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INEQUALITIES FOR FRACTIONAL DIFFERENTIAL EQUATIONS

K. M. FURATI AND N.-E. TATAR

(Communicated by G. Anastassiou)

Abstract. We consider some differential inequalities involving fractional derivatives in the sense
of Riemann-Liouville. Bounds for theses fractional differential inequalities are found using
desingularization techniques combined with some generalizations of Bihari-type inequalities.
Some applications illustrating the usefulness of our results are also provided.

1. Introduction

In this work we establish some boundedness results for fractional differential
inequalities of the form

(a) Dαu(t) � a(t) +
∑k

i=1 bi(t) Dβi u(t)
(b) Dαu(t) � a(t) +

∑k
i=1 bi(t)

[
Dβiu(t))

]n
(c) Dαu(t) � a(t) +

∑k
i=1 bi(t)

[
Dβiu(t)

]ni with 0 < α < 1 , 0 � βi < α < 1 ,
i = 1, . . . , k .

It is well known that boundedness results are very useful to understand the behavior
of solutions to differential equations. They can be used to prove global existence in
case we have a local solution and in presence of either behavior: the solution exists for
all time t � 0 or it blows up in finite time in a certain norm. They can also be used to
determine the asymptotic behavior of solutions in case we can not find explicit solutions
as is the case in most nonlinear problems.

In [6] we considered similar fractional differential inequalities to (a)–(c) but with
integrals in the right hand sides. Several results and applications were established.
Those results may be seen as generalizations and extensions of analogous results from
the integer order case (may be found in [3, 11]) to the fractional order case. This is also
what we intend to do in this paper. The situations here are, however, less favorable and
the techniques used in [6] are not valid in the present cases.

For convenience, we shall consider here only the case where the order of the
fractional differential inequalities α is between 0 and 1 . Similar results may be
proved for α > 1 .

Our results may be applied, for instance, to differential equations of the form

Dαu(t) = f
(
t, u, {Dβiu(t)}k

i=1

)
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where α and βi are not necessarily integers and f could be a nonlinear function,
namely, when f takes the form of one of the right hand sides in (a)–(c). For well
posedness of such (Cauchy) problems we refer the reader to [1, 2, 9, 10]. The special
case Dαu(t) = f (t, u) has been studied by many investigators (see the survey papers
[9, 10] and the references therein and also the recent works [4, 5, 7]).

We mention here that an upper bound has been found in the case α > 1 and

∣∣∣f (t, {Dβiu(t)}k+1
i=1

)∣∣∣ � k+1∑
i=1

bi(t)
∣∣∣Dβiu(t)

∣∣∣
with βk+1 = α − 1 > βi + 1

2 , i = 1, . . . , k , by Anastassiou in [1] and Anastassiou et
al. in [2]. The technique there is different from ours. It is based on a generalization (to
the fractional case) of Opial inequality. However, their method can not be applied to
the case 0 < α < 1 .

The rest of the paper is organized as follows. In Section 2 we introduce some
definitions, lemmas, and propositions needed in our proofs. Section 3 contains the main
results. The last section, Section 4, is devoted to some applications.

2. Preliminaries

In this section we introduce some notations, definitions and lemmas which will
be needed later. For more details concerning fractional derivatives, we refer the reader
to [8, 12, 13].

We denote by Lp , 1 � p � ∞ , the usual Lebesgue spaces, and by AC([a, b]) the
space of all absolutely continuous functions on [a, b] .

DEFINITION 1. Let f (t) ∈ L1(a, b) , the integral

(Iα f )(t) :=
1

Γ(α)

∫ t

a

f (s)
(t − s)1−α ds, t > a,

where α > 0 , is called the Riemann-Liouville fractional integral of order α of the
function f .

We also use the notation fα to denote Iα f .

DEFINITION 2. The expression

(Dα f )(t) :=
1

Γ(1 − α)
d
dt

∫ t

a

f (s)
(t − s)α

ds,

where 0 < α < 1 , is called the Riemann-Liouville fractional derivative of order α of
f provided the right-hand side is pointwise defined on (a, b) .

Note that Dα f (t) = d
dt I

1−α f (t) . For convenience, we use the notation I−α to
denote Dα for α � 0 .

