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MATRIX VERSIONS OF YOUNG’S INEQUALITY

TOMAŽ KOSEM

(Communicated by R. Mathias)

Abstract. A matrix majorization version of the general Young’s inequality xy � Φ(x) +Ψ(y)
is presented. Multivariate Young’s inequality is extended to the matrix setting by means of the
geometric mean of positive semidefinite matrices. Also some refined Hilbert-Schmidt norm gen-
eralizations of Young’s inequality are given and a symmetrized Young’s inequality for unitarily
invariant norms is proved.

1. Preliminaries

Let Mn be the space of n× n complex matrices. A norm |||·||| on Mn is called
unitarily invariant if |||UAV ||| = |||A||| for all A,U,V ∈ Mn with U,V unitary. Notation
A � B denotes the Löwner partial order, i.e., A � B if and only if B−A is a positive-
semidefinite matrix, where A,B are Hermitian. If not otherwise stated, a capital letter
will always denote a complex n× n matrix. Notations λ (A) and s(A) will denote
vectors of eigenvalues and singular values of a matrix A , respectively. We assume the
reader’s familiarity with the theory of majorization and Ky Fan principles (dominance,
maximum, majorization) (see e.g. [5], [17]). Notation 〈·, ·〉 will mean a standard scalar
product on Cn . Vectors from Cn will be denoted by small letters.

Whenever the term Young’s inequality turns up, we usually think of

|ab|� |a|p
p + |b|q

q , a,b ∈ C, 1
p + 1

q = 1,

but this is only a very special case of a general Young’s inequality, though the most
important one. In order to present the general version, we recall some definitions and
facts from [15].

DEFINITION 1.1. A Young’s function is a convex function Φ : R → [0,∞] , which
satisfies conditions Φ(x) = Φ(−x) , Φ(0) = 0 and limx→∞Φ(x) = +∞ . The function
Ψ : R → [0,∞] , defined by Ψ(y) = sup{x|y|−Φ(x) : x � 0} , is called the complemen-
tary function.
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It follows from the definition that Ψ(0) = 0, Ψ(−y) = Ψ(y) and Ψ is a convex
function satisfying limy→∞Ψ(y) = +∞ . It is also evident that the pair (Φ,Ψ) satisfies
Young’s inequality

xy � Φ(x)+Ψ(y), x,y ∈ R.

The complementary function Ψ is the smallest convex Young’s function that satisfies
the Young’s inequality.

It is a well known fact that the complementary function of Young’s function Φ(x)=
|x|p
p , p > 1 is Ψ(y) = |y|q

q , where 1
p + 1

q = 1. The example Φ(x) = |x| shows that the
complementary function of a continuous Young’s function on R can be a jump func-
tion. Namely, in this case

Ψ(y) =
{

0, |y| � 1
∞, |y| > 1

.

The definiton of the complementary function presented above is simple but not
informatory. Convexity enables us to obtain an alternative definition. Young’s function
Φ : [0,∞) → [0,∞] admits an integral representation of the form

Φ(x) =
∫ x

0
φ(t)dt, x � 0

where φ : [0,∞)→ [0,∞] is a nondecreasing left continuous function with φ(0) = 0. If
Φ(x) = +∞ for x > a then φ(x) = +∞ , x > a > 0. We let

ψ(u) = inf{t : φ(t) > u}, u � 0.

Then ψ(0) = 0 and ψ is a nondecreasing Borel function. Define

Ψ(y) =
∫ y

0
ψ(u)du, y � 0.

Then Ψ is a Young’s function and it follows from the next theorem that it is comple-
mentary to Φ (see [15]).

THEOREM 1.2. Let Φ : [0,∞) → [0,∞] be a Young’s function and let Ψ be asso-
ciated to Φ as above. Then they satisfy Young’s inequality

xy � Φ(x)+Ψ(y), x,y � 0,

with equality when y = φ(x) or x = ψ(y) .

Let us consider again the famous special case of Young’s inequality for a while
and survey some of its matrix generalizations. Bhatia and Kittaneh [7] obtained several
matrix versions of arithmetic-geometric mean inequality, for instance

s j(AB) � s j( 1
2 (A2 +B2)),

where A,B are positive semidefinite, and consequently

|||AB||| � ∣∣∣∣∣∣ 1
2 (A2 +B2)

∣∣∣∣∣∣
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for any unitarily invariant norm. They also observed

|||AB||| � 1
4

∣∣∣∣∣∣(|A|+ |B∗|)2
∣∣∣∣∣∣

for all matrices A,B and
λ j(AB) � λ j( 1

2(A2 +B2)),

where A,B are positive definite matrices, and consequently∣∣∣∣∣∣∣∣∣B1/2AB1/2
∣∣∣∣∣∣∣∣∣ �

∣∣∣∣∣∣ 1
2 (A2 +B2)

∣∣∣∣∣∣ .
Furuta and Yanagida [9] proved an operator version of Young’s inequality.

