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BOUNDS IN SPACES OF MORREY UNDER CHICCO TYPE CONDITIONS
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(Communicated by J. Pečarić)

Abstract. In the present paper we consider Morrey spaces in unbounded domains and study
elliptic equations in nondivergence form with discontinuous coefficients when the class of dis-
continuities is of Chicco type. In particular we state some local and non local a priori bounds
for solutions of Dirichlet problem and study the dependence of the constants in the estimates.
The idea is to approximate the principal coefficients by functions with derivatives which belong
locally to the space Ls , 2 < s � n , while the coefficients of lower terms in the differential
operator belong to Morrey spaces. Our results are based on embedding theorems which allow us
to require a summability lower than n for the coefficients of the operator L .

1. Introduction

Elliptic equations in non divergence form have been widely studied in bounded
open sets. The work of C. Miranda [23] represent a point of reference in the study
of Dirichlet problem with discontinuous coefficients belonging to the W1,n spaces.
Subsequent results were stated, for example, in [20, 22, 27].

Other results can be found in [2, 13, 15, 16] in wider classes of spaces while
different classes of discontinuous operators were studied in [17, 18, 19, 24].

When Ω is an unbounded open set, the problem was studied in more general
spaces than Ln spaces in [25], in spaces of Morrey type in [7, 9, 10, 11] and in weighted
spaces in [3, 4, 5, 6, 8, 12].

Basic tools for proving existence and, sometimes, uniqueness of solutions of elliptic
boundary value problems in Sobolev spaces are a priori bounds.

In this paper we state some a priori bounds for solutions of the problem{
Lu = f , f ∈ L2(Ω) ,
u ∈ W2(Ω) ∩ W1

0 (Ω) ,
(1.1)

where L is the operator

Lu = −
n∑

i,j=1

aij uxixj +
n∑

i=1

ai uxi + a u . (1.2)
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The coefficients ai and a of the operator L belong to the class of Morrey type spaces
Mp,λ introduced in [26] which are larger than Ln spaces. We observe that, when Ω
is a bounded open set, the spaces Mp,λ (Ω) are reduced to the classical Morrey space
Lp,λ (Ω) (see [13, 14]) while, if Ω = Rn , include Lp,λ (Rn) .

It is interesting to remark that we require a lower summability for the coefficients
of the operator L when we work with Morrey spaces with respect the other speces. Our
results base on embedding theorems proved by C. Fefferman [21], so we do not need to
achieve n .

In this paper we consider a wide class of discontinuity: the functions which satisfy
Chicco type conditions [17, 19]. We remark that continuous functions, the class of
discontinuities considered at first in [23] and of Cordes type belong to this class.

We study the problem under hypotheses on coefficients considerably weakened
with respect to the assumptions we can find in the papers until now. The idea is to
approximate aij by some functions eij ‘near’ to aij in bounded open sets and by more
regular functions at infinity. The conditions we impose on eij and on their derivatives
are very ‘weak’, we require only that (eij)xh ∈ Ls

loc(Ω) , 2 < s � n , and we are able to
apply locally some embedding results without further assumptions on (eij)xh .

We remark that an hypothesis of Chicco type as above is not sufficient to get local
estimates for |x| large enough without further assumptions.

In this paper we obtain local bounds under different assumptions of Chicco type.
A way is to introduce functions regular ‘enough’ suitable connected to aij to

obtain the results. Other ways are to assume Chicco condition with a suitable choice
of functions eij or to give an additional assumptions on derivatives of eij to apply
embedding results.

We observe that local a priori estimates allow us to prove a priori bounds for
solutions of problem (1.1).

In previous paper [7] we state local a priori bound under Cordes conditions on
coefficients of the operator L without to introduce more regular functions close to
aij and without further assumptions. The reason is that Cordes conditions allow us
to approximate aij by means of functions which do not introduce derivatives and, so,
further hypotheses on derivatives to use embedding results.

A priori bounds (see Theorem 6.1 and Corollary 6.1 in Section 6) are obtained
using embedding theorems and the local a priori bounds stated in Section 5.

