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INEQUALITIES FOR FRACTIONAL DIFFERENTIAL EQUATIONS

K. M. FURATI AND N.-E. TATAR

(Communicated by G. Anastassiou)

Abstract. We consider some differential inequalities involving fractional derivatives in the sense
of Riemann-Liouville. Bounds for theses fractional differential inequalities are found using
desingularization techniques combined with some generalizations of Bihari-type inequalities.
Some applications illustrating the usefulness of our results are also provided.

1. Introduction

In this work we establish some boundedness results for fractional differential
inequalities of the form
(a) Du(r) < ()+Z, 1 i(t) DPu ()
(b) Du(t) < a(t) + X,y bile) [DPu(r))]”
(¢) D%u(r) < a(r) + 5, bilt) [DPu(n)]" with 0 < < 1,0< i< < 1,
i=1,....k.

Itis well known that boundedness results are very useful to understand the behavior
of solutions to differential equations. They can be used to prove global existence in
case we have a local solution and in presence of either behavior: the solution exists for
all time ¢ > 0 or it blows up in finite time in a certain norm. They can also be used to
determine the asymptotic behavior of solutions in case we can not find explicit solutions
as is the case in most nonlinear problems.

In [6] we considered similar fractional differential inequalities to (a)—(c) but with
integrals in the right hand sides. Several results and applications were established.
Those results may be seen as generalizations and extensions of analogous results from
the integer order case (may be found in [3, 11]) to the fractional order case. This is also
what we intend to do in this paper. The situations here are, however, less favorable and
the techniques used in [6] are not valid in the present cases.

For convenience, we shall consider here only the case where the order of the
fractional differential inequalities o is between O and 1. Similar results may be
proved for o > 1.

Our results may be applied, for instance, to differential equations of the form

D u(t) = f (1u, {DPu(n)}L,)
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© ﬂEI’EN Zagreb 279

Paper MIA-12-23



280 K. M. FURATI AND N.-E. TATAR

where o and f; are not necessarily integers and f could be a nonlinear function,
namely, when f takes the form of one of the right hand sides in (a)—(c). For well
posedness of such (Cauchy) problems we refer the reader to [1, 2, 9, 10]. The special
case D®u(t) = f (t,u) has been studied by many investigators (see the survey papers
[9, 10] and the references therein and also the recent works [4, 5, 7]).

We mention here that an upper bound has been found in the case o > 1 and

(- rast)] < o P

with By =a—1> f;+ % , i=1,... k, by Anastassiou in [1] and Anastassiou et
al. in [2]. The technique there is different from ours. It is based on a generalization (to
the fractional case) of Opial inequality. However, their method can not be applied to
thecase 0 < ax < 1.

The rest of the paper is organized as follows. In Section 2 we introduce some
definitions, lemmas, and propositions needed in our proofs. Section 3 contains the main
results. The last section, Section 4, is devoted to some applications.

2. Preliminaries

In this section we introduce some notations, definitions and lemmas which will
be needed later. For more details concerning fractional derivatives, we refer the reader
to [8, 12, 13].

We denote by L,, 1 < p < oo, the usual Lebesgue spaces, and by AC([a, b]) the
space of all absolutely continuous functions on [a, b].

DEFINITION 1. Let f () € Li(a, b), the integral

(I%F ) (1) :zrl )/ ( IS 4 isa,

(a t—s)l-@

where o > 0, is called the Riemann-Liouville fractional integral of order o of the
function f .

We also use the notation f, to denote I%f .
DEFINITION 2. The expression

o 1L d [ f(s)
(D)) = F(lfoc)dt/ TG

where 0 < o < 1, 1s called the Riemann-Liouville fractional derivative of order o of
f provided the right-hand side is pointwise defined on (a, b).

Note that D*f (t) = 41'=%f(¢). For convenience, we use the notation /=% to
denote D% for ¢ > 0.

DEFINITION 3. Let 0 < o < 1. A function f(t) € Ly(a,b) is said to have a
summable fractional derivative D¥f on (a,b) if f1_, € AC([a, b]).
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DEFINITION 4. We define the space I*(L,(a,b)), o« >0, 1 < p < 00, to be the
space of all functions f such that f = I*¢@ for some ¢ € L,(a,b).