THEOREM 1.3. Let A and B be positive invertible operators on a Hilbert space
H . Then the following inequality holds for 0 � λ � 1 :

(1−λ )A+λB � A1/2(A−1/2BA−1/2)λA1/2 � ((1−λ )A−1 +λB−1)−1.

This theorem could be viewed as an operator version of the inequality between
generalized arithmetic, geometric and harmonic mean. The proof is very short and is
reduced to verifying the scalar inequality (1−λ )+λx � xλ for x � 0 and 0 � λ � 1.
Using their result consecutively it is easy to see the following corollary.

COROLLARY 1.4. Let A1,A2, . . . ,An be positive invertible operators on a Hilbert
space H . Then the following inequality holds for 0 � λi, i = 1,2, . . . ,n with λn > 0
and ∑n

i=1λi = 1 :

λ1A1 +λ2A2 + · · ·+λnAn � Gn(A1,A2, . . . ,An;λ1,λ2, . . . ,λn)

� (λ1A
−1
1 +λ2A

−1
2 + · · ·+λnA

−1
n )−1,

where Gn(−;−) is defined recursively by

Gn(A1,A2, . . . ,An;λ1,λ2, . . . ,λn)

:= G2

(
A1,Gn−1

(
A2, . . . ,An;

λ2
λ2+···+λn

, . . . , λn
λ2+···+λn

)
;λ1,λ2 + · · ·+λn

)
,

G2(A,B;1−λ ,λ ) := A1/2(A−1/2BA−1/2)λA1/2.

Ando [1] proved a singular value version of Young’s inequality.

THEOREM 1.5. Let p,q > 1 with 1
p + 1

q = 1 . Then for any pair A,B of matrices
there is a unitary matrix U depending on A,B such that

U∗|AB∗|U � 1
p |A|p + 1

q |B|q.
The inequality in the theorem can be reformulated into

s j(AB∗) � s j( 1
p |A|p + 1

q |B|q), j = 1,2, . . . ,n.

Similarly as in Furuta-Yanagida case we can extend Ando’s result.
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COROLLARY 1.6. Let A1,A2, . . . ,An be positive semidefinite matrices and p1, p2,
. . . , pn > 1 real numbers satisfying 1

p1
+ 1

p2
+ · · ·+ 1

pn
= 1 . Then there exist unitary

matrices U1,U2, . . . ,Un depending on A1,A2, . . . ,An such that

|A1U1A2U2 · · ·AnUn| � 1
p1

Ap1
1 + 1

p2
Ap2

2 + · · ·+ 1
pn

Apn
n .

In fact, U1 may be chosen to be the identity matrix.

In the section that follows we will obtain a majorization version of general Young’s
inequality for eigenvalues, i.e.

λ (AB) ≺w λ (Φ(A)+Ψ(B)),

where A,B are positive semidefinite matrices and also consider the case of equality. In
the third section the multivariate version of Young’s inequality will be treated and the
noncommutative analogue of a product of nonnegative numbers will be the nth power of
the geometric mean of n positive semidefinite matrices. The fourth section is devoted
to Young’s inequalities for Hilbert-Schmidt norm, when the derivative of Φ is a convex
continuous function, and the last section deals with a symmetrized Young’s inequality.

2. Young’s inequality for eigenvalues

We begin this section with a short lemma (see [4, p. 69]), which will be useful in
the sequel.

LEMMA 2.1. Let A be a positive definite matrix and x,y arbitrary vectors. Then

〈Ax,x〉〈A−1y,y〉 � |〈x,y〉|2.

Proof. Write A = B2 , where B is a positive definite matrix. Then

〈Ax,x〉〈A−1y,y〉 = ‖Bx‖2 ∥∥B−1y
∥∥2

.

But
‖Bx‖∥∥B−1y

∥∥ � |〈Bx,B−1y〉| = |〈x,y〉|
by Cauchy-Schwarz inequality, which yields the desired result.

An alternative proof uses Cauchy-Schwarz inequality for inner product [·, ·] :=
〈A·, ·〉 . �

The following two lemmas (see [3] and references therein) will also be needed.