2. Notation and function spaces

Let E be aLebesguemeasurable subset of Rn and Σ(E) the σ -algebra ofLebesgue
measurable subsets of E .

We denote by D(A) the class of restrictions to A ∈ Σ(E) of functions φ ∈ C∞
o (Rn)

such that supp φ ∩ A ⊂ A and by Lp
loc(A) the class of functions f : A → C such that

φf ∈ Lp(A) for any φ ∈ D(A) . We set

|f |p,A = ‖f ‖Lp(A) , 1 � p � +∞ .
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In this paper we define

Wr,2(Ω) = Wr(Ω), r = 1, 2, and W1,2
0 (Ω) = W1

0 (Ω)

in order to indicate quadratic integrability of weak derivatives.
Let B(x, r) , x ∈ Rn , r ∈ R+ , be the open ball with center in x and radius r .
For r ∈ R+ , we set Br = B(0, r) and denote by ζr a function of class C∞

o (Rn)
such that

suppζr ⊂ B2r, 0 � ζr � 1, ζr|Br=1, (ζr)x � 2
r

.

Let Ω be an open subset of Rn and let us consider the spaces Mp,λ (Ω) , M̃p,λ (Ω) ,
Mp,λ

o (Ω) defined in [26] (we refer also to [10] where we can find many properties of
these spaces).

Let us define, for 1 � p < +∞ and 0 � λ < n , n � 2 ,
Mp,λ (Ω) as the space of functions g ∈ Lp

loc(Ω) such that

‖g‖Mp,λ (Ω) = sup
x∈Ω

0<τ�1

τ−λ/p‖g‖Lp(Ω∩B(x,τ)) < +∞ , (2.1)

equipped with the norm defined in (2.1);
M̃p,λ (Ω) as the closure of L∞(Ω) in Mp,λ (Ω) ;
Mp,λ

o (Ω) as the closure of C∞
o (Ω) in Mp,λ (Ω) .

From the results in [26] we have the following characterizations of the spaces
M̃p,λ (Ω) and Mp,λ

o (Ω) :
M̃p,λ (Ω) is the subspace of Mp,λ (Ω) of the functions g ∈ Mp,λ (Ω) such that:

∀ε ∈ R+ ∃δε ∈ R+ s.t.

(E ∈ Σ(Ω), sup
x∈Ω

|E ∩ B(x, 1)| � δε ⇒ ‖gχE‖Mp,λ (Ω) � ε) , (2.2)

Mp,λ
o (Ω) is the subspace of Mp,λ (Ω) of the functions g ∈ Mp,λ (Ω) such that:

∀ε ∈ R+ ∃hε, kε ∈ R+ s.t.

(E ∈ Σ(Ω), |E ∩ B(0, kε)| � hε ⇒ ‖gχE‖Mp,λ (Ω) � ε) . (2.3)

Let us set:

Mp(Ω) = Mp,0(Ω) , M̃p(Ω) = M̃p,0(Ω) , Mp
o(Ω) = Mp,0

o (Ω).

The spaces Mp(Ω) and Mp
o(Ω) have been introduced and studied in [25].

It is useful to recall some results about Morrey type spaces introduced above.
We have the embedding:

Mpo ,λ0(Ω) ↪→ Mp,λ (Ω) , p � po ,
λ − n

p
� λ0 − n

po

which implies in particular that:

L∞(Ω) ↪→ Mp,λ (Ω) .
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The following inclusions hold:

Ln(Ω) ⊂ Mn,0(Ω) ⊂ Ms,n−s(Ω) , s ∈]2, n[ . (2.4)

For example the constant functions belong to Mn,0(Ω) but do not belong to Ln(Ω) .
Furthermore the function f (x) = 1

1+|x|α ∈ Mp,0(Ω) if α > 0 while belongs to Lp(Ω)
if α ∈ [0, n

p [ .
Let us also denote by VMp,λ (Ω) the subspace of Mp,λ (Ω) of the functions g ∈

Mp,λ (Ω) such that
lim
τ→0

‖g‖Mp,λ (Ω) = 0 . (2.5)

It is easy to see that
L∞(Ω) ⊂ VMp,λ (Ω)

and that
M̃p,λ (Ω) ⊂ VMp,λ (Ω) .

