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THE WEAK TYPE INEQUALITY FOR THE MAXIMAL
OPERATOR OF THE MARCINKIEWICZ-FEJER MEANS OF
THE TWO-DIMENSIONAL WALSH-KACZMARZ SYSTEM

USHANGI GOGINAVA

(Communicated by J. Pecari¢)

Abstract. The main aim of this paper is to prove that the maximal operator 6" of the Marcin-
kiewicz-Fejér means of the two-dimensional Fourier series with respect to the Walsh-Kaczmarz
system is bounded from the martingale Hardy space H)/, to the space weak-L;/; and is not
bounded from the martingale Hardy space Hj, to the space L/, provided that the supremum
in the maximal operator is taken over spatial indices.

1. Introduction

In 1939 Marcinkiewicz [4] proved for the two-dimensional trigonometric sys-
tem that the Marcinkiewicz means of a function converge to the function itself al-
most evrywhere for all f € LlogL([0,27]?). Zhizhiashvili [14] improved this result
for f € L(]0,27]?).

For the two-dimensional Walsh-Fourier series Weisz [10] proved that the maximal

operator
n—1

>S5 (f)

j=0

1
o'f:=sup—

n>11

is bounded from the two-dimensional dyadic martingale Hardy space H), to the space
L, for p>2 /3. In [3] the author showed that in theorem of Weisz the assumption
p >2/3 is essential.
In 1948 Sneider [9] introduced the Walsh-Kaczmarz system and showed that the
inequality
Dy (x)

limsup ——*
ogn

n—oo

>C>0

holds a.e. In 1974 Schipp [6] and Young [13] proved that the Walsh-Kaczmarz system
is a convergence system. Skvorcov [8] in 1981 showed that the Fejér means with respect
to the Walsh-Kaczmarz system converge uniformly to f for any continuous functions
f. Gat [1] proved, for any integrable functions, that the Fejér means with respect to the
Walsh-Kaczmarz system converge almost everywhere to the function. Gat’s Theorem
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was extended by Simon [7] to H), spaces, namely, he proved that the maximal operator
of Fejér means ¢* of the one-dimensional Fourier series with respect to the Walsh-
Kaczmarz system is bounded from Hardy spaces H, to the spaces L, for p > 1/2.
He also showed (H),L,)-boundedness for every p > 0 if the maximal operator of the
Fejér means is considered only of order 2". In the endpoint case p = 1/2 Weisz [12]
proved that 6™ is bounded from the Hardy space H, /, to the space weak-L ;.

In [2] it is proved that the maximal operator

|

# k

o' f i=sup— SE(f
n>ll)2” Zo 7. )‘

is bounded from the Hardy space H, to the space L, for p > 1/2.The main aim of
this paper is to prove that for the boudedness of the maximal operator 6* f from the
Hardy space H), to the space L, the assumption p > 1/2 is essential, In particular,
we prove that the maximal operator 6* f is not bounded from the Hardy space H, /2 to
the space Ly, (see Theorem 1). By interpolation it follows that o*f is not bounded
from the Hardy space H,, to the space weak-L,, for 0 < p < 1/2. In the endpoint case
p = 1/2 we proved that (see Theorem 2) 6*f is bounded from the Hardy space H, )
to the space weak-Lj ;.

2. Definitions and Notation

Let P denote the set of positive integers, N:=PU{0}. Denote Z, the discrete
cyclic group of order 2, that is Z, = {0, 1}, where the group operation is the modulo
2 addition and every subset is open. The Haar measure on Z; is given such that the
measure of a singletion is 1/2. Let G be the complete direct product of the countable
infinite copies of the compact groups Z,. The elements of G are of the form x =
(%0, X1 5 -y Xg, -..) With xx € {0, 1} (k € N). The group operation on G is the coordinate-
wise addition, the measure (denote by ) and the topology are the product measure
and topology. The compact Abelian group G is called the Walsh group. A base for the
neighborhoods of G can be given in the following way:

IO (X) = G7 In (.X') = In (x07"'axn*1) = {y €G: y= (x07-~-axn717)’n7)’n+17-")}a
(xe G,neN).