DEFINITION 3. Let 0 < α < 1 . A function f (t) ∈ L1(a, b) is said to have a
summable fractional derivative Dα f on (a, b) if f 1−α ∈ AC([a, b]) .
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DEFINITION 4. We define the space Iα(Lp(a, b)) , α > 0 , 1 � p < ∞ , to be the
space of all functions f such that f = Iαϕ for some ϕ ∈ Lp(a, b) .

For convenience we introduce the function

Rα(t) =
tα−1

Γ(α)
, t > 0, α > 0.

PROPOSITION 5. If f (t) has a summable fractional derivative Dβ f , 0 � β < 1 ,
on (a, b) , then for α � 0 ,

IαDβ f (t) = fα−β (t) − f 1−β (a)Rα(t − a).

See ([13], p. 48).

COROLLARY 6. If f (t) has a summable fractional derivative Dα f , 0 � α < 1 ,
on (a, b) , then for 0 � β � α < 1 we have

Dβ f (t) = Iα−βDα f (t) + f 1−α(a)Rα−β(t − a).

Proof. In Proposition 5, replace α by α − β , and replace β by α . �
The following is a Bihari-type inequality (Corollary 5.3, [3], Theorem 2.3.3, [11]).

LEMMA 7. Let u , φ , ψ and k be non-negativecontinuous functions in [a, b] . Let
w be a continuous, non-negative and non-decreasing function in [0,∞) , with w(0) = 0
and w(u) > 0 for u > 0 , and let Φ(t) := max0�s�t φ(s) and Ψ(t) := max0�s�t ψ(s) .
Assume that

u(t) � φ(t) + ψ(t)
∫ t

a
k(s) w(u(s))ds, t ∈ [a, b].

Then

u(t) � W−1

[
W(Φ(t)) + Ψ(t)

∫ t

a
k(s)ds

]
, t ∈ [a, T),

where W(u) :=
∫ u

u0

dτ
w(τ) , u0, u > 0 , W−1 is the inverse of W and T > a is such that

W(Φ(t)) + Ψ(t)
∫ t

a k(s)ds ∈ D(W−1) for all t ∈ [a, T) .

When w(u) = un , n > 1 is a positive integer, then

W(u) =
1

1 − n

(
u1−n − u1−n

0

)
, W−1(u) =

(
(1 − n)u + u1−n

0

) 1
1−n ,

for some u0 > 0 . We obtain the special version:

LEMMA 8. Let u , φ , ψ be non-negative continuous functions in [a, b] . Let

Φ(t) := max
0�s�t

φ(s), Ψ(t) := max
0�s�t

ψ(s).

Assume that

u(t) � φ(t) + ψ(t)
∫ t

a
un(s)ds, t ∈ [a, b],
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where n is a positive integer > 1 . Then

u(t) �
[
Φ1−n(t) − (n − 1)(t − a)Ψ(t)

] 1
1−n , t ∈ [a, T], (1)

where T > a is such that

Φ1−n(t) − (n − 1)(t − a)Ψ(t) > 0,

for all t ∈ [a, T) .

Let I ⊂ R, and let g1, g2 : I → R \ {0} . We write g1 ∝ g2 if g2/g1 is
nondecreasing in I .

We will use the following Gronwall-type inequality (Theorem 10.3, [3]).

LEMMA 9. Let φ(t) be a positive continuous function in [a, b] , ki(t, s) , i =
1, . . . , m, are nonnegative continuous functions for a � s � t < b which are non-
decreasing in t for any fixed s , gi(u) , i = 1, . . . , m, are nondecreasing continuous
functions in [0,∞) , with gi(u) > 0 for u > 0 and u(t) is a nonnegative continuous
functions in [a, b] . If g1 ∝ g2 ∝ . . . ∝ gm in (0,∞) , then the inequality

u(t) � φ(t) +
m∑

i=1

∫ t

a
ki(t, s) gi(u(s))ds, t ∈ [a, b],

implies that
u(t) � cm(t), a � t < T,

where c0(t) := max0�s�t φ(s) ,

ci(t) := G−1
i

[
Gi (ci−1(t)) +

∫ t

a
ki(t, s)ds

]
, i = 1, . . . , m,

Gi (u) :=
∫ u

ui

dx
gi(x)

, u > 0, ui > 0,

and T is chosen so that the functions ci(t), i = 1, . . . , m, are defined for a � t < T .

