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Abstract. New refined lower and upper bound forms of Jordan’s inequality are proved. As an
application, the lower bound form is shown to improve L. Yang’s inequality that plays a pivotal
role in the theory of distribution of values of functions. Some numerical results are included.

1. Introduction

The celebrated Jordan’s inequality [2] states that if x ∈ (0, π/2] , then

2
π

� sin x
x

< 1, (1.1)

where the left-hand side inequality becomes equality if and only if x = π/2 .
Jordan’s inequality and its subsequent refinements are useful in several mathemat-

ical areas such as calculus and trigonometry, where specifically the applications of the
theory of limits [5] are involved. These are important tools in approximating Riemann
zeta function ζ(x) [2], in improving Yang Le’s inequality [6] and its generalization
which play an important role in the theory of distribution of values of functions [6, 9,
10].

During the past few years many authors [1, 4, 5, 7, 8] established several refined
forms of Jordan’s inequality. One of these forms was due to Özban in 2006 [4]. He
obtained a new lower bound for the function sin x

x . He showed that

2
π

+
1
π3

(π2 − 4x2) +
4(π − 3)

π3

(
x − π

2

)2
� sin x

x
, x ∈

(
0,
π
2

]
(1.2)

where the equality holds if and only if x = π/2 .
Almost at the same time, a new interesting refined form of Jordan’s inequality was

established by Zhu [7]. He proved the following theorem (Theorem 1.1).

THEOREM 1.1. If 0 < x � π/2 , then

2
π

+
π2−4x2

π3
+

4(π−3)
π3

(
x−π

2

)2
� sin x

x
� 2

π
+
π2−4x2

π3
+

12−π2

π3

(
x−π

2

)2
, (1.3)

where both the inequalities become equalities if and only if x = π/2 Furthermore,
4(π−3)

π3 and 12−π2

π3 are the best constants in (1.3).
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The main aim of the present paper is to establish one more new refined lower
bound form as well as one more new upper bound form of Jordan’s inequality. These
forms are illustrated to demonstrate their usefulness in the background of most recent
contributions.

2. Main results

Our main result, viz., the new refined inequality, follows from Theorem 2.1 below.

THEOREM 2.1. If 0 < x � π/2 , then

1 − B1x − B2x
2 − B3x

3 � sin x
x

, (2.1)

where the equality holds if and only if x = π/2 , where

B1 =
4
π2

(−66 + 43π − 7π2),

B2 =
4
π3

(124 − 83π + 14π2),

B3 =
4
π4

(12 − 4π).

Proof. Define a function f : (0, π/2] → R by

f (x) =
x − sin x

x2
− B1 − B2x − B3x

2. (2.2)

Then, we have

f (4)(x) =
1
x6

(24x + 96x cos x + 36x2 sin x − 8x3 cos x − x4 sin x − 120 sin x). (2.3)

Now consider the function g : [0, π/2] → R defined by g(x) = x6f (4)(x) . Then, we
get

g′′(x) = x4 sin x.

Clearly, g′′(x) > 0 for all x ∈ (0, π/2] , this implies that g′(x) is strictly increasing on
(0, π/2] . Using the equality g′(0) = 0 , we find g′(x) > 0 for all x ∈ (0, π/2] . Thus,
g(x) is strictly increasing with g(0) = 0 , it follows that g(x) > 0 for all x ∈ (0, π/2] .
Now combining the function g and the equality (2.3), we obtain f 4(x) > 0 for all
x ∈ (0, π/2] . Hence f ′′′(x) is strictly increasing and f ′′′(x) < 0 on x ∈ (0, π/2] . On
the other hand, using the Taylor’s formula, we have for ξ ∈ (x, π/4) ,

f (x) = f
(π

4

)
+ f ′

(π
4

)(
x − π

4

)
+

f ′′(π/4)
2

(
x − π

4

)2
+

f ′′′(ξ)
3!