These sets are called the dyadic intervals. Let 0 = (0:i € N) € G denote the null
element of G, I, :=1,(0) (n € N). Set ¢, := (0,...,0,1,0,...) € G the n th coordinate
of which is 1 and the rest are zeros (n € N). Denote I, := G\ I,,.

For k € N and x € G denote

the k-th Rademacher function. If n € N, then n = i n;2", where n; € {0,1} (i € N),
=0

i
i. e. n is expressed in the number system of base 2. Denote |n| :=max{j € N:n; # 0},

that is, 21"l < n < 2+,
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The Walsh-Paley system is defined as the sequence of Walsh-Paley functions:

Jn|-1
wn (1) = [T (e ()™ = 7 () (~1) "™ (xeGneP).

k=0

oo

The Walsh-Kaczmarz functions are defined by kp := 1 and for n > 1
|n|—1

() 1= 71 () [T (g1 ()™

For A € N define the transformation 74 : G — G by
TA(X) 1= (XA— 1,042 e, X0, XA, XA+ 15 -+ )
By the definition of 74 (see [8]), we have
K (X) = 7 ()W, ol (T1ay (x)) (n €N, x € G).

The Dirichlet kernels are defined by

n—1
DY (x) := 2 o (x),
k=0
where oy = wy or kj. Recall that

2 ifxel,

- 1
0, ifxel,. M

Das(x) := D3 (x) = D (x) = {

The Fourier coefficients (if f is an integrable function), the partial sums of Fourier
series, the Fejér means and the Fejér kernels are defined as follows:

AOF

n—1
| rou SE = 3, o)
G k=0

1 n—1 n—1

oY) = = XS, KEW) =1 S DE(x).
k=0 k=0

Next, we introduce some notation with respect to the theory of two-dimensional
Walsh system. The group G x G is called the two-dimensional Walsh group. The
Kroneker product (04, : m,n € N)of the two Walsh(Kaczmarz) system is said to be
the two-dimensional Walsh(Kaczmarz) system. Thus

Ol (xl,xz) 1= 0 () o (%) .

The two-dimensional Fourier coefficients, the rectangular partial sums of the Fourier
series, the Marcinkiewicz means, the Dirichlet kernels and the Matcinkiewicz kernels
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are defined as follows

nlflnzfl

fa(nbnz) = /Gfoanl,np 5317,12f(x1>x2) = 2 2 fa(kl7k2)akl7k2(xl>x2)>

K1=0k=0

o fx!,x?) = —Zskkfx %),

n—1

1
D,ffl(xl,xz) = D,f‘(xl)Dlo‘(xz), K (x1 X ZDkk X x2)

The o -algebra generated by the dyadic 2-dimensional [; x [; cube of measure
27% x 27k will be denoted by Fy (k € N).

Denote by f = ( f ne N) one-parameter martingale with respectto (F;,,n € N)
(for details see, e. g. [11] The maximal function of a martingale f is defined by

= sup ’f

neN

In case f € L; (G x G), the maximal function can also be given by

. 1
f (.)Cl’xz) = sup ( ( l)xl,l(xz)) / f(u17u2)d‘u (u17u2) 7

neN ) X0 ()

(xl,xz) eGxG.

For 0 < p < oo the martingale Hardy space H,(G x G) consists all martingales for
which

11, == 177, <o

If f €L (G xG) then it is easy to show that the sequence (So2 22 (f) :n €N) is
a martingale. If f is a martingale, that is f = ( FO, 1) ...) then the Walsh-Fourier
coefficients must be defined in a little bit different way:

P =lim [0 () o (x1) o () dp (+1.)
GxG

The Walsh-Fourier coefficients of f € L; (G x G) are the same as the ones of the
martingale (Sy 2 (f) : n € N) obtained from f.
For the martingale f we consider the maximal operator

o' flx' ) = Sup\ ()],

A bounded measurable function a is a p-atom, if there exists a dyadic 2-dimensional
cube 12, such that
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a) [adu=0;

2
b) flall.. < u(1?)~"/7;
¢)supp a C I2.