In particular,

LEMMA 10. Let φ(t) be a positive continuous function in [a, b] , and ψi(t) ,
i = 1, . . . , m, be nonnegative nondecreasing continuous functions in [a, b] , then for
positive integers ni > 1 , the inequality

u(t) � φ(t) +
m∑

i=1

ψi(t)
∫ t

a
uni(s) ds, t ∈ [a, b],

implies that
u(t) � cm(t), a � t < T,

where

c0(t) := max
0�s�t

φ(s),

ci(t) =
[
c1−ni
i−1 (t) − (ni − 1)(t − a)ψi(t)

] 1
1−ni

, i = 1, . . . , m, (2)

and T is chosen so that the functions ci(t), i = 1, . . . , m, are defined for a � t < T .
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To study the asymptotic behavior of the functions in (2) we need the following
lemma.

LEMMA 11. Let f and g be positive functions such that

f (t) < F, g(t) < G t−q,

for some positive constant F , G , and q . Let

h(t) =
f (t)

1 − f (t) g(t)
.

Then, for any 0 < ε < 1 , and t >
(

FG
1−ε

) 1
q
,

h(t) < F/ε.

Now, from this lemma we have the following corollary.

COROLLARY 12. In Lemma (10), if φ(t) is uniformly bounded, and tψi(t) ,
i = 1, . . . , m, has a power-type decay as t → ∞ , then ci(t) , i = 1, . . . , m, are
uniformly bounded for sufficiently large t and

u(t) < c, c > 0.

Proof. Use Lemma 11 with f (t) = cni−1
i−1 (t) and h(t) = (ni − 1) (t − a)ψi(t) .

�
We present below some well-known and easy to derive results that we use in our

proofs.
LEMMA 13. (Generalized Young’s Inequality) For nonnegative ai , i = 1, . . . , k,(

k∑
i=1

ai

)n

� kn−1
k∑

i=1

an
i , (3)

where k and n are positive integers.

LEMMA 14. (Young’s Inequality) For f , g � 0 , p > 1 , and 1
p + 1

q = 1 ,

f g � f p

p
+

gq

q
. (4)

In particular

LEMMA 15. for nonnegative f and g , and 0 < m < 1 ,

f (t) gm(t) � (1 − m) f
1

1−m (t) + m g(t). (5)

Proof. In (4), let q = 1
m and p = 1

1−m . �
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LEMMA 16. for positive f and g , t > a , and 0 < m < 1 ,

f (t)
[∫ t

a
g(s)ds

]m

� (1 − m) f
1

1−m (t) + m
∫ t

a
g(s)ds. (6)

LEMMA 17. For all α > 0 and μ < 1 , we have∫ t

0
(t − s)α−1s−μds = Γ(α) Γ(1 − μ) Rα−μ+1(t), t � 0.

For μ replaced by pμ and α replaced by p(α − 1) + 1 we get

COROLLARY 18. For 0 < α < 1 , p < 1
1−α , and μ < 1

p we have∫ t

0
(t−s)p(α−1)s−pμds = Γ(p(α−1)+1) Γ(1−pμ) Rp(α−μ−1)+2(t), t � 0. (7)

In particular when μ = 0 , the relation (7) reduces to∫ t

0
(t− s)p(α−1)ds = Γ(p(α − 1)+ 1) Rp(α−1)+2(t) =

tp(α−1)+1

p(α − 1) + 1
, t � 0, (8)

which can also be found by direct integration.

REMARK 1. Note that the condition p < 1
1−α is equivalent to q > 1

α for 1
p + 1

q =
1 .

LEMMA 19. For φ ∈ L1(a, b) , 0 < α < 1 , and q > 1
α ,

[Iαφ(t)]n �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Sα(t, q,μ)
(∫ t

a sqμ |φ(s)|q ds
) 1

q
, n = 1, μ < 1 − 1

q

Sn
α(t, n,μ)

∫ t
a snμ |φ(s)|n ds, n > 1

α , μ < 1 − 1
n(

1− n
q

)
S

nq
q−n
α (t, q,μ)+ n

q

∫ t
a sqμ |φ(s)|q ds, 0 < n � 1

α , μ < 1− 1
q .