(
x − π

4

)3

� f
(π

4

)
+ f ′

(π
4

)(
x − π

4

)
+

f ′′(π/4)
2

(
x − π

4

)2
+
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f ′′′(ξ)

3!

(
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4

)3

= f
(π

4

)
+ f ′

(π
4
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)
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2

(
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4

)2
− (x − π/4)3

120
, (2.4)
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where x ∈ (0, π/4) . Now define an auxiliary function p1 : [0, π/4] → R by

p1(x) = f
(π

4

)
+ f ′

(π
4

)(
x − π

4

)
+

f ′′(π/4)
2

(
x − π

4

)2
− (x − π/4)3

120
.

It is obvious that f (x) � p1(x) and p1(x) is continuous with p′′′1 (x) = −1/20 < 0, x ∈
[0, π/4] . This implies that p′′1 (x) is strictly decreasing on [0, π/4] . Hence p′′1 (x) > 0
for all x ∈ [0, π/4] with p′′1 (π/4) > 0 . Therefore, p′1(x) is strictly increasing with
p′1(π/4) > 0 and p′1(0) < 0 . Now consider the fixed point x1 ∈ [0, π/4] such that
p′1(x1) = 0 . Notice that p′1(x) > 0 for all x ∈ (x1, π/4] , this implies that p1(x) is
strictly increasing on (x1, π/4] . Since p1(π/4) = f (π/4) < 0 , we have p1(x) < 0
for all x ∈ (x1, π/4] . Notice that p′1(x) < 0 for all x ∈ [0, x1) . This implies that
p1(x) is strictly decreasing on x ∈ [0, x1) . Since p1(0) < 0 , we have p1(x) < 0 for
all x ∈ [0, x1) . Therefore, p1(x) < 0 for all x ∈ [0, π/4] . Thus from the inequality
(2.4) and the function p1(x) , we get f (x) � 0 for all x ∈ [0, π/4] .

Now we consider the case x ∈ [π/4, π/2] below. Using once again the Taylor’s
formula for ξ ∈ (x, π/2) , we obtain

f (x) = f
(π

2
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+ f ′
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+
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2
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+
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(
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)3
, (2.5)

where x ∈ [π/4, π/2] . Define an auxiliary function p2 : [π/4, π/2] → R by

p2(x) = f
(π

2

)
+ f ′

(π
2

)(
x − π

2

)
+

f ′′(π/2)
2

(
x − π

2

)2
+

f ′′′(π/4)
3!

(
x − π

2

)3
.

It is obvious that f (x) � p2(x) and p2(x) is continuous with p′′′2 (x) = f ′′′(π/4) < 0 .
This implies that p′′2 (x) is strictly decreasing on [π/4, π/2] with p′′2 (π/4) > 0 and
p′′2 (π/2) < 0 . Let the fixed point x2 ∈ [π/4, π/2] be such that p′′2 (x2) = 0 .

Notice that p′′2 (x) > 0 for all x ∈ [π/4, x2) . This implies that p′2(x) is strictly
increasing and p′2(x) > p′2(π/4) > 0 for all x ∈ [π/4, x2) . Therefore p2(x) is strictly
increasing on the semi-open interval - [π/4, x2) . From the value

p2(x2) = f ′
(π

2

)(
x2 − π

2

)
+

1
2

(
x2 − π

2

)2
k′′(x2) − 1

3

(
x2 − π

2

)3
f ′′′

(π
4

)

= f ′
(π

2

)(
x2 − π

2

)
− 1

3

(
x2 − π

2

)3
f ′′′

(π
4

)

< 0,

where

x2 =
π
2
− f ′′( π2 )

f ′′′( π2 )
,

f ′
(π

2

)
= −8(66 − 43π + 7π2)

π3
,
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f ′′′
(π

4

)
=

8(1536
√

2 − 96(2 + 3
√

2)π − 24
√

2π2 +
√

2π3

π5
,

we have p2(x) < 0 for all x ∈ [π/4, x2) . Observe that p′′2 (x) < 0 for all x ∈ (x2, π/2] .
This implies that p′2(x) is strictly decreasing and p′2(x) > p′2(π/2) > 0 for all x ∈
(x2, π/2) . Thus p2(x) is strictly increasing with p2(x) < p2(π/2) = 0 . Consequently
p2(x) � 0 for all x ∈ [π/4, π/2] . Now combining the inequality (2.5) and the function
p2(x) , we get f (x) � 0 for all x ∈ [π/4, π/2] .