LEMMA 2.2. Let A be a Hermitian matrix with σ(A) contained in I and let f
be a convex function on I . Then for every unit vector x

f (〈Ax,x〉) � 〈 f (A)x,x〉.
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LEMMA 2.3. Let A be a Hermitian matrix. Then

k

∑
j=1

λ j(A) = max
k

∑
j=1

〈Ax j,x j〉 k = 1,2, . . . ,n,

where the maximum is taken over all choices of orthonormal vectors x1,x2, . . . ,xn .

Having these lemmas at our disposal, it is not difficult to prove the next theorem.
Similar steps and ideas of the proof can also be detected in [3].

THEOREM 2.4. Let A and B be positive semidefinite matrices. Then for a contin-
uous Young’s function Φ with a continuous complementary function Ψ the following
inequality holds:

λ (AB) ≺w λ (Φ(A)+Ψ(B)).

REMARK. The continuity assumption on functions Φ,Ψ is adopted here for the
sake of simplicity and clarity. In the general case the intervals of finiteness of Φ and Ψ
dictate the choice of matrices A and B , respectively.

Proof. Let us prove first the special case when B is invertible. The general case
will easily follow from the special one by continuity argument. Let x be a unit eigen-
vector for B1/2AB1/2 . We will establish the following:

〈B1/2AB1/2x,x〉 � 〈Ax,x〉〈Bx,x〉. (�)

We notice that 〈B1/2AB1/2x,x〉 is an eigenvalue for B1/2AB1/2 corresponding to eigen-
vector x .

Without loss of generality we may hence assume that B1/2AB1/2 = D , where D
is a diagonal matrix diag(d1,d2, . . . ,dn) and x is the first standard unit vector e1 =
(1,0, . . . ,0) . Then A = B−1/2DB−1/2 and

〈Ae1,e1〉 = 〈DB−1/2e1,B
−1/2e1〉

Write B−1/2e1 = (y1, . . . ,yn) . Then

〈DB−1/2e1,B
−1/2e1〉 = 〈(d1y1, . . . ,dnyn),(y1, . . . ,yn)〉 � d1|y1|2 = d1〈B−1/2e1,e1〉2.

We also have 〈Be1,e1〉 � 〈B1/2e1,e1〉2 by Lemma 2.2. Consequently

〈Ae1,e1〉〈Be1,e1〉 � d1〈B−1/2e1,e1〉2〈B1/2e1,e1〉2 � d1〈e1,e1〉4 = d1 = 〈De1,e1〉

by Lemma 2.1.
If the matrix B1/2AB1/2 is not diagonal or x 	= e1 , we choose a unitary matrix

U such that B1/2AB1/2 = U∗DU , where D is a diagonal matrix and Ux = e1 . Then
D = B̃1/2ÃB̃1/2 for B̃ = UBU∗, Ã = UAU∗ and we can use the special case.
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Let x1,x2, . . .xk be the orthonormal eigenvectors, corresponding to eigenvalues
λ1 � λ2 � · · · � λk of B1/2AB1/2 . Then we have

k

∑
i=1

λi(AB) =
k

∑
i=1

λi(B1/2AB1/2)

=
k

∑
i=1

〈B1/2AB1/2xi,xi〉

�
k

∑
i=1

〈Axi,xi〉〈Bxi,xi〉 (by (�))

�
k

∑
i=1

(Φ(〈Axi,xi〉)+Ψ(〈Bxi,xi〉) (scalar Young’s inequality)

�
k

∑
i=1

(〈Φ(A)xi,xi〉)+ 〈Ψ(B)xi,xi〉) (by Lemma 2.2)

=
k

∑
i=1

〈(Φ(A)+Ψ(B))xi,xi〉

�
k

∑
i=1

λi(Φ(A)+Ψ(B)) (by Lemma 2.3)

In the general case, when B is not necessarily invertible, we take ε > 0 and define
Bε := B+ εI , which is clearly invertible and we get by the special case

λ (ABε) ≺w λ (Φ(A)+Ψ(Bε)).

Since λ (ABε) and λ (Φ(A) +Ψ(Bε)) converge to λ (AB) and λ (Φ(A)+Ψ(B)) , re-
spectively, as ε ↓ 0, the proof is completed. �

We immediately obtain the following corollaries.