For convenience we introduce the function

Ry (1) = = t>0, a>0.

PROPOSITION 5. If f (t) has a summable fractional derivative DPf , 0 < B < 1,
n (a,b), then for o > 0,

1°DPf (1) = fa—p(t) —f1-p(@)Ra(t — a).
See ([13], p. 48).
COROLLARY 6. If f (t) has a summable fractional derivative D*f , 0 < a < 1,
n (a,b), then for 0 < B < oo < 1 we have
DPf (1) = 1°°PDf (1) + f1-a(@)Rop(t — ).

Proof. In Proposition 5, replace o by o — 3, and replace f by «. O
The following is a Bihari-type inequality (Corollary 5.3, [3], Theorem 2.3.3, [11]).
LEMMA7. Letu, ¢, W and k be non-negative continuous functionsin [a,b). Let
w be a continuous, non-negative and non-decreasing functionin [0, o0), with w(0) = 0

and w(u) > 0 for u > 0, andlet ®(t) := maxogs<; ¢(s) and P(t) 1= maxogs< Y(s).
Assume that

u(t) < 0 + w(t) / k(s)w(u(s)ds, 1€ [ab]

Then .
u(t) < W {W(q)(t)) () / k(s)ds} . telaT),
where W( )= ful; %, up,u >0, W= is the inverse of W and T > a is such that
W(d( Y (1) fk Yds € DIW™Y) forall t € [a,T).
When w(u) =u", n > 1 is a positive integer, then
1 1
W(u) = 1 (ul_” - u(l)f”) , W (u) = ((1 —nu+ “0 ") =
—n

for some 1y > 0. We obtain the special version:

LEMMA 8. Let u, ¢, ¥ be non-negative continuous functions in |a,b]. Let

®(7) := max ¢(s), Y(¢) := max y(s).

0<s<t 0<s<t

Assume that

) <o +w) [ e b
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where n is a positive integer > 1. Then

u(t) < [@'"7"(1) — (n— 1) (t — a)¥(1)] ", t€la,T), (1)
where T > a is such that
O'""(t) — (n—1)(t — a)¥(2) >0,
forall t € [a,T).
Let I C R, and let g1, : I — R\ {0}. We write g, xgy if g2/g1 is

nondecreasing in /.
We will use the following Gronwall-type inequality (Theorem 10.3, [3]).

LEMMA 9. Let ¢(z) be a positive continuous function in |a,b], ki(t,s), i =
1,...,m, are nonnegative continuous functions for a < s < t < b which are non-
decreasing in t for any fixed s, gi(u), i = 1,...,m, are nondecreasing continuous
functions in [0,00), with g;(u) > 0 for u > 0 and u(t) is a nonnegative continuous
Sunctions in [a,b]. If g1 x g2 X ... X g in (0,00), then the inequality

u(t) <o(1) +> / ki(z,s) gi(u(s))ds, 1€ [a,b],
i=1 74

implies that
u(t) < ep(t), a<t<T,

where co(t) = maxogs</ ¢(5),

eilt) == G {Gi(ci_l(t))—&-/atk,-(t,s)ds], I

“d
G; (u) ::/ —x, u >0, u; >0,
uj gi(x)
and T is chosen so that the functions ¢;(t), i =1,...,m, are definedfor a <t <T.

In particular,

LEMMA 10. Let ¢(t) be a positive continuous function in |a,b], and (1),
i = 1,...,m, be nonnegative nondecreasing continuous functions in [a,b), then for
positive integers n; > 1, the inequality

u(t) < o) +Zwi(t)/ Wi(s)ds, 1€ a,bl,
i=1 a
implies that

u(t) < Cm(t)v ast<T,

where

olt) = 00,

1

ci(t)zc}:;“(t)—(n,-—l)(t—a)u/i(t)}“_"", i=1,....m  (2)

and T is chosen so that the functions ¢;(t), i =1,...,m, are defined for a <t <T.



INEQUALITIES FOR FRACTIONAL DIFFERENTIAL EQUATIONS 283
To study the asymptotic behavior of the functions in (2) we need the following
lemma.

LEMMA 11. Let f and g be positive functions such that
f)<F,  gl)<Gr,
for some positive constant F, G, and q. Let

0
"= TR s

1

Then, forany 0 < e < 1, and t > (%)q’
h(t) < F/e.