Hence, we obtain f (x) � 0 for all x ∈ (0, π/2] . Now, multiplying f (x) by x we
get the desired result. �

REMARK 2.1. A graph of the distance function y(x) = h1(x) − h(x) , where
h(x) = (sin x)/x ,

h1(x) = [1 − B1x − B2x
2 − B3x

3], (2.6)

is given in Fig. 1.
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Fig. 1

A graph of the error represented by the function e(x) = h1(x) − h2(x) , where

h2(x) = 2/π + (π2 − 4x2)/π3 + 4(π − 3)(x − π/2)2/π3 (2.7)

is given in Fig .2. These imply that h2(x) � h1(x) � (sin x)/x , where the equalities
hold if and only if x = π/2 . Thus, the inequality (2.1) is a new refined form of Jordan’s
inequality for all x ∈ (0, π/2] .
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THEOREM 2.2. If x ∈ (0, π/2] , then

sin x
x

� 1 − C1x + C2x
2 − B3x

3 (2.8)

where the equality holds if and only if x = π/2 , where

C1 =
4(−75 + 49π − 8π2)

π2
,

C2 =
4(−142 + 95π − 16π2)

π3
,

and B3 is as defined in Theorem 2.1.

Proof. Define a function f : (0, π/2] → R by

f (x) =
x − sin x

x3
− C1

1
x

+ C2 − B3(π)x. (2.9)

Then, we have

f (4)(x) =
24x[300x− 196πx + π2(5 + 32x)] − 12π2x(−20 + x2) cos x

π2x7

−π2(360 − 72x2 + x4) sin x
π2x7

. (2.10)

Now consider a function g : [0, π/2] → R defined by g(x) = x7f (4)(x) . Then, we get

g′′′(x) = x4 cos x.

Clearly, g′′′(x) > 0 for all x ∈ (0, π/2] , this implies that g′′(x) is strictly increasing on

(0, π/2] . Using the equality g′′(0) = 192(75−49π+8π2)
π2 , we find g′′(0) > 0 . This implies

that g′′(x) > 0 for all x ∈ (0, π/2] . Hence g′(x) is strictly increasing with g′(0) = 0 ,
implying g′(x) > 0 for all x ∈ (0, π/2] . Therefore, g(x) is strictly increasing with
g(0) = 0 . Thus g(x) > 0 for all x ∈ (0, π/2] .

Now combining the function g and equality (2.10), we obtain f 4(x) > 0 for all
x ∈ (0, π/2] . Hence f ′′′(x) is strictly increasing and f ′′′(x) < 0 on x ∈ (0, π/2] . On
the other hand, using the Taylor’s formula for ξ ∈ (x, π/4) , we have
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4
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+ f ′
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4
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2
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+
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3!

(
x−π

4

)3

� f
(π

4

)
+ f ′
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3!

(
x−π

4

)3
, (2.11)

where x ∈ (0, π/4) . Now define an auxiliary function k1 : [0, π/4] → R by

k1(x) = f
(π

4

)
+ f ′

(π
4

)(
x − π

4

)
+

f ′′(π/4)
2

(
x − π

4

)2
+

f ′′′(π/4)
3!

(
x − π

4

)3
.