COROLLARY 2.5. Let A,B be arbitrary matrices, Φ and Ψ as above. Then for
every unitarily invariant norm |||·|||∣∣∣∣∣∣|AB∗|2∣∣∣∣∣∣ �

∣∣∣∣∣∣Φ(|A|2)+Ψ(|B|2)∣∣∣∣∣∣ .
COROLLARY 2.6. Let A,B be positive semidefinite matrices and p,q > 1 such

that 1
p + 1

q = 1 . Then for every unitarily invariant norm |||·|||∣∣∣∣∣∣∣∣∣B1/2AB1/2
∣∣∣∣∣∣∣∣∣ �

∣∣∣∣∣∣∣∣∣ 1
pAp + 1

qBq
∣∣∣∣∣∣∣∣∣ .

The case of equality is considered in the following theorem.

THEOREM 2.7. Let A,B be positive semidefinite matrices and suppose that Φ,Ψ
are such that Φ′ = f ,Ψ′ = f−1 , where f : [0,∞) → [0,∞) is a bijective increasing
continuous function with f (0) = 0 . Then

λk(AB) = λk(Φ(A)+Ψ(B)), k = 1,2, . . . ,n
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if and only if B = f (A) .

Proof. Considering the proof of Theorem 2.4 we obtain the chain of equalities

λk(AB) = λk(B1/2AB1/2) = 〈B1/2AB1/2xk,xk〉 = 〈Axk,xk〉〈Bxk,xk〉
= Φ(〈Axk,xk〉)+Ψ(〈Bxk,xk〉) = 〈Φ(A)xk,xk〉+ 〈Ψ(B)xk,xk〉,

from where we conclude

Φ(〈Axk,xk〉) = 〈Φ(A)xk,xk〉
Ψ(〈Bxk,xk〉) = 〈Ψ(B)xk,xk〉

which yields the fact that xk is also an eigenvector for A and B . Namely, Φ and Ψ are
strictly convex functions due to the properties of f , hence 〈Axk,xk〉 is a trivial convex
combination of eigenvalues of A , i.e., 〈Axk,xk〉 is an eigenvalue of A and analogously
for 〈Bxk,xk〉 . So we can diagonalize A and B simultaneously: without loss of general-
ity we take x j = e j, j = 1,2, . . . ,n and A = diag(a1,a2, . . . ,an),B = diag(b1,b2, . . . ,bn) .
Then akbk = Φ(ak)+Ψ(bk), k = 1,2, . . . ,n , which is possible only if bk = f (ak), k =
1,2, . . . ,n . But this last condition means exactly B = f (A) . �

3. Multivariate Young’s inequality

There are at least two possible multidimensional generalizations of Young’s in-
equality ([8, 14]). For our purpose the generalization of Cooper [8] will be appropriate.

THEOREM 3.1. Let φ1,φ2, . . . ,φn be continuous, increasing functions defined for
x � 0 . Let Fi(x) := xφi(x) and suppose that

n

∏
i=1

F−1
i (x) = x

for all x � 0 . Then
n

∏
i=1

ai �
n

∑
i=1

∫ ai

0
φi(x)dx

for all a1,a2, . . . ,an � 0 .

Cooper’s theorem can be proved using geometrically more intuitive Oppenheim’s
inequality ([14]).

THEOREM 3.2. If, for i = 1,2, . . . ,n, the function fi is a continuous non-negative
increasing function of x for x � 0 , then, provided that at least one of the numbers
f1(0), . . . , fn(0) is zero,

n

∏
i=1

fi(ti) �
n

∑
i=1

∫ ti

0
∏
j 	=i

f jd fi,

where ti � 0 and the integrals are taken in the sense of Riemann-Stieltjes.
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Cooper’s inequality now follows from Oppenheim’s result by considering a curve in
Rn with parametrization xi = F−1

i (t) . Oppenheim’s inequality has a nice geometrical
interpretation. Consider the curve in n -dimensional Euclidean space with rectangular
coordinates xi = fi(t) , where fi(t) is a continuous, non-negative, and increasing for
t � 0. The integral ∫ ti

0
∏
j 	=i

f jd fi

represents the volume Vi bounded by the coordinate planes, other than xi and the cylin-
ders which project the curve onto these coordinate planes.

The assumption ∏n
i=1 F−1

i (x)= x in Theorem 3.1 implies φi(0)= 0 and φi(x)→∞
as x → ∞ for all i . The following lemma (see [8]) convinces us that Theorem 3.1 is
truly a generalization of the inequality

ab �
∫ a

0
φ(t)dt +

∫ b

0
φ−1(s)ds,

where a,b � 0 and φ is an appropriate function.