Now, from this lemma we have the following corollary.

COROLLARY 12.  In Lemma (10), if ¢(t) is uniformly bounded, and ty;(t),
i = 1,...,m, has a power-type decay as t — oo, then ¢;(t), i = 1,...,m, are
uniformly bounded for sufficiently large t and

u(t) <c, c>0.

Proof. Use Lemma 11 with f () = ¢ (r) and h(r) = (m; — 1) (r — a) yi(2).

O

We present below some well-known and easy to derive results that we use in our
proofs.

LEMMA 13. (Generalized Young’s Inequality) For nonnegative a;, i = 1,... k

7

k n k
<Z> LI ®)
i=1 '

where k and n are positive integers.

LEMMA 14. (Young’s Inequality) For f,g >0, p > 1, and 117 + é =1,

)

P q
fg<f—+g—~ (4)
P q

In particular

LEMMA 15. for nonnegative f and g, and 0 <m < 1,
1
f(@) &"(1) < (1—m) fT=m (1) + mg(2). (5)

Proof. In (4),let ¢ = L and p = L. O

1—m
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LEMMA 16. for positive f and g, t > a,and 0 <m < 1,
£ [ [[sias] < -mrm e [ gas ©)
LEMMA 17. Forall oo > 0 and u < 1, we have
/Ot(r —5)*'sHds = T(a) T(1 — W) Ry—ps1(1), t>0.

For u replaced by pu and o replaced by p(a — 1) + 1 we get

COROLLARY 18. For 0 < a <1, p < {15, and p < & we have

t
/ (t—s)P* Vs Pds = T(p(a— 1)+ 1) T(1—pu) Rpa—p—1)12(t), t=0. (7)
0
In particular when u = 0, the relation (7) reduces to
tp(a—l)+l

/o (t— s Vds =T(p(or — 1)+ 1) Ryi—1)42(t) = pla—1D+1

which can also be found by direct integration.

t=20, (8)

REMARK 1. Note that the condition p < ﬁ is equivalent to g > é for zlﬂ + é =

1.
LEMMA 19. For ¢ € Li(a,b), 0<a <1,and g> L,
1
Salt.a ) (o 19()eds) ", n=1,p<i-}
o) < § Sat,n, 1) [os™ |9(s)|" ds, n>L p<r-1
ﬂ
(1—3) Sa" (t,q,,u)—l—g fats‘”‘|¢(s)\‘1ds, 0<n<i u< 1—%.
©)
where 1
Sa(tvqhu) = Aa,q,y (t - a)a_ﬂ—g’
1 {F(l —pw) Tp(a — 1) + 1)]7
Avgu = ,
M) | Tpla—u-1+2)
1,1 _

Proof. Because of the condition p(l1 — o) < 1 in Corollary 18 we need to
distinguish between the two cases: n > é and n < é .

For n = 1, using Holder inequality, the result follows from Corollary 18. For
n> é , raise the first inequality in (9) to power n and let ¢ be n. For 0 < n < é , we

use the first inequality raised to power n and Lemma 16 with m = g (]

The next lemma is crucial to our results. It contains three reference inequalities
which will be used repeatedly.
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LEMMA 20. Suppose u(t) is a nonnegative function having a summable nonneg-
ative fractional derivative D%u, 0 < oo < 1. For positive integer n, 0 < B < ot < 1,
t>a,and q > Oc—iB’

_Q=

Ro—p(t,u, 1)+Se—p(t, q, 1) (ﬂ[S“D“M(S)]qu) , n=1, p<l—g

[Dﬁu(t)} < Iéa,ﬁ(t,u,n)+2"_lS’;C_B(t,n,u)fat[s“Do‘u(s)}”ds, n>—Lto u<i-1i

n—1
Sa_B(t,u,n,q,,u)Jr"zT fa'[s"DO‘u(s)}qds7 0<n<m—iﬁ7 ,u<1—é.