It is obvious that f (x) � k1(x) and the function k1(x) is continuous with k′′′1 (x) =
f ′′′(π/4) < 0 , x ∈ (0, π/4] , this implies that k′′1 (x) is strictly decreasing on (0, π/4] .
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Clearly k′′1 (π/4) = f ′′(π/4) > 0 for all x ∈ (0, π/4] . Hence k′′1 (x) > 0 for all
x ∈ (0, π/4] . That is, k′1(x) is strictly increasing with k′1(π/4) < 0 . So, we have
k′1(x) < 0 , x ∈ (0, π/4] . This implies that p(x) is strictly decreasing on (0, π/4] .
Since k1(π/4) = f (π/4) > 0 , k1(x) > 0 for all x ∈ (0, π/4] . Now combining the
inequality (2.11) and the function k1(x) , we get f (x) � 0 for all x ∈ (0, π/4] .

Consider the case x ∈ [π/4, π/2] below. Using once again the Taylor’s formula
for ξ ∈ (x, π/2) , we obtain

f (x) = f
(π

2

)
+ f ′

(π
2

)(
x−π

2

)
+

f ′′(π/2)
2

(
x−π

2

)2
+

f ′′′(ξ)
3!

(
x−π

2

)3

� f
(π

2

)
+ f ′

(π
2

)(
x−π

2

)
+

f ′′(π/2)
2

(
x−π

2

)2
+

f ′′′(π/2)
3!

(
x−π

2

)3
, (2.12)

where x ∈ [π/4, π/2] . Define an auxiliary function k2 : [π/4, π/2] → R by

k2(x) = f
(π

2

)
+ f ′

(π
2

)(
x − π

2

)
+

f ′′(π/2)
2

(
x − π

2

)2
+

f ′′′(π/2)
3!

(
x − π

2

)3
.

Evidently, f (x) � k2(x) and k2(x) is continuous with k′′′2 (x) = f ′′′(π/4) < 0 . This

implies that k′′2 (x) is strictly decreasing on [π/4, π/2] with k′′2 ( π4 ) = 4(2664−1888π+331π2)
π5 <

0 . Thus we have k′′2 (x) < 0, x ∈ [π/4, π/2] . Consequently, k′2(x) is strictly decreasing
and we get

k′2
(π

4

)
= −6168− 4216π + 717π2

2π4
> 0,

k′2
(π

2

)
= −16(75− 49π + 8π2)

π4
< 0.

Now let the fixed point x3 ∈ [π/4, π/2] be such that k′2(x3) = 0 .

Notice that k′2(x) > 0 for all x ∈ [π/4, x3) , which implies that k2(x) is
strictly increasing and we obtain k2(x) > k2(π/4), x ∈ [π/4, x3) where k2(π/4) =
4024−2704π+453π2

8π3 > 0 . Therefore k2(x) > 0 on [π/4, x2) .

Observe that k′2(x) < 0 for all x ∈ (x3, π/2] . This implies that k2(x) is strictly
decreasing and we obtain k2(x) > k2(π/2), x ∈ (x3, π/2] , where k2(π/2) = f (π/2) =
0 . Therefore k2(x) � 0 on x ∈ (x3, π/2] .

Consequently, k2(x) � 0, x ∈ [π/4, π/2] . Combining the inequality (2.12) and
the function k2(x) , we get f (x) � 0 for all x ∈ [π/4, π/2] .

Hence, we obtain f (x) � 0 for all x ∈ (0, π/2] . Now, multiplying f (x) by x2

we get the desired result. �
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REMARK 2.2. A graph of the distance function y(x) = h3(x) − h(x) , where
h(x) = (sin x)/x ,

h3(x) = 1 − C1(π)x + C2(π)x2 − B3(π)x3, (2.13)

is given in Fig. 3.
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Fig. 3

A graph of the error represented by the function e(x) = h3(x) − h4(x) , where

h4(x) =
2
π

+
1
π3

(π2 − 4x2) +
12 − π2

π3

(
x − π

2

)2
, (2.14)

is given in Fig. 4. This implies (sin x)/x < h3(x) < h4(x), x ∈ (0, 1.2739) and
(sin x)/x � h4(x) � h3(x), x ∈ (1.2739, π/2) where the equalities hold if and only if
x = π/2 . Thus, the inequality (2.8) is one refined form of Jordan’s inequality for all
x ∈ (0, π/2] .
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3. Application