In particular we get (see [26])

M̃p,λ (Ω) = VMp,λ (Ω) ∩ M̃p(Ω) . (2.6)

We state the following result about Mp,λ spaces we will use later.

LEMMA 2.1. If g ∈ Lp
loc(Ω) , 1 � p < +∞ , and φ ∈ D(Ω) , then φ g ∈ M̃p,λ (Ω) .

Proof. The function φ g ∈ Lp
loc(Ω) and so there exists a sequence of functions

(gn)n∈N , with gn ∈ C∞
0 (Ω) , such that

gn −→ φ g in Lp(Ω) . (2.7)

It is easy to see that φ g ∈ Mp,λ (Ω) . In fact, using (2.7), we have

‖φ g‖Mp,λ (Ω) � sup
x∈Ω

0<τ�1

τ−λ/p

(
‖gn − φ g‖Lp(Ω∩B(x,τ))

+ ‖gn‖Lp(Ω∩B(x,τ)) � c1τ
n−λ

p

)
. (2.8)

From (2.8) we deduce also that φ g ∈ VMp,λ (Ω) taking in mind (2.5).
Now, if we fix ζ ∈ D(Ω) with ζ|supp φ = 1 , we obtain

ζ gn −→ φ g in Lp(Ω) . (2.9)

So we get φ g ∈ Mp
0(Ω) , then φ g ∈ M̃p(Ω) .

We deduce from (2.6) the result. �

REMARK 2.1. From Lemma 2.1 we can obtain a further information on function
φ g . In particular we observe that φ g ∈ Mp,λ

0 (Ω) since the following relation holds
(see [26])

Mp,λ
0 (Ω) = M̃p,λ (Ω) ∩ Mp

0(Ω) .

REMARK 2.2. One can proves the function φ g belongs to the space Mp,λ
0 (Ω) (and

then to the space M̃p,λ (Ω) ) proceeding as in the proof of Lemma 2.1 and using (2.9)
to get the result.
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3. Embedding results

Embedding results due to C.Fefferman [21] (see also [14]) allow us to state the
following lemma (see [26]).

LEMMA 3.1. If Ω has the cone property and g ∈ Ms,n−s(Ω) , s ∈]2, n] , then for
any u ∈ W1(Ω) we get gu ∈ L2(Ω) and

|g u|2,Ω � H ‖g‖Ms,n−s(Ω) ‖u‖W1(Ω) , (3.1)

where the constant H , independent of g and u , depends on n and s .

Let us define the modulus of continuity of a function g ∈ M̃p,λ (Ω) (see also [9]).
If p ∈ [1, +∞[, λ ∈ [0, n[ and g ∈ M̃p,λ (Ω) , we set

τp
λ [g](t) = sup

E∈Σ(Ω)
supx |E∩B(x,1)|�t

‖g χE‖Mp,λ (Ω) , t ∈ R+ ,

where χE is the characteristic function of E .
From (2.2) it follows that that g ∈ M̃p,λ (Ω) if and only if g ∈ Mp,λ (Ω) and

lim
t→0

τp
λ [g](t) = 0 .

We define the modulus of continuity of g ∈ M̃p,λ (Ω) as a function τ[g] : R+ → R+
satisfying

τp
λ [g](t) � τ[g](t) , ∀t ∈ R+ , lim

t→0
τ [g](t) = 0 .

In the case g : Ω → R , we put

Ar(g) = {x ∈ Ω : |g(x)| � r} , r ∈ R+ .

If g ∈ Lp
loc(Ω), p ∈ [1, +∞[ , we get

lim
r→+∞ |Ar(g) ∩ B(x, 1)| = 0 .