(10)
where,
R‘a*ﬁ(t’ l/t,l’l) = 2"—1 uiqua(a) R}ZX—B(I - a) = Ba,ﬁ,u,n t—n(l—ochB)
21 (a)
Bypn, = —=ad)
o, il )
~ ~ n B n:{n
Soc—ﬁ(tau7naq7nu) = R(X—ﬁ(t7u’n) + <1 - 5) 2" IS;_ﬁ(t’qmu)

nig(a—p—w—1)

= Bopun t "7 4+ Co—pgnu (t—a)” a7

n n—1 anqn
Copagnu = 1_5 2 Aa—B,q,u

Proof. The result follows directly from Corollary 6, Lemma 13, and Lemma 19.
]

REMARK 2. Note that under our assumptions, the functions Sy, Ry—p, and Sy—p
are non-negative.

3. The Results

In this section we state and prove our results. Namely, we will provide some
bounds for solutions of the differential inequalities in (a) — (c). Let us start with the
linear case (a).

THEOREM 21.  Let a(t) and bi(t), i = 1,...,k be nonnegative continuous
Sunctions on [0,T], 0 < T < co. Suppose that u(t) is a nonnegative function having
a summable nonnegative fractional derivative D%u, 0 < o < 1, and satisfying

k
Du(t) <a(t) + > _bi(t)DPu(r), O<P<a<l, i=1,.. .k (1)

i=1

Then,

Du(t) <t (Ez(r)eﬁi’(”“) ,
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where
a(r) = 2071 ¢ (a(t) + u1_¢(0) Zb,-(t) Ra_ﬁi([)> ,
and

k q
B(r) =201 (Z i) Su_p (0 q,m) ,
i=1

forany g > a+ﬁ'_, i:l,...,kand,u<1—%.

Proof. By Lemma 20 (first inequality) we have

k

Du(t) < a(t)+ Y bi(t)

i=1

Rt 1) + Su_py (1. 012) ( / t [suDau<s)]qu) ]

1

< a(d) + b0 ( /0 t [sﬂmu(s)yfds)q,

with
k k

a(t) = a(r) + be(’) Ro_p(t,u, 1), b(t) = Zbi(t)sa,ﬁi(t, q,1).

i=1 i=1

Multiplying both sides by * , raising them to the power ¢, and using (3), we obtain
t
[ Du(0] < alr) + b(s) / (54 Dl(s)]"ds. (12)
0

The result follows from Gronwall inequality. ]
The next theorem is concerned with the inequality in (b).
THEOREM 22. Let a(t) and bi(t), i = 1,...,k be nonnegative continuous

Sunctions on [0,T], 0 < T < co. Suppose that u(t) is a nonnegative function having
a summable nonnegative fractional derivative D%u, 0 < o, < 1, and satisfying

k
D u(t) < alt) + 3 bilt) [Dﬁiu(t)r, O<B<a<l, i=1,...k (13)
i=1

with a positive integer n > 1. Then we have

1

Du(t) <t [A'9(1) — (g — 1) tB(1)] 7, t€10,T], (14)
where T > 0 is such that
AT — (g~ 1)1B(1) > 0,
forall t €10,T), and
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The functions @, b, and the powers q, | are as follows:
lﬁ , 1 <i<k,then g=n, ,u<1—%,and

—I—Zb YRy ﬁ,tun)],

a(t)y=

b(r) = 2"~1 Zb,-(t) St (t,n, ).

(D) If 1 <n< &= ﬁ’l k thenqzsanyvalue>—ﬁ with
B =mnigi<fi, n <1— 2, and

a(r) =

k
Cl(l‘) + Zbl(t) Sa*ﬁi(h u,n, CL.“)] 5

i=1

k

N n2n—1
b(r) = #> " bi(1).

4 i=1

Proof. (a) From Lemma 20 (second inequality) we have

t
D%u(r) < +Zb { ap(tyuyn) + 277188 g, (tsm, 1) / [s“Dau(s)}”ds}
0
< a(f) + Z bi(t)RlX*ﬁi(L u,n)
i=1
t
(2" IZb w—p; ;1 M)) / [s*D%u(s)]" ds.
0
Multiplying both sides by ', we obtain
t
#*D%u(t) < a(t) + b(r) / [s¥D%u(s)]" ds.
0

The result follows from Lemma 8.
(b) From Lemma 20 (third inequality)

2n—1 1
Dau t < +Zb |:Sa ﬁz l u,n,q, ‘LL) n , / [s“Dau(S)]qui|
0

k

= Jer )Se—pi(t,u,n,q, 1) +
i=1

/ [s“D%(s)]" ds

and thus .
# Du(t) < a(r) + b() / 4 D%u(s)]9 ds.
0

We conclude using Lemma 8. (]
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REMARK 3. In case n satisfy (a) for some i and satisfy (b) for the others, we
combine the proofs in (a) and (b) and use the corresponding i-th term in the series of
b(t).