(9)
where

Sα(t, q,μ) = Aα,q,μ(t − a)α−μ− 1
q ,

Aα,q,μ =
1

Γ(α)

[
Γ(1 − pμ) Γ(p(α − 1) + 1)

Γ(p(α − μ − 1) + 2)

] 1
p

,

and 1
p + 1

q = 1 .

Proof. Because of the condition p(1 − α) < 1 in Corollary 18 we need to
distinguish between the two cases: n > 1

α and n � 1
α .

For n = 1 , using Hölder inequality, the result follows from Corollary 18. For
n > 1

α , raise the first inequality in (9) to power n and let q be n . For 0 < n � 1
α , we

use the first inequality raised to power n and Lemma 16 with m = n
q �

The next lemma is crucial to our results. It contains three reference inequalities
which will be used repeatedly.



INEQUALITIES FOR FRACTIONAL DIFFERENTIAL EQUATIONS 285

LEMMA 20. Suppose u(t) is a nonnegative function having a summable nonneg-
ative fractional derivative Dαu , 0 < α < 1 . For positive integer n , 0 < β < α < 1 ,
t > a , and q > 1

α−β ,

[
Dβu(t)

]n
�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̃α−β(t, u, 1)+Sα−β(t, q,μ)
(∫ t

a [s
μDαu(s)]q ds

) 1
q
, n=1, μ<1− 1

q

R̃α−β(t, u, n)+2n−1Sn
α−β(t, n,μ)

∫ t
a [s

μDαu(s)]n ds, n> 1
α−β , μ<1− 1

n

S̃α−β(t, u, n, q,μ)+ n2n−1

q

∫ t
a [s

μDαu(s)]q ds, 0<n� 1
α−β , μ<1− 1

q .

(10)
where,

R̃α−β(t, u, n) = 2n−1 un
1−α(a) Rn

α−β(t − a) = Bα,β ,u,n t−n(1−α+β)

Bα,β ,u,n =
2n−1 un

1−α(a)
Γn(α − β)

S̃α−β(t, u, n, q,μ) = R̃α−β(t, u, n) +
(

1 − n
q

)
2n−1S

nq
q−n
α−β(t, q,μ)

= Bα,β ,u,n t−n(1−α+β) + Cα−β ,q,n,μ (t − a)
n[q(α−β−μ)−1]

q−n

Cα−β ,q,n,μ =
(

1 − n
q

)
2n−1 A

nq
q−n
α−β ,q,μ

Proof. The result follows directly from Corollary 6, Lemma 13, and Lemma 19.
�

REMARK 2. Note that under our assumptions, the functions Sα , R̃α−β , and S̃α−β
are non-negative.

3. The Results

In this section we state and prove our results. Namely, we will provide some
bounds for solutions of the differential inequalities in (a) – (c). Let us start with the
linear case (a).

THEOREM 21. Let a(t) and bi(t) , i = 1, . . . , k be nonnegative continuous
functions on [0, T] , 0 < T � ∞ . Suppose that u(t) is a nonnegative function having
a summable nonnegative fractional derivative Dαu , 0 < α < 1 , and satisfying

Dαu(t) � a(t) +
k∑

i=1

bi(t) Dβi u(t), 0 � βi < α < 1, i = 1, . . . , k. (11)

Then,

Dαu(t) � t−μ
(

ã(t)e
∫ t

0
b̃(s)ds

) 1
q

,
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where

ã(t) = 2q−1 tqμ
(

a(t) + u1−α(0)
k∑

i=1

bi(t) Rα−βi(t)

)q

,

and

b̃(t) = 2q−1 tqμ
(

k∑
i=1

bi(t) Sα−βi(t, q,μ)

)q

,

for any q > 1
α−βi

, i = 1, . . . , k and μ < 1 − 1
q .