Let us denote, for all k ∈ R+ , by rk = rk(g) a real number such that

|Ark(g) ∩ B(x, 1)| � 1
k + 1

(3.2)

and by r[g] the function

r[g] : k ∈ R+ → r[g](k) = rk ∈ R+ . (3.3)

The following lemma,which we will use later, was stated in [7].

LEMMA 3.2. In the same hypotheses of Lemma 3.1 and if g ∈ M̃s,n−s(Ω) , s ∈]2, n] ,
then for any k ∈ R+ we have

|g u|2,Ω � H τ[g]
(

1
k + 1

)
‖u‖W1(Ω) + r[g](k) ‖u‖L2(Ω) ∀ u ∈ W1(Ω) ,

where H is the constant in (3.1), τ[g] is the modulus of continuity of g in M̃s,n−s(Ω)
and r[g] is the function defined by (3.3).
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4. Hypotheses

Let us set

B+ = {x ∈ B1 : xn > 0} , Bo = {x ∈ B1 : xn = 0} ,

and suppose that

(h1) there are a d ∈ R+ , an open cover {Ui}i∈I of ∂Ω and, for any i ∈ I , a C2 -
diffeomorphism ψi : Ui → B1 such that:
• ψi(Ui ∩Ω) = B+ , ψi(Ui ∩ ∂Ω) = Bo ;
• the components of ψi and ψ−1

i and of their first and second derivatives are
bounded by a constant independent of i ;

• for any x ∈ Ωd there exists an i ∈ I such that B(x, d) ⊂ Ui and, for any
x ∈ Ω \Ωd , we get B(x, d) ⊂ Ω , where Ωd = {x ∈ Ω : dist(x, ∂Ω) < d} .

REMARK 4.1. It is easy to prove that (h1) holds when Ω has the uniform C2 -
regularity property defined in [1].

REMARK 4.2. The condition (h1) implies that there exists a number ρ ∈ R+ such
that, for any x ∈ Rn, B(x, ρ) ∩ ∂Ω = ∅ or B(x, ρ) ∩ ∂Ω �= ∅ and B(x, ρ) ⊂ Ui for
some i ∈ I.

Let us consider in Ω the second order linear differential operator

Lu = −
n∑

i,j=1

aij uxixj +
n∑

i=1

ai uxi + a u (4.1)

with the following conditions on the coefficients:

(h2) aij = aji ∈ L∞(Ω) , i, j = 1, . . . , n ,

(h3) ai ∈ M̃s,n−s(Ω) , i = 1, . . . , n , a ∈ M̃t(Ω) ,
where

s ∈]2, n] , t = 2 if n = 3 , t > 2 if n = 4 , t =
n
2

if n > 4 .

Let us denote by E(ν,Ω) the class of n × n real matrix-valued functions (eij)
such that

(h4) eij = eji ∈ L∞(Ω) , i, j = 1, . . . , n

(eij)xh ∈ Ls
loc(Ω) , i, j, h = 1, . . . , n ,

n∑
i,j=1

eij ξi ξj � ν |ξ |2 ∀ ξ ∈ Rn , a.e. in Ω ,

where ν is a positive constant independent of x and ξ .
Moreover we set

G (Ω) = {g ∈ L∞ : ess inf
Ω

g > 0} .
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and suppose that (aij) satisfies the following conditions:

(h5) (Chicco type condition)
there exists ν ∈ R+ , (eij) ∈ E(ν,Ω) and g ∈ G (Ω) such that

ess sup
Ω

n∑
i,j=1

(
eij − gaij

)2
< ν2 .

For example one can choose

g =

∑n
i,j=1 eij aij∑n

i,j=1 a2
ij

∈ G (Ω) . (4.2)

Let us set

ux =
( n∑

i=1

u2
xi

)1/2

, uxx =
( n∑

i,j=1

u2
xixj

)1/2

.