3. Formulation of Main Results

THEOREM 1. The maximal operator 6* is not bounded from the Hardy space
H, > (G x G) to the space Ly, (G x G).

THEOREM 2. The maximal operator c*
Hy > (G x G) to the space weak-Ly , (G x G).

is bounded from the Hardy space

4. Auxiliary Propositions
We shall need the following lemmas (see [2, 5, 11]).

LEMMA 1. (Weisz) Suppose that an operator V is sublinear and, for some 0 <
p<l1
supp? u{x € (Gx G)\ (I xI):|Va(x)|>p} <cp < oo,
p>0
for every p-atom a, where I denote the support of the atom. If V is bounded from L,
to Ly, fora fixed 1 < py < oo, then

||Vf||weak-Lp(G><G) < Cp HfHHp .
LEMMA 2. (Nagy) Let A,s,l € Ns <1 <A, (x',x?) € (,\L1) X (I \I111)-
Then
0 if JieBy, x! #£x3,

0 if VieBy,xl=x}3ImeBy, x! —e;—e ¢Il+1,x1:1,
K (%) = .
25+tm=2if VlEBl,x —x HMEBz,x —es—em €y, x :1

221 if xl—es el (VlEBl, xl. :x%),
where By ={l+1,..,A— 1}, By={s+1,...,1}.

)

LEMMA 3. (Nagy) Let A € N, (x!,x?) € Gx G. Then

A—-1 A—1
25 (7 %) =1+ 3 20Dy, (%) + 3 27Dy (x1) 1 () K (17 (x7))
j=0 =0

+A21 2Dy (#) rj (&) Ky (77 ("))
22’ () Ky (7 () o7y (7))
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LEMMA 4. (Git, Goginava, Nagy) Ler x € Iy (xo,...,x;—1,% = 1,0,...,0) and

j>N. Then

C
/ (T (x+1))du(t) < ?11N(0,...,0,x1:1,0,...,0) (x).

LEMMA 5. (Gét, Goginava, Nagy) Let
xlely (x(l),...,xslfl,xsl = 1,0,...70),
¥ ely (x%7'."x%7l’x% = 1,0,...,0)7
0<s<I<N.
Then for j > N we have
[ K@) 5 (2 7)) du o)
Iy xIy

l

2
Iy (!l 21=10,...,0,2,=1,0,....0,:2=1,0....,0) (x )
m=s

LEMMA 6. (Gdt, Goginava, Nagy) Let (x',x?) € Iy x Iy (53, ...,x7_,x7 = 1,0, ...,

1=0,...N—1. Then for j > N we have

/ Ky (17 (' +11) 1y (2 2) ) dp (1,2)

Iy <1y

N-1
0212 - s11,\,( AAAAA 0,2=10,....0,2=10,...,0) (xz).
S

5. Proofs of Main Results

Proof of Theorem 1. Let A € P and

fa (61.%) 1= (Dyeos () = Dys () (Daecs (2) ~ D ().
It is evident that B el
%o~ A =282 — 1,
fald) = {0, otherwise.