LEMMA 3.3. If φ : [0,∞) → [0,∞) is a bijective continuous increasing functions,
satisfying φ(0) = 0 and ψ = φ−1 , then functions F1,F2 , defined by F1(x) := xφ(x)
and F2(x) := xψ(x) , satisfy

F−1
1 (x)F−1

2 (x) = x

for all x � 0 and conversely.

In [2] authors listed what properties should be required for a reasonable geometric
mean G(A,B,C) of three positive definite matrices A,B,C . It is clear what the corre-
sponding conditions would be for k matrices when k > 3.

P1 Consistency with scalars. If A,B,C commute then G(A,B,C) = (ABC)1/3 .

P1’ This implies G(A,A,A) = A .

P2 Joint homogeneity. G(aA,bB,cC) = (abc)1/3G(A,B,C) (a,b,c > 0) .

P2’ This implies G(aA,aB,aC) = aG(A,B,C) (a > 0) .

P3 Permutation invariance. For any permutation π(A,B,C) of (A,B,C) we have
G(A,B,C) = G(π(A,B,C)) .

P4 Monotonicity. The map (A,B,C) �→ G(A,B,C) is monotone, i.e., if A � A0,B �
B0,C �C0 , then G(A,B,C) � G(A0,B0,C0) in the positive semidefinite ordering.

P5 Continuity from above. If {An},{Bn},{Cn} are monotonic decreasing sequences
(in the positive semidefinite ordering) converging to A,B,C , respectively, then
{G(An,Bn,Cn)} converges to G(A,B,C) .

P6 Congruence invariance. G(S∗AS,S∗BS,S∗CS)= S∗G(A,B,C)S for any invertible
S .
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Once a geometric mean for three positive definite matrices is defined so as to
satisfy P1-P6, by monotonicity we can uniquely extend the definition of G(A,B,C) for
every triple of positive semidefinite matrices (A,B,C) by setting

G(A,B,C) = lim
ε↓0

G(A+ εI,B+ εI,C+ εI).

We can derive a stronger form of P6 with help of P4 and P5:

P6’ G(S∗AS,S∗BS,S∗CS) � S∗G(A,B,C)S for all S .

The geometric mean of two positive definite matrices is uniquely defined via

G(A,B) = A#B := A1/2(A−1/2BA−1/2)1/2A1/2

but in the case of k -tuples (k > 2) we have at least two alternative definitions. In [2] an
inductive definition of a geometric mean was introduced. Suppose we have defined the
geometric mean G(X1, . . . ,Xk) of k positive definite matrices X1, . . . ,Xk . Consider the
transformation on (k+1)-tuples of positive definite matrices A = (A1, . . . ,Ak+1) by

T (A) := (G((Ai)i	=1),G((Ai)i	=2), . . . ,G((Ai)i	=k+1)).

We define the sequence {Tr(A)}∞r=1 . The limit of this sequence exists and has the form
(Ã, . . . , Ã) . We define G(A1, . . . ,Ak+1) to be Ã . So defined geometric mean satisfies
properties P1-P6.

Kosaki proposed the following definition of a weighted geometric mean ([2, p.
324]). Let α j � 0 ( j = 1,2, . . . ,k) satisfy ∑k

j=1α j = 1. For positive definite matrices
Aj ( j = 1,2, . . . ,k) we define

(A1, . . . ,Ak;α1, . . . ,αk) :=
1

∏k
j=1Γ(α j)

∫
Δk

{
k

∑
j=1

λ jA
−1
j

}−1 {
k

∏
j=1

λα j−1
j

}
dλ1 · · ·dλk,

where Δk is a standard (k−1)-simplex in Rk , i.e.,

Δk :=

{
(λ1, . . . ,λk) : λ j � 0,

k

∑
j=1

λ j = 1

}
.

Kosaki’s geometric mean is then

GK(A1, . . . ,Ak) = (A1, . . . ,Ak;
1
k , . . . , 1

k ).

The weighted geometric mean (A1, . . . ,Ak;α1, . . . ,αk) has an expected property

(A1, . . . ,Ak;α1, . . . ,αk) = Aα1
1 · · ·Aαk

k ,

when {Aj : j = 1, . . . ,k} is a commuting k -tuple. It is not hard to prove that GK satisfies
properties P1–P6.
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From now on the term geometric mean will stand for an arbitrary mapping G
from a set of n -tuples of positive semidefinite n× n matrices into a set of positive
semidefinite n×n matrices satisfying P1, P2 and P6’. We have already seen that such
mappings do exist. Before stating the matrix generalization of Cooper’s theorem we
prove the following lemma, which is analogous to the key fact (�) , used in the proof of
Theorem 2.4

LEMMA 3.4. Let A1,A2, . . . ,An be positive semidefinite matrices and G(A1,A2,
. . . ,An) their geometric mean. Let x be an arbitrary vector. Then

〈G(A1,A2, . . . ,An)x,x〉n � 〈A1x,x〉〈A2x,x〉 · · · 〈Anx,x〉.