Proof. By Lemma 20 (first inequality) we have

Dαu(t) � a(t) +
k∑

i=1

bi(t)

[
R̃α−βi(t, u, 1) + Sα−βi(t, q,μ)

(∫ t

0
[sμDαu(s)]q ds

) 1
q
]

� â(t) + b̂(t)
(∫ t

0
[sμDαu(s)]q ds

) 1
q

,

with

â(t) = a(t) +
k∑

i=1

bi(t) R̃α−βi(t, u, 1), b̂(t) =
k∑

i=1

bi(t)Sα−βi(t, q,μ).

Multiplying both sides by tμ , raising them to the power q , and using (3), we obtain

[tμDαu(t)]q � ã(t) + b̃(t)
∫ t

0
[sμDαu(s)]qds. (12)

The result follows from Gronwall inequality. �
The next theorem is concerned with the inequality in (b).

THEOREM 22. Let a(t) and bi(t) , i = 1, . . . , k be nonnegative continuous
functions on [0, T] , 0 < T � ∞ . Suppose that u(t) is a nonnegative function having
a summable nonnegative fractional derivative Dαu , 0 < α < 1 , and satisfying

Dαu(t) � a(t) +
k∑

i=1

bi(t)
[
Dβiu(t)

]n
, 0 � βi < α < 1, i = 1, . . . , k, (13)

with a positive integer n > 1 . Then we have

Dαu(t) � t−μ [A1−q(t) − (q − 1) tB(t)
] 1

1−q , t ∈ [0, T], (14)

where T > 0 is such that

A1−q(t) − (q − 1) t B(t) > 0,

for all t ∈ [0, T) , and

A(t) = max
0�s�t

ã(s), B(t) = max
0�s�t

b̃(s).
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The functions ã , b̃ , and the powers q , μ are as follows:
(a) If n > 1

α−β i
, 1 � i � k , then q = n , μ < 1 − 1

n , and

ã(t) = tμ
[
a(t) +

k∑
i=1

bi(t) R̃α−βi(t, u, n)

]
,

b̃(t) = 2n−1 tμ
k∑

i=1

bi(t) Sn
α−βi

(t, n,μ).

(b) If 1 < n � 1
α−β i

, 1 � i � k , then q is any value > 1
α−β , with

β = min1�i�kβi , μ < 1 − 1
q , and

ã(t) = tμ
[
a(t) +

k∑
i=1

bi(t) S̃α−βi(t, u, n, q,μ)

]
,

b̃(t) =
n2n−1

q
tμ

k∑
i=1

bi(t).

Proof. (a) From Lemma 20 (second inequality) we have

Dαu(t) � a(t) +
k∑

i=1

bi(t)
[
R̃α−βi(t, u, n) + 2n−1Sn

α−βi
(t, n,μ)

∫ t

0
[sμDαu(s)]n ds

]

� a(t) +
k∑

i=1

bi(t)R̃α−βi(t, u, n)

+

(
2n−1

k∑
i=1

bi(t)Sn
α−βi

(t, n,μ)

) ∫ t

0
[sμDαu(s)]n ds.

Multiplying both sides by tμ , we obtain

tμDαu(t) � ã(t) + b̃(t)
∫ t

0
[sμDαu(s)]n ds.

The result follows from Lemma 8.
(b) From Lemma 20 (third inequality)

Dαu(t) � a(t) +
k∑

i=1

bi(t)
[
S̃α−βi(t, u, n, q,μ) +

n2n−1

q

∫ t

0
[sμDαu(s)]q ds

]

= a(t) +
k∑

i=1

bi(t)S̃α−βi(t, u, n, q,μ) +
n2n−1

q

k∑
i=1

bi(t)
∫ t

0
[sμDαu(s)]q ds

and thus

tμ Dαu(t) � ã(t) + b̃(t)
∫ t

0
[sμDαu(s)]q ds.

We conclude using Lemma 8. �
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REMARK 3. In case n satisfy (a) for some i and satisfy (b) for the others, we
combine the proofs in (a) and (b) and use the corresponding i -th term in the series of
b̃(t) .