We consider a function β : Ω → R+ such that the following hypothesis holds:

(h6) β ∈ M̃t(Ω) , ∃ δ ∈ M̃s,n−s(Ω) such that βx � β δ .
For example, some functions which satisfy the hypothesis (h6) are given by β = 1

or β(x) = 1
(1+|x|2)τ , x ∈ Ω , τ > 0 .

(h7) there exist (αij) ∈ E(ν,Ω) with

(αij)xh ∈ M̃s,n−s(Ω) , i, j, h = 1, . . . , n ,

and a function γ : R+ → R+ such that

ess sup
Ω\Bk

n∑
i,j=1

|αij − gaij| � γ (k) ∀k ∈ R+ ,

lim
k→+∞

γ (k) = 0 .

We can suppose in place of (h7) one of the following assumptions when we state
local a priori bounds (see Lemma 5.2 in Section 5).

(h8) Chicco type condition with eij , for i, j = 1, . . . , n , constant functions satisfying
(h4) .

(h9) (eij)xh ∈ M̃s,n−s(Ω) , i, j, h = 1, . . . , n .

REMARK 4.3. Let us note that (h4) and (h5) imply that operator L defined in
(4.1) is uniformly elliptic in Ω .

REMARK 4.4. If in (h5) the functions eij = δij and g =
∑n

i=1
eijaij∑n

i,j=1
a2
ij

, as in (4.2),

condition of Chicco type reduces to Cordes type conditions (we refer to [7] for some
recent results in weighted spaces under Cordes condition). If in (h4) eij = δij but
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g ∈ G (Ω) is different from (4.2), we have a particular case of Chicco condition (see
(h8)) .

REMARK 4.5. One can show that under hypotheses (h1)−(h3) and (h6) it follows
that for any λ ∈ R the operator

u ∈ W2(Ω) → Lu + λ β u ∈ L2(Ω)

is bounded.

5. Local a priori bounds

Let us set

Lou = −
n∑

i,j=1

aij uxixj

and

˜f = 1 +
n∑

i,j=1

|eij| δ +
n∑

i,j=1

(eij)x , if (h5) holds

or

˜f =
n∑

i,j=1

|eij| δ , if (h8) holds ,

where δ is the function defined in (h6) and eij are the functions which belong to the
class E(ν,Ω) (see (h4) ).

Let us fix a bounded open subset V of Rn such that

V ⊂ Ω or V ∩ ∂Ω �= ∅ and V ⊂ Ui for some i ∈ I .

LEMMA 5.1. If the hypotheses (h1), (h2), (h4), (h6) hold, then for any λ � 0 and
for any function v satisfying

v ∈ W2(Ω) ∩
o

W1(Ω) , supp v ⊂ V ,

we have for any ε ∈ R+ the bound

(ν2 − ε2)|vxx|22,Ω �
∣∣∣∣−

n∑
i,j=1

eijvxixj + λ β v

∣∣∣∣
2

2,Ω
+ c(ε)| ˜f vx|22,Ω . (5.1)

Moreover if also (h5) is verified

|vxx|2,Ω � c
(|Lov + λ g−1β v|2,Ω + | ˜f vx|2,Ω

)
, (5.2)

where c = c (Ω, ν, ‖aij‖∞, ‖eij‖∞) .

Proof. Inequality (5.1) can be proved as in [10, Section 7].
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We proceed using hypothesis of Chicco type to get the result. Indeed il we set

h = ess sup
Ω

⎛
⎝ n∑

i,j=1

|eij − gaij|2
⎞
⎠

1/2

,

from inequality (5.1) we get

(ν − ε)|vxx|2,Ω �
∣∣∣∣∣−

n∑
i,j=1

(eij − g aij)vxixj + g Lo v + λ β v

∣∣∣∣∣
2,Ω

+ c(ε)
1
2 | ˜f vx|2,Ω

� h |vxx|2,Ω + ‖g‖∞
∣∣Lov + λ g−1β v

∣∣
2,Ω + c(ε)

1
2 | ˜f vx|2,Ω ,

from which, by condition (h5) , we deduce (5.2) for ε < ν − h . �

REMARK 5.1. If eij , for i, j = 1 . . . n , are constant functions satisfying (h4) ,
inequality (5.1) takes the form

ν2|vxx|22,Ω �
∣∣∣∣−

n∑
i,j=1

eijvxixj + λ β v

∣∣∣∣
2

2,Ω
+ | ˜f vx|22,Ω ,

where ˜f is defined at beginning of the Section. As a consequence, by Chicco type
condition (h8) we deduce (5.2).