Proof. Take S a matrix whose first column is x and has zeroes elsewhere. Then
S∗XS = 〈Xx,x〉E11 (E11 is a matrix whose (1,1)-entry is 1 and has zeroes elsewhere)
and using properties P1, P2 and P6’ we obtain

G(S∗A1S,S∗A2S, . . . ,S∗AnS) = n
√
〈A1x,x〉〈A2x,x〉 · · · 〈Anx,x〉E11

� 〈G(A1,A2, . . . ,An)x,x〉E11,

therefore the proof is completed. �
Imitating the last part of the proof of Theorem 2.4 and applying Lemma 3.4 we

can prove

THEOREM 3.5. Let A1,A2, . . . ,An be positive semidefinite matrices and G(A1,A2,
. . . ,An) their geometric mean. Let φi,Fi be as above. Define Φi(a) :=

∫ a
0 φi(x)dx . Then

|||G(A1,A2, . . . ,An)n||| � |||Φ1(A1)+Φ2(A2)+ · · ·+Φn(An)|||
for every unitarily invariant norm.

When we consider pairs instead of n -tuples, the inequality from Lemma 3.4

〈G(A,B)x,x〉2 � 〈Ax,x〉〈Bx,x〉
can be seen directly. To show this, we first recall that in this case G(A,B) is uniquely de-
fined (G(A,B)= A#B := A1/2(A−1/2BA−1/2)1/2A1/2 when A,B invertible and limε↓0(A+
εI)#(B+ εI) otherwise) and that the block matrix[

A A#B
A#B B

]

is positive semidefinite. But then 2-by-2 matrix[ 〈Ax,x〉 〈(A#B)y,x〉
〈(A#B)x,y〉 〈By,y〉

]

is positive semidefinite for arbitrary vectors x,y . We take y = x and compute the deter-
minant, which is nonnegative and this completes the proof.
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At this moment we are able to provide another short proof of Lemma 2.1. Since
A#A−1 = I , the 2-by-2 matrix [〈Ax,x〉 〈y,x〉

〈x,y〉 〈A−1y,y〉
]

is positive semidefinite for arbitrary vectors x,y , therefore 〈Ax,x〉〈A−1y,y〉 � |〈x,y〉|2 .
Now we have two different types of Young’s inequality for matrices:∣∣∣∣∣∣∣∣∣B1/2AB1/2

∣∣∣∣∣∣∣∣∣ � |||Φ(A)+Ψ(B)|||

and ∣∣∣∣∣∣(A#B)2
∣∣∣∣∣∣ � |||Φ(A)+Ψ(B)||| .

Are they comparable? As we shall see, the second one is weaker than the first one,
that is, we have

∣∣∣∣∣∣(A#B)2
∣∣∣∣∣∣ �

∣∣∣∣∣∣B1/2AB1/2
∣∣∣∣∣∣ . To establish this inequality we need the

following proposition [5, Prop. IX.1.1].

PROPOSITION 3.6. Let A,B be any two matrices such that the product AB is
normal. Then, for every unitarily invariant norm, we have

|||AB||| � |||BA||| .
Now we are ready to prove the aforementioned inequality.

PROPOSITION 3.7. Let A,B be positive semidefinite matrices. Then

∣∣∣∣∣∣(A#B)2
∣∣∣∣∣∣ �

∣∣∣∣∣∣∣∣∣B1/2AB1/2
∣∣∣∣∣∣∣∣∣

for every unitarily invariant norm.