Then we can write that

0,if j=0,...,24,

Sk (31 a?) =3 (Dj (x1) =Dya (x1)) (Dj (¥2) —Dpa (x2)) , if j =24+1,..., 24+~

fA (-x1>-x2)7 .]2 2A+1~

0),

1
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We have
f; (xlaxz) = Sup|S2j’2ij (-x17-x2)| = |fA (xlaxz) | ) (3)
J

* 2 _
||fAHH,, = HfAHp = HD2A||,, — 92A(1-1/p)

Since
Dk+2A( ) Dl;A ()C) = Woa (‘x)D‘j/V (TA (.X)), .]: 1727"'72A>

from (2) we obtain

o fa (xl,xz) sup|0'2an(x x2)]. |0'2A+1fA(X x2)| 4)
1 2A+1_1
= AT 2 Sj. (fasx'x?)
1 2A+171
—@TZ(ww>wwn@w>www
j=24+1
1 ]2t
=@T§@&m>dawn@%w%mMﬁﬂ
1 ! w 1 w 2
= gart | 2 D) (@ (@) P (= ()
=

= 3R (5 () 7 ()]

Then from Lemma 2 we obtain

/m;m@mu@mw%wﬂﬂ> )
GxG
_ /| ‘u(l 2)
GxG
A—1 1 1 12
>3 Y - ¥ / [Kor (612) e (¢ 2)
m!'=0x! = =0 x}Fl:O

1
1o Xa—1
m'=0 x11+1*0 ¥4_1=0 GxG H
2 1.2
x1 x“)du (x",x
1 1 1
IA(O ..... 0x! =1, 1,...,xA71>( ) ( ’ )
A—1
1 11 cA
A—
>c 3 2mat 394 7 A



234 USHANGI GOGINAVA

Combining (3), (4) and (5) we have

o™ fall,p  ea?

2
Z 52492A(1-2) Z A" —ooas A — oo

[all,

Theorem 1 is proved. [J

Proof of Theorem 2. We shall apply Lemma 1, we may suppose that a € L., is a
1/2-atom with support Iy. Since 0,sa (xl ,xz) if A <N we may assume that A > N.

Suppose that p = ¢2* for some A € N.

It is evident that

u{ (P e WXy s o'a (x,2)| > 2t} ©6)
= u{(xl,xz) elyxIy:|o*a(x', )| > (:2’1}
+u { ("2?) ety xIy: [o'a(x',2?)| > c2’1}
+u{(1,2) €Ty xIy: |ofa (x1,2)| > 2t}
=A+B+C.
Using Lemma 3 for (x',x%) € Iy x Iy we write
oya(x',x?)

A—1
= ZLA / a(t',r?) (1 + Y 2Dy 5 (x 11 X +1%)
=0

Iy xIy

A—1
+ 2 2jD2j ()Cl -‘rll) rj ()Cz-‘rlz) KZWJ (T/’ ()Cz-‘rlz))
=0

A-1
+ 2 2jD2j ()Cz-‘rlz) rj ()Cl -‘rll)K;j (T/’ ()Cl -‘rll))
=0

A—1
)R () )
j=0

A-1
= ZLA / a(;17[2) 2 2jD2j (xl—i—tl)rj (x2+t2) K;vj (Tj (x2+t2))dt1dt2
INXIN j:N+1

A-1
tan [ ) 3 2Dy () () K (5 (x40l
INXIN j:N+1

A-1
+2LA / a(;l,tz) 2 2jrj (x1+t1+x2+t2) Ky, (’L’j (x1+t1) 1 (x2+t2))dt1dt2
Iy <1y j:N+1

= gz(/pa (! ?) + Géi)a (! ?) + ng)a (! 2. 7
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Let (xl,xz) ely (x(l),...,xiil,x‘% = 1,0,...,0) X Iy (x%,...,)clzfl,xl2 = 1,0,...70), 0<
s <1< N. Using (1), Lemma 5 and the fact that |a| < ¢2*¥ we have

ola(x',?) =0, ®)
olVa(x',2) =0, ©)
oa (x|
1 Ad j 1.2 W 1, .1 2.2 1.2
<o 2 2 [ [a( )[R (5 (x4 ) (24 ) [ du 11%)
j:N+l INXIN
N AL L ,
SEoa % 12f 2 2 IIN(x(l),...,)cLl,)c}.:1,0,...,0,)(,2”:1,O,...,O,xlzzl,O,...,O) (%) (10)
j=N+ m=s
24N 1 . )
< o 2 2 11N(x(1),m,xj_71A,x.g:1,0,m,0,x,2n:1,o,m,o,xlzzl,o,m,o) (x ) .