We are able to prove the following Lemma using as tools Lemma 5.1 and Lemma
3.2. A similar lemma was proved in [7] under different hypotheses on coefficients of
the operator L .

LEMMA 5.2. If the conditions (h1) − (h7) hold and λ1 is a real number, then
there exists a constant c ∈ R+ such that for any λ ∈ [λ1, +∞[ and for any function v
satisfying

v ∈ W2(Ω) ∩ W1
0 (Ω) , supp v ⊂ V ,

we get

|vxx|2,Ω � c
(
|Lv + λ g−1 β v|2,Ω + |vx|2,Ω + |v|2,Ω

)
, (5.3)

where c is a positive constant dependingon Ω, ν, n, s , t, ‖aij‖∞, ‖eij‖∞, ‖g‖∞,
‖αij‖∞, τ[(αij)x], τ[ζk (eij)x], τ[β ], τ[δ ], τ[ai], τ[a], r[(αij)x], r[ζk (eij)x], r[β ],
r[δ ], r[ai], r[a] .

Proof. Step 1 (Estimates at infinity).
Let us suppose λ � 0 and consider the functions ζk , k ∈ R+ , introduced in

Section 2. Applying (5.1) in Lemma 5.1 to the function (1 − ζk) v with eij = αij , we
get ∣∣∣∣∣((1 − ζk)v

)
xx

∣∣∣∣∣
2,Ω

� c1

(∣∣∣∣−
n∑

i,j=1

αij
(
(1 − ζk) v

)
xixj

+ λ β (1 − ζk) v

∣∣∣∣
2,Ω

+ |g̃((1 − ζk)v)x|2,Ω

)
(5.4)



274 A. CANALE

where g̃ =
(
1 +

∑n
i,j=1 |αij| δ +

∑n
i,j=1(αij)x

)
.

Moreover we have by hypothesis (h7) that the first term on the right hand in (5.4)
is bounded as follows∣∣∣∣−

n∑
i,j=1

αij

(
(1 − ζk) v

)
xixj

+ λ β (1 − ζk) v

∣∣∣∣
2,Ω

�
∣∣∣g Lo

(
(1 − ζk) v

)
+ λ β (1 − ζk) v

∣∣∣
2,Ω

+
∣∣∣∣−

n∑
i,j=1

(αij − gaij)
(
(1 − ζk) v

)
xixj

∣∣∣∣
2,Ω

� c2

(∣∣∣(1 − ζk)
(
Lov + λ g−1 β v

)∣∣∣
2,Ω

+
∣∣∣(1 − ζk)x vx

∣∣∣
2,Ω

+
∣∣∣(1 − ζk)xx v

∣∣∣
2,Ω

)

+ γ (k)
∣∣∣((1 − ζk) v

)
xx

∣∣∣
2,Ω

. (5.5)

Since g̃ ∈ M̃s,n−s(Ω) , we can use Lemma 3.2 to estimate the last term in (5.4). So we
obtain by (5.4) and (5.5)∣∣∣((1 − ζk) v

)
xx

∣∣∣
2,Ω

� c3

(∣∣Lo v + λ g−1 β v
∣∣
2,Ω + |vx|2,Ω + |v|2,Ω

)

+
(

c1H τ[g̃]
(

1
k + 1

)
+γ (k)

) ∣∣∣((1 − ζk) v
)

xx

∣∣∣
2,Ω

. (5.6)

Step 2 (Estimates on bounded sets).
Now applying Lemma 5.1 to the function ζkv we get

|(ζkv)xx|2,Ω � c4

(∣∣Lo(ζkv) + λ β g−1 ζkv
∣∣
2,Ω + | ˜f (ζkv)x|2,Ω

)
(5.7)

(we recall that ˜f = 1 +
∑n

i,j=1 |eij| δ +
∑n

i,j=1(eij)x ).
For any k ∈ R+ let r � 2k so that ζr|supp ζk

= 1 . The function ζr ˜f belongs to

the space M̃s,n−s(Ω) (see Lemma 2.1) and then we can use Lemma 3.2 to estimate the
last term in (5.7).