Yang’s inequality [6] and its generalization play an important role in the theory of
distribution of values of functions [6,9]. In this section, using the inequality (2.1), we
show that our result can be used to improve Yang’s inequality.
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THEOREM 3.1. Let n � 2 be a natural number, Ai > 0(i = 1, 2, ..., n) with∑n
i=1 Ai � π and 0 � λ � 1 . Then

U(λ ) �
∑

1�i<j�n

sin2 λπ �
∑

1�i<j�n

Hij �
∑

1�i<j�n

λ 2π2, (3.1)

where Hij = cos2 λAi + cos2 λAj − 2 cosλAi cos λAj cos λπ , and

U(λ ) =
n(n − 1)

2
λ 2[B(λ ; π)]2 cos2

(λ
2
π
)

with B(λ ; π) = π + 2(66 − 43π + 7π2)λ − (124 − 83π + 14π2)λ 2 + 2(π − 3)λ 3 .

Proof. Substituting x = λπ/2 in (2.1), the inequality can be written as sin λ
2 π �

λ
2 [B(λ ; π)]. Hence λ

2 [B(λ ; π)] � sin λ
2 π � λ

2 π or

λ 2

4
[B(λ ; π)]2 � sin2 λ

2
π � λ 2

4
π2. (3.2)

On the other hand, using the inequality [9]

sin2 λπ � Hij � 4 sin2 λ
2
π, (3.3)

and noting sin2 λπ = 4 sin2 λ
2 π cos2 λ

2 π and the inequality (3.2), we get

λ 2[B(λ ; π)]2 cos2 λ
2
π � sin2 λπ � Hij � λ 2π2. (3.4)

Let 1 � i < j � n . Introducing the summation in the inequality (3.4), we obtain

U(λ ) �
∑

1�i<j�n

sin2 λπ �
∑

1�i<j�n

Hij �
∑

1�i<j�n

λ 2π2, (3.5)

where

U(λ ) =
∑

1�i<j�n

λ 2[B(λ ; π)]2 cos2
(λ

2
π
)
.

Hence the theorem. �

REMARK 3.1. It has been shown [4] that S(λ ) �
∑

1�i<j�n sin2 λπ , where

S(λ ) =
n(n − 1)

2
λ 2[π + (6 − 2π)λ + (π − 4)λ 2]2 cos2

(λ
2
π
)
.

On the other hand, for 0 � λ � 1 we have

(6 − 2π)λ + (π − 4)λ 2 � B(λ ; π). (3.6)
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From (3.6), it can be readily seen that

S(λ ) � U(λ ) �
∑

1�i<j�n

sin2 λπ �
∑

1�i<j�n

Hij (3.7)

which shows that the inequality (2.1) is a strengthened version of the inequality given
by Özban in [4] for λ ∈ [0, 1] . In conclusion, we present Table 1, which enables
us to compare the numerical values of lower bounds S(λ ) and U(λ ) and those of∑

1�i<j�n sin2 λπ for some values of n and λ .

λ S(λ ) U(λ )
∑

1�i<j�n
sin2 λπ

0.25 7.28441 7.47568 7.5

0.5 14.54708 14.9125 15.00000

n = 6 0.624 12.5343 12.7678 12.8365

0.8 5.13029 5.16792 5.182372

0.95 0.3667546 0.366948 0.3670761

0.25 92.2692 94.6919 95.000

0.5 184.2630 188.892 190.0000

n = 20 0.624 158.768 161.726 162.596

0.8 64.98368 65.4604 65.64338

0.95 4.645558 4.64801 4.649630

Table 1. Comparison S(λ ) , U(λ ) and
∑

1�i<j�n
sin2 λπ
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