Let A > 4N. Then it is evident that
u { (xl,xz) €Iy xIy: sup ’Gz(i)a (xl,xz)’ > c2)“} =0.
ASN

Hence we can suppose that A < 4N.
Let 2N < A < 4N. Then by (10) and from the simple calculation we can write

u{(xl,xz) elyxIy: sup‘cz(f)a (xl,xz)’ 202)”} (11)
A>N
N2 /22N-[2 /2 4N-(A-m 55 IN-[A]2N=[2/2] 1 o
< 2+ 2
s=0 m=s I=m 22N s=0 I=s m=s 22N

NZ[A] N ANA 55 NIA/202N—[2/2] 1 s

Py Y ey

s=0 [=ON_[1/2] m=s s=3N-[A] I=s m=s 22N
IN—[A/2] 4N—[Al=s AN—[A]-T 55
TSV R
s=3N—[A]I=2N—[A /2] m=s
WL ON A2 —54+1)
< ¢ 2 22Nfs
s=0
< C
S W
Let 0 <A < 2N. Then we have
H{(xl7x2)ETNXTN:EHR‘(’S)“(xl,XZ)‘>c2’1} (12)
>

N N 1 28 c c
Se XY Y 5w Sow S i

s=0]/=sm=s
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Combining (8)-(12) we obtain that

C
A< 57 (13)

Let (xl,xz) elyxly (x(z),...,xlzfl,xl2 = 1,0,...,0), 0 <! < N. Then we can write

opa(x'?) = opa (' x?) + ol (x',2) (14)

Using (1), Lemma 4 and the fact that |a| < 2*N we have

4N A-1
ol )| < Zr T 2 [ Dy () K (5 (2 +)) du (1)
j:N+1 INXIN
24N A—1
3 2f/ v (g (2 +12) ) du ().
j=N+1 Iy
24N

2
< 07IIN(0,...,0,x,2:1,0,...,0) (x ) ‘

Then from the simple calculation we can write

u{( ) €Iy xIy:sup G(l)a (xl,xz)’ 2(;2’1} (15)

A>N

4AN—[A]
1 4N7/1 c
sc 2 v S A/2"

For 0'2<A>

A—1 .
ofa(x! ) < & 3 2 [l )Ry (g (1) (42 it

Jj=N+1

a(x',x*) we have (see Lemma 6 )

Iy xIy
DN A= N-d

< A > 2/ > 27[7S11N(O,M,O,xlz:l,O,M,O,x%:LO,M,O) (xz)
j=N+1 s=l

C24NN1 g 5
22 Ly (0...0.2=10...0.2=10... o)(x)-

Let 2N < A < 4N. Then from the simple calculation we can write

u { (x',x?) € Iy x Iy : sup ‘62(2>a (xl,xz)‘ > CZA} (16)
A>N
W-[A/24N-[A]-1 a2 s N N-P-s
<2 TS T 3 S
=0 =l s=2N_[2/2] =0

c(2N—1/2) _ ¢
= 22N YA




—

(7]
(8]

[10]
(11]

[12]
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Let 0 <A < 2N. Then we have

u { (xl,xz) €Iy x1Iy:sup Gz(i)a (xl,xz) ‘ > c2’1} (17)
A>N
N s 2
1 cN c
<Y Y o < v < o5
=& 22N 22N 2A/2

Combining (14)-(17) we obtain that

C
B < Yk (18)
Analogously, we can prove that
C
C< i (19)

Combining (6), (13), (18) and (19) we obtain that
2*/2mes { (xl,xz) elyxlIy: |0'#a (xl,x2)| > cZA} < e < oo,

Theorem 2 is proved. [J
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