THEOREM 23. Let a(t) and bi(t) , i = 1, . . . , k be nonnegative continuous
functions on [0, T] , 0 < T � ∞ . Suppose that u(t) is a nonnegative function having
a summable nonnegative fractional derivative Dαu , 0 � α � 1 , and satisfying

Dαu(t) � a(t) +
k∑

i=1

bi(t)
[
Dβiu(t)

]ni
, 0 � βi < α < 1, i = 1, . . . , k, (15)

with positive integers ni > 1 , 1 � i � k . Then we have

Dαu(t) � t−μck(t), 0 � t < T,

where c0(t) := max0�s�t ã(s) ,

ci(t) =
[
c1−qi
i−1 (t) − (qi − 1) t b̃i(t)

] 1
1−qi

, i = 1, . . . ., k,

and T is chosen so that the functions ci(t), i = 1, . . . , k , are defined for 0 � t < T .
The functions ã , b̃i , and the powers qi , μ are as follows:
(a) If ni > 1

α−βi
, i = 1, . . . , k , then qi = ni , μ < 1 − 1

ni
, i = 1, . . . , k , and

ã(t) =

[
a(t) +

k∑
i=1

bi(t) R̃α−βi(t, u, ni)

]
tμ ,

b̃i(t) = 2ni−1 bi(t) Sni
α−βi

(t, ni,μ) tμ .

(b) If 1 < ni � 1
α−βi

, i = 1, . . . , k , then qi is any value > 1
α−βi

, μ < 1 − 1
qi

,
i = 1, . . . , k and

ã(t) =

[
a(t) +

k∑
i=1

bi(t) S̃α−βi(t, u, ni, qi,μ)

]
tμ ,

b̃i(t) =
ni2ni−1

qi
bi(t) tμ .

Proof. (a) From Lemma 20 (second inequality) we have

Dαu(t) � a(t) +
k∑

i=1

bi(t)
[
R̃α−βi(t, u, ni) + 2ni−1 Sni

α−βi
(t, ni,μ)

∫ t

0
[sμDαu(s)]ni ds

]

� a(t) +
k∑

i=1

bi(t) R̃α−βi(t, u, ni)

+
k∑

i=1

2ni−1 bi(t) Sni
α−βi

(t, ni,μ)
∫ t

0
[sμDαu(s)]ni ds
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Multiplying both sides by tμ , we obtain

tμDαu(t) � ã(t) +
k∑

i=1

b̃i(t)
∫ t

0
[sμDαu(s)]ni ds,

where ã(t) and b̃(t) are as in the statement of part (a) of the theorem. Next, we appeal
to Lemma 10.

(b) From Lemma 20 (third inequality) we have

Dαu(t) � a(t) +
k∑

i=1

bi(t)
[
S̃α−βi(t, u, ni, qi,μ) +

ni2ni−1

qi

∫ t

0
[sμDαu(s)]qi ds,

]

� a(t) +
k∑

i=1

bi(t) S̃α−βi(t, u, ni, qi,μ) +
k∑

i=1

ni2ni−1

qi
bi(t)

∫ t

0
[sμDαu(s)]qi ds.

Multiplying both sides by tμ , we obtain

tμDαu(t) � ã(t) +
k∑

i=1

b̃i(t)
∫ t

0
[sμDαu(s)]qi ds.

We assumes the exponents qi to be in nondecreasing order. If not, we can always
reorder them. Lemma 10 allows us to derive the result. �

REMARK 4. In case some of the ni satisfy (a) and the remaining satisfy (b), we
combine the proofs in (a) and (b) and reorder ni, qi in the nondecreasing order.

4. Application

In this section we present an application of the results proved in the previous
section. We use the bounds to show that when the coefficients are power functions, then
so is the fractional derivative of highest order α .

Consider the problem⎧⎨
⎩

Dαu(t) = f
(
t, {Dβiu(t)}k

i=1

)
, 0 � βi < α < 1, i = 1, . . . , k

u(0) = u0

(16)

with

∣∣∣f (t, {Dβiu(t)}k
i=1

)∣∣∣ � a(t) +
k∑

i=1

bi(t)
∣∣∣Dβiu(t)

∣∣∣ni
, t > 0, ni > 1.