THEOREM 23.  Ler a(t) and bi(t), i = 1,...,k be nonnegative continuous
Sunctions on [0,T], 0 < T < co. Suppose that u(t) is a nonnegative function having
a summable nonnegative fractional derivative D%u, 0 < o < 1, and satisfying

k

Du(r) < alt) + > bi(t) [Dﬁiu(t)r", 0<B<a<l, i=1,... k (15
i=1

with positive integers n; > 1, 1 < i < k. Then we have
D%u(r) < 1 #ei(p), 0<t<T,

where co(t) := maxogs<, a(s),

ci() = [c}:;ﬁ(t) ~(gi— 1);13,-(;)} T =k

and T is chosen so that the functions ¢;(t), i =1,...,k, are definedfor 0 <t < T.
The functions a, b;, and the powers q;, U are as follows
(a) If n; > a—lﬁ,-’ i=1,...,k, then qi=n;, u < 1—— =1,...,k,and

a(t) + Z bi(t) Ro—p; (. u, n,)} *,

bi(t) = 2" bi(t) Sti_p, (1, mi, ) 4.
(b) If 1 <m < g, i=1,.

.k, then gq; is any value > ﬁ u<l-—-

i=1,...,k and
k
a(t) = |a(t) + Zb,-(t) Saﬁi(l,u,ni,qi,ﬂ)] *,
i=1
N izni—l
bi(r) = 1 bi(t) .
qi

Proof. (a) From Lemma 20 (second inequality) we have
t
D%u(r) < +Zb { aepy(t,u,m) + 271 S0 g (11, 1) / [s#D%u(s)]™ ds]
0
< ar) + Zb ) Ro—p; (t,u,n;)

t
—|—Z2"’_lb 1Sy (t,n,-,u) /[S“Do‘u(s)}”"ds
0
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Multiplying both sides by #*, we obtain

k t
#*D%u( ZE / [s*D%u(s)])" ds,

where @(t) and b(z) are as in the statement of part (a) of the theorem. Next, we appeal
to Lemma 10.
(b) From Lemma 20 (third inequality) we have

ni2"i_1 g .
D%u 1)+ Zb [Sa gi(tu,ni, qi, 1) + T/o [s*D%u(s)]? ds,}

k

n,-2""_1 ! .
+Zb Sucp(tameaitt) + 30 "= blo) [ Duts) ds.

i 1

Multiplying both sides by #, we obtain

k t
#*D%u( ZE / [s*D%u(s)]% ds.

We assumes the exponents ¢g; to be in nondecreasing order. If not, we can always
reorder them. Lemma 10 allows us to derive the result. ]

REMARK 4. In case some of the n; satisfy (a) and the remaining satisfy (b), we
combine the proofs in (a) and (b) and reorder n;, g; in the nondecreasing order.

4. Application

In this section we present an application of the results proved in the previous
section. We use the bounds to show that when the coefficients are power functions, then
so is the fractional derivative of highest order o .

Consider the problem

Du(t) =f (t,{DPu(t)}t,), O0<Bi<oa<l, i=1,... .k
(16)
u(0) = ug

with

L‘(r,{DB"u(t) )‘ +Zb ‘DB'

Suppose there exists Ty > 0 such that for r > T,

, t>0, n; > 1.

a(t) <A™, bi(t) < Apt™"

for some r,s;,A;, Ap > 0. Then we have the following results.
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THEOREM 24. Foreach i =1,...,k, suppose that n; >

si>ni(o—B) — (ny — 1)y,

with
. r 1
o5
Let
U = min {r,li}.
1<i<k n;
Then
D%u(r) < ct™#, t > Ty,
for
U < p < M,

and some ¢ > 0.

a+&’ and forany € > 0,

(17)

(18)

(19)

(20)

