aa
(
x1,x2)= σ (1)

2A a
(
x1,x2)+σ (3)

2A a
(
x1,x2) (14)

Using (1), Lemma 4 and the fact that |a| � c24N we have∣∣∣σ (1)
2A a

(
x1,x2)∣∣∣ � c

24N

2A

A−1

∑
j=N+1

2 j
∫

IN×IN

D2 j

(
x1 + t1

)
Kw

2 j

(
τ j
(
x2 + t2

))
dμ
(
t1,t2

)
� c

24N

2A

A−1

∑
j=N+1

2 j
∫
IN

Kw
2 j

(
τ j
(
x2 + t2

))
dμ
(
t2
)
.

� c
24N

2l 1IN(0,...,0,x2
l =1,0,...,0)

(
x2) .

Then from the simple calculation we can write

μ
{(

x1,x2) ∈ IN × IN : sup
A>N

∣∣∣σ (1)
2A a

(
x1,x2)∣∣∣� c2λ

}
(15)

� c
4N−[λ ]

∑
l=0

1
22N � c

4N−λ
22N � c

2λ/2
.

For σ (3)
2A a

(
x1,x2

)
we have (see Lemma 6 )

∣∣∣σ (3)
2A a

(
x1,x2)∣∣∣ � 1

2A

A−1

∑
j=N+1

2 j
∫

IN×IN

∣∣a(t1,t2)∣∣Kw
2 j

(
τ j
(
x1 + t1

)
,τ j
(
x2 + t2

))
dt1dt2

� c24N

2A

A−1

∑
j=N+1

2 j
N−1

∑
s=l

2−l−s1IN(0,...,0,x2
l =1,0,...,0,x2

s =1,0,...,0)
(
x2)

� c24N

2l

N−1

∑
s=l

2−s1IN(0,...,0,x2
l =1,0,...,0,x2

s=1,0,...,0)
(
x2) .

Let 2N < λ � 4N . Then from the simple calculation we can write

μ
{(

x1,x2) ∈ IN × IN : sup
A>N

∣∣∣σ (3)
2A a

(
x1,x2)∣∣∣� c2λ

}
(16)

� c

{
2N−[λ/2]

∑
l=0

4N−[λ ]−l

∑
s=l

1
22N +

2N−[λ/2]

∑
s=0

s

∑
l=0

1
22N +

N

∑
s=2N−[λ/2]

4N−[λ ]−s

∑
l=0

1
22N

}

� c(2N−λ/2)2

22N � c

2λ/2
.



WEAK TYPE INEQUALITY 237

Let 0 < λ � 2N . Then we have

μ
{(

x1,x2) ∈ IN × IN : sup
A>N

∣∣∣σ (3)
2A a

(
x1,x2)∣∣∣� c2λ

}
(17)

� c
N

∑
s=0

s

∑
l=0

1
22N � cN2

22N � c

2λ/2
.

Combining (14)-(17) we obtain that

B � c

2λ/2
. (18)

Analogously, we can prove that

C � c

2λ/2
. (19)

Combining (6), (13), (18) and (19) we obtain that

2λ/2mes
{(

x1,x2) ∈ IN × IN :
∣∣σ#a

(
x1,x2)∣∣> c2λ

}
� c < ∞.

Theorem 2 is proved. �
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