Suppose there exists T0 > 0 such that for t > T0 ,

a(t) � Aat
−r, bi(t) � Abt

−si

for some r, si, Aa, Ab > 0 . Then we have the following results.
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THEOREM 24. For each i = 1, . . . , k , suppose that ni > 1
α−βi

, and for any ε > 0 ,

si > ni(α − βi) − (ni − 1)μ1, (17)

with

μ1 = min

{
r

1 + ε
,

1
2 + ε

}
. (18)

Let

μ2 = min
1�i�k

{
r, 1 − 1

ni

}
. (19)

Then
Dαu(t) � ct−μ , t > T0,

for
μ1 < μ < μ2, (20)

and some c > 0 .

Proof. Note that μ1 < μ2 since ni > 1 , and thus μ is well defined. It follows
from (19) that μ < 1 − 1/ni , i = 1, . . . k . From Theorem 23(a) we have

Dαu(t) � t−μck(t) (21)
c0(t) = max

0�s�t
ã(s) (22)

ci(t) =
[
c1−ni
i−1 (t) − (ni − 1) t b̃i(t)

] 1
1−ni =

[
cni−1
i−1

1 − (ni − 1) t b̃i(t) cni−1
i−1

] 1
ni−1

, (23)

with

ã(t) =

[
a(t) +

k∑
i=1

bi(t) R̃α−βi(t, u, ni)

]
tμ (24)

=

[
a(t) +

k∑
i=1

bi(t) Bα,βi ,u,ni t
−ni(1−α+βi)

]
tμ (25)

� Aa tμ−r + Ba

k∑
i=1

t−ηi , (26)

and

t b̃i(t) = 2ni−1 bi(t) Sni
α−βi

(t, ni,μ) tμ+1 (27)

= 2ni−1 bi(t)
(
Aα−βi,ni,μ tα−βi−μ− 1

ni

)ni
tμ+1 (28)

� B̃i t
−ρi , (29)

where

Bα,βi,u,ni =
2ni−1uni

1−α(0)
Γni(α − βi)

, Ba = Ab max
1�i�k

Bα,βi,u,ni , B̃i = 2ni−1 Ab Ani
α−βi,ni,μ ,
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ηi = ni(1 − α + βi) + si − μ,

and
ρi = ni(μ − α + βi) + si − μ.

It follows from (17), (18), and (20) that μ < r , ρi > 0 and ηi > 1 , 1 � i � k ,
since

ρi = (ni − 1)μ − ni(α − βi) + si

> (ni − 1)μ − ni(α − βi) + ni(α − βi) − (ni − 1)μ1

= (ni − 1)μ − (ni − 1)μ1 = (ni − 1)(μ − μ1) > 0,

and

ηi − ρi = ni(1 − μ) > ni

(
1 − 1 +

1
ni

)
= 1.

Therefore, ã(t) is uniformly bounded and t b̃i(t) has a power-type decay. The
result follows from Corollary 12. �

THEOREM 25. Suppose for 1 � i � k ,

ni <
1

α − βi
, (30)

and
si > 1. (31)

Let

μ < min
1�i�k

{
r, si − 1, 1 − 1

ni

}
. (32)

Then
Dαu(t) � ct−μ , t > T0,

for some c > 0 .

Proof. Let qi > 1
α−βi

, 1 � i � k , then from Theorem 23,

Dαu(t) � t−μck(t) (33)
c0(t) = max

0�s�t
ã(s) (34)

ci(t) =
[
c1−ni
i−1 (t) − (ni − 1) t b̃i(t)

] 1
1−ni =

[
cni−1
i−1

1 − (ni − 1) t b̃i(t) cni−1
i−1

] 1
ni−1

, (35)

with

ã(t)

[
a(t) +

k∑
i=1

bi(t) S̃α−βi(t, u, ni, qi,μ)

]
tμ

=

[
a(t) +

k∑
i=1

bi(t)
{

Bα,βi,u,ni t
−ni(1−α+βi) + Cα−βi,qi,ni ,μ t

ni [qi(α−βi−μ)−1]
qi−ni

}]
tμ
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<

[
a(t) + Ab

k∑
i=1

{
Bα,βi,u,ni t

−ni(1−α+βi)−si + Cα−βi ,qi,ni,μ t
ni[qi(α−βi−μ)−1]

qi−ni
−si

}]
tμ

� Aat
μ−r+Ab

k∑
i=1

{
Bα,βi