Proof. Note that u; < U, since n; > 1, and thus u is well defined. It follows
from (19) that u < 1 — 1/n;, i = 1,...k. From Theorem 23(a) we have

D%u(t) <t * (1) (21)
colt) = max (s (22)
1 Ci.ll'*l nlLl
ci(t) = [Cil:f"(f) = (ni— 1)ll~7i(l)} = [ e ] ;o (23)
1— (; — 1) thi(r) !
with
a(t) = +Zb Rop(t,u n,)] * (24)
= +Zb Bogrum t ""“"‘“’")] * (25)
k
< A" HBY T (26)
i=1
and
thi(r) = 2" bi(t) Syi_p, (1, i, ) 4 (27)
= 2""'bi(1) (Aa*ﬁi,ni# taiﬁiﬂh"l") s (28)
< Bit_pi, (29)
where
2n1—1u7111 oc(O) nj—1 n;
Busun = g =gy Do =Av WX Bapuns Bi=2""" A Ay
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ni =ni(l —a+p) + s — 1,
and
pi = ni(n — o+ ) + s — p.
It follows from (17), (18), and (20) that u < r, p; >0 and n; > 1, 1 <i <k,
since

(ni — D — ni(a — B;) + s
(ni — Dp —ni(a — Bi) +ni(oe — Bi) — (ni — D)
(ni — D — (i — Dy = (i — 1)(u — ) >0,

Pi

\

and 1
ni—Pi=nf(1—u)>ni(l—1+—> =1.

n;
Therefore, @(t) is uniformly bounded and 75;() has a power-type decay. The
result follows from Corollary 12. ]

THEOREM 25. Supposefor 1 <i <k,

n; < > 30
5 (30)
and
S; > 1. (31)
Let )
M<1I£i1£k{r’sil’ln_i}' (32)
Then
D%u(r) < ct™#, t > Ty,
for some ¢ > 0.
Proof. Let q; > oz+ﬁ, , 1 <i <k, then from Theorem 23,
D%u(t) < 17 #ci(r) (33)
co(f) = max a(s) (34)

<<t

— [t 2T it T
i(r) = [0 = (= 1) 1) _L—m—nmmﬂ; . (35)

a(t) + Zb,-(t) Serpi (8,4, i, g, u)] *

k

) ] ni[gi(a—PBi—p)—1]
a(t) + Z bi(t) {Baaﬂiﬁu,ni g o) + Ca—ﬁi’qi,ni# 4 o }] !
i=1
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M~

< a(t) + Ap

) N nilgie—pi—w—1] _
{Bo‘,ﬁi,umit mi(l=othi)=s Co—pigimiut o S’}] .
i=1

tl

) N nilgi(e—Bi—w—1]
SATHA {Bavﬁivu,nit_nl(l_aJrBl>_bl+u+ca—ﬁi~,qi,niaut o Slﬂl}
i=1

k

<A™ +B. Y [f”l’ + f‘s'}
i=1

and
B niznifl
qi
nizni—l

qi
D —si+1
Bi tﬂ Si ,

~
S
—
~
~—
\

bi(t) M1

N

Ap —sitl

/A

where

B, = A, lrgfgk {Ba,Bi,u,niv Ca—ﬁi’qi,ni#} ) B; = 4 Ap,

i =n(l —a+f)+si—Hu,

and

5 —milale—f—w) 1]
l qi —n;
It follows from (30), (31) and (32) that

+S,'7‘U,.

u—r<o, u—s+1<0,

n = nm(l—a—PB)+si—p
ni—ni(a—ﬁi)—&-l
> n,-flJrl:n,-ZZ,

V

and

n;
6 = (1 —qgi(a—Bi—p)] +s —u
qi — ni

n;

qi — ni

1+ qiu — qi(oe — B)] + 1

n; qi
= |:1+Qiﬂ_%(a_ﬁi)+;_1:|

qi —n; i

n; qi
= [QiMCIi(aﬁi)Jr—_]
qi — N n;

qi
= il —ni(o0 —B;) +1
gt = o~ ) + 1
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i in;
b — 14 1) = 28
qi — n; qi — n;

> > 0.

Therefore, @(t) is uniformly bounded and 75;() has a power-type decay. The

result follows from Corollary 12. ]
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