Proof. Let us assume that A,B are invertible. The general case will follow by
continuity argument. It suffices to prove

|||A#B||| �
∣∣∣∣∣∣∣∣∣A1/2B1/2

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣∣A1/2B1/2

∣∣∣∣∣∣∣∣∣∣∣∣ =
∣∣∣∣
∣∣∣∣
∣∣∣∣(B1/2AB1/2

)1/2
∣∣∣∣
∣∣∣∣
∣∣∣∣ ,

due to the principle of majorization. One of the equivalent definitions of the ge-
ometric mean of two positive definite matrices says that A#B = A1/2UB1/2 , where
U is any unitary matrix that makes the right-hand side positive definite. We can let
U = (A−1/2BA−1/2)1/2A1/2B−1/2 . So by Proposition 3.6

|||A#B||| =
∣∣∣∣∣∣∣∣∣A1/2UB1/2

∣∣∣∣∣∣∣∣∣ �
∣∣∣∣∣∣∣∣∣UB1/2A1/2

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣B1/2A1/2

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣A1/2B1/2

∣∣∣∣∣∣∣∣∣ .
When A,B are merely positive semidefinite, we let Aε := A+ εI and similarly for

B , where ε > 0. Since
∣∣∣∣∣∣(Aε#Bε)2

∣∣∣∣∣∣ tends to
∣∣∣∣∣∣(A#B)2

∣∣∣∣∣∣ as ε ↓ 0 and the analogous
statement holds for

∣∣∣∣∣∣B1/2AB1/2
∣∣∣∣∣∣ , we are finished. �
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4. Young’s inequality for Hilbert-Schmidt norm

Hirzallah and Kittaneh [10] obtained refined matrix Young’s inequality for Hilbert-
Schmidt norm.

THEOREM 4.1. Let A,B be positive semidefinite and X arbitrary. If p,q > 1
with 1

p + 1
q = 1 , then∥∥∥∥ 1

p
ApX +

1
q
XBq

∥∥∥∥
2

2
� 1

r2 ‖ApX −XBq‖2
2 +‖AXB‖2

2 ,

where r = max(p,q) .

This theorem together with its corollaries has motivated the following results.
Their proofs can be worked up using similar techniques as those applied in the proofs
in [10] and are therefore omitted. The role of [10, Lemma 1], i.e.(

ap

p
+

bq

q

)2

� a2b2 +
1
r2 (ap−bq)2,

is played by the following

LEMMA 4.2. Let f : [0,∞) → [0,∞) be strictly increasing convex function satis-
fying f (0) = 0 . Let Φ(x) :=

∫ x
0 f (t)dt and Ψ(y) :=

∫ y
0 f−1(s)ds. Then for a,b > 0

Φ(a)+Ψ(b) � ab+
1
2
(a− f−1(b))2 b

f−1(b)
,

(Φ(a)+Ψ(b))2 � a2b2 +a(a− f−1(b))2 b2

f−1(b)
.

Proof. Assume that a > f−1(b) (it is trivial in the case a = f−1(b) and very
similar if a < f−1(b)). Then the expression φ(a)+ψ(b)− ab can be estimated with
an area of a rectangular triangle with catheti of length a− f−1(b) and α(a− f−1(b)) ,
respectively, where α = b

f−1(b) .

The second inequality can easily be derived from the first one:

(Φ(a)+Ψ(b))2−a2b2 = (Φ(a)+Ψ(b)−ab)(Φ(a)+Ψ(b)+ab)

�
(

1
2
(a− f−1(b))2 b

f−1(b)

)
(2ab)

= a(a− f−1(b))2 b2

f−1(b)
. �

THEOREM 4.3. Let A,B be positive definite, X arbitrary and f ,Φ,Ψ as above.
Then

‖Φ(A)X +XΨ(B)‖2
2 � ‖AXB‖2

2 +
∥∥∥A1/2(AX −X f−1(B))g(B)

∥∥∥2

2
,

where g(t) := t√
f−1(t)

.
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COROLLARY 4.4. Let A,B be positive definite, X arbitrary and f ,Φ,Ψ as above.
Then

‖Φ(A)X +XΨ(B)‖2 = ‖AXB‖2

if and only if AX = X f−1(B) .

COROLLARY 4.5. Let A,B be positive definite and f ,Φ,Ψ as above. Then

s j(Φ(A)+Ψ(B)) = s j(AB) for j = 1,2, . . . ,n

if and only if A = f−1(B) .

We end this section with an inequality for Hilbert-Schmidt norm, estimating the
right hand side of Young’s inequality. The following scalar inequality is needed in the
proof (see [16]).

LEMMA 4.6. Let f : [0,∞) → [0,∞) be strictly increasing function satisfying
f (0) = 0 . Let Φ and Ψ be defined as above. Then for a,b > 0

Φ(a)+Ψ(b) � a f (a)− f (a) f−1(b)+ f−1(b)b.

THEOREM 4.7. Let A,B be positive semidefinite and f ,Φ,Ψ as above. Then

‖Φ(A)X +XΨ(B)‖2 �
∥∥A f (A)X − f (A)X f−1(B)+X f−1(B)B

∥∥
2 .