Proceeding as in Step 1 we obtain

|(ζkv)xx|2,Ω � c5

(
|Lov + λg−1βv|2,Ω + |vx|2,Ω

+ |v|2,Ω + H τ[ζr ˜f ]
(

1
k + 1

)
|(ζkv)xx|2,Ω

)
. (5.8)

By definition of modulus of continuity given in Section 3 and by hypothesis (h7)
it follows that there exists k0 ∈ R+ such that from (5.6) and (5.8) we can deduce that

|vxx|2,Ω �
∣∣((1 − ζko)v

)
xx

∣∣
2,Ω + |(ζkov)xx|2,Ω

� c6
(|Lo v + λ g−1β v|2,Ω + |vx|2,Ω + |v|2,Ω

)
. (5.9)

If λ1 < 0 , we fix λ ∈ [λ1, 0[ .
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Using (h6) and applying to β Lemma 3.2 we get the bound

|λ g−1 β v|2,Ω � c7|λ1| (ess inf g)−1
(
|vx|2,Ω + |v|2,Ω

)
. (5.10)

Now if we consider the inequality (5.9) with λ = 0 , from (5.10) we easly deduce (5.3)
with Lo instead of L .

Finally, applying Lemma 3.2 to the functions ai and a verifying hypothesis (h3)
we obtain the result. �

REMARK 5.2. We can prove Lemma 5.2 without any assumptions of convergence
at infinity as in (h7) . If we substitute hypothesis (h7) with (h8) or (h9) , we can
modify the proof of Lemma 5.2. In fact, in Step 1, if we consider (5.2), we can apply
to ˜f embedding theorem to estimate the last term. If eij are constant functions we do
not need any further assumptions while in the general case we can suppose (h9) to use
Lemma 3.2.

In Step 2 we do not need hypotheses (h7) , (h8) or (h9) , but anyway we are able
to apply embedding results.

Then using definition of modulus of continuity and assumptions on functions β ,
ai and a we proceed as in the the proof of Lemma 5.2.

We remark that hypothesis (h5) of Chicco type is not sufficient to get local
estimates for |x| large enough without further assumptions (see (h7) or (h9) ) or
without limit oneself to the case eij =const.

6. A priori bounds

We assume the following further hypotheses:

(h10) ai ∈ Ms,n−s
0 (Ω) , i = 1, ..., n , ess infΩ a > 0 ;

(h11) (αij)xh ∈ Ms,n−s
0 (Ω) , i, j, h = 1, ..., n .

Local a priori bound stated in Lemma 5.2 allows us to prove the following result.

THEOREM 6.1. If (h1) − h7) and (h10) − (h11) hold, then there exist a constant
c ∈ R+ and a bounded open set Ωo ⊂⊂ Ω such that

‖u‖W2(Ω) � c

(
|Lu + λ g−1 β u|2,Ω + |u|2,Ωo

)
(6.1)

∀ u ∈ W2(Ω) ∩ W1
0 (Ω) , ∀ λ � 0 ,

where c is a positive constant depending on Ω, ν, n, s, t, ai, a, ‖aij‖∞ , αij , ‖eij‖∞,
‖g‖∞, ‖αij‖∞, τ[(αij)x], τ[ζk (eij)x], τ[β ], τ[δ ], τ[a], r[(αij)x], r[ζk (eij)x], r[β ],
r[δ ], r[a] .
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Proof.
Step 1 (Estimates at infinity).
If the principal coefficients of L are regular ‘enough’, we can use Corollary 5.2 in