5. A symmetrized Young’s inequality

If we define a new function Σ :=Φ+Ψ , where Φ,Ψ are complementary Young’s
functions, we immediately obtain the inequality

2|ab|� Σ(|a|)+Σ(|b|),

which may be seen as a symmetrized form of Young’s inequality. This inequality is
trivially extended to

2|abx|� (Σ(|a|)+Σ(|b|))|x|
and we will prove a matrix version of this inequality.

This section is an adaptation of a part of [12], from where we recall the following
definitions. Given A ∈ Mn we define the linear map SA : Mn → Mn by SA(B) = A◦B
(Hadamard product). Let ‖·‖ denote the spectral norm on Mn and ‖SA‖ the induced
norm of SA , i.e.

‖SA‖ := max{‖A◦B‖ : ‖B‖ � 1}.
We also define a partial order �◦ on Mn by

A �◦ B ⇐⇒ ‖A◦X‖� ‖B◦X‖ for all X ∈ Mn .
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THEOREM 5.1. Let x ∈ Rn
+ and Φ,Ψ as above. Then for matrices

K(x) :=
[
Φ(xi)+Ψ(xi)+Φ(x j)+Ψ(x j)

]n
i, j=1, L(x) :=

[
2xix j

]n
i, j=1

we have

K(x) �◦ L(x).

Proof. To determine whether K(x) �◦ L(x) is equivalent to determining whether

∥∥∥SK(x)(−1)◦L(x)

∥∥∥ � 1.

K(x)(−1) is a Hilbert matrix
[ 1
αi+α j

]n
i, j=1 , where αi := Φ(xi)+Ψ(xi) , therefore it is

positive semidefinite. Since L(x) is positive semidefinite too and since the main diago-

nal entries of K(x)(−1)◦L(x) are all � 1, we conclude (as in [12]) that
∥∥∥SK(x)(−1)◦L(x)

∥∥∥ �
1. �

COROLLARY 5.2. Let A,B,X ∈ Mn with A,B positive semidefinite. Let Φ,Ψ be
as above. Then

2 |||AXB||| � |||(Φ(A)+Ψ(A))X +X(Φ(B)+Ψ(B))|||
= |||(Φ(A)X +XΨ(B))+ (Ψ(A)X +XΦ(B))||| .

The proof is similar to the one in [12] and is therefore omitted.

We recall from [11] that the inequality

|||AXB||| �
∣∣∣∣
∣∣∣∣
∣∣∣∣1pApX +

1
q
XBq

∣∣∣∣
∣∣∣∣
∣∣∣∣

does not hold and the same is true for

|||AXB||| � |||Φ(A)X +XΨ(B)||| .

Nevertheless, we still have a “weak matrix Young’s inequality”

|||AXB||| � κp

∣∣∣∣
∣∣∣∣
∣∣∣∣ 1
p
ApX +

1
q
XBq

∣∣∣∣
∣∣∣∣
∣∣∣∣

with a certain constant κp � 1 depending only upon p . Analogously,
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|||AXB||| � κq

∣∣∣∣
∣∣∣∣
∣∣∣∣1qAqX +

1
p
XBp

∣∣∣∣
∣∣∣∣
∣∣∣∣

Taking adjoints and considering an optimality of κp we notice that κp = κq for 1
p + 1

q =
1.

Summing last two inequalities gives

2 |||AXB||| � κp

(∣∣∣∣
∣∣∣∣
∣∣∣∣ 1
p
ApX +

1
q
XBq

∣∣∣∣
∣∣∣∣
∣∣∣∣+

∣∣∣∣
∣∣∣∣
∣∣∣∣1qAqX +

1
p
XBp

∣∣∣∣
∣∣∣∣
∣∣∣∣
)

. (†)

By Corollary 5.2, we have

2 |||AXB||| �
∣∣∣∣
∣∣∣∣
∣∣∣∣
(

1
p
ApX +

1
q
XBq

)
+

(
1
q
AqX +

1
p
XBp

)∣∣∣∣
∣∣∣∣
∣∣∣∣ ,

which is a considerable improvement of (†) , since an upper estimate for κp from [11]

is
1

cos(π2 ( 1
p − 1

q))
.
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Institute of Mathematics, Physics and Mechanics

University of Ljubljana
Jadranska 19

SI-1000 Ljubljana
Slovenia

e-mail: tomaz.kosem@fmf.uni-lj.si

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