[10] to get the bound (6.2). Therefore if

L̃o = −
n∑

i,j=1

αij
∂2

∂xi∂xj
,

we have that

‖(1 − ζk) u‖W2(Ω) � c1

∣∣∣∣L̃o((1 − ζk) u) + (ga + λβ)(1 − ζk) u

∣∣∣∣
2,Ω

, (6.2)

from which

‖(1 − ζk) u‖W2(Ω) � c1

(∣∣∣∣−
n∑

i,j=1

(
αij − gaij

)(
(1 − ζk) u

)
xixj

− g
n∑

i,j=1

aij
(
(1 − ζk) u

)
xixj

+ (ga + λ β)(1 − ζk) u

∣∣∣∣
2,Ω

)

� c1

(
‖g‖∞|Lo

(
(1 − ζk) u

)
+ (a + λ g−1 β)(1 − ζk) u|2,Ω

+ γ (k)|((1 − ζk) u)xx|2,Ω

)
. (6.3)

Taking in mind (h7) , by a suitable choice k = k0 ∈ R+ we get from (6.3)

‖(1 − ζk0) u‖W2(Ω) � c2

∣∣∣∣Lo
(
(1 − ζk0) u

)
+ (a + λ g−1 β)(1 − ζk0) u

∣∣∣∣
2,Ω

. (6.4)

Step 2 (Estimates on bounded sets).
Locally we can apply Lemma 5.2 with L = L0 + a . Then, reasoning as in [7], we

get the estimate

‖ζk0u‖W2(Ω) � c3

(∣∣(Lo(ζk0u) + (a + λg−1β)ζk0u
∣∣
2,Ω + |ζk0u|2,Ω

)
. (6.5)

Using the well known inequality (see [1])

|ux|2,suppζk0
� K(ε|uxx|2,suppζk0

+ ε−1|u|2,suppζk0
) ,

where K = K(n,Ω) and 0 < ε < ε0 , ε0 > 0 , inequalities (6.4) and (6.5) imply

‖u‖W2(Ω) � c4
(|Lo u + (a + λ g−1 β) u|2,Ω + |u|2,Ω′

o

)
, (6.6)

with Ω′
o = supp ζk0 . Moreover from Lemma 3.4 in [10] we have that for any ε ∈ R+

there exist c(ε) ∈ R+ and an open set Ωε ⊂⊂ Ω such that

n∑
i=1

‖aiuxi‖L2(Ω) � ε ‖u‖W2(Ω) + c(ε) |u|2,Ωε . (6.7)
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From (6.6) and (6.7) we deduce the assertion with Ωo = Ω′
o ∪Ωε . �

REMARK 6.1. We observe that in Theorem 6.1 we can suppose in place of the
condition ess infΩ a > 0 in (h10)

a = a′ + a′′ , a′ ∈ Mt
0(Ω) , ess inf

Ω
a′′ > 0 .

REMARK 6.2. A particular case of convergence at infinity can be obtained assuming
αij = const. So we can avoid introduction of further hypotheses on derivatives of αij

(see (h11)) .

From Theorem 6.1 we get the following result as in [7].

COROLLARY 6.2. In the same hypotheses of Theorem 6.1 and if

β−1 ∈ L∞
loc(Ω)

then for any s ∈ R there exist c , λ0 ∈ R+ such that

‖u‖W2(Ω) � c
∣∣Lu + λ g−1 β u

∣∣
2,Ω (6.8)

∀ u ∈ W2(Ω) ∩ W1
0 (Ω) , ∀ λ � λ0 ,

where c has the same dependence of the constant in Theorem 6.1.

REMARK 6.3. Inequality (6.8) can be obtained under different assumptions if we
suppose coefficients of the operator L more regular. We refer to the paper [10] where
we can find some results. We remark that Theorem 6.1 allows us to obtain the result
stated in Corollary 6.2 under hypotheses considerablyweakenedwith respect to previous
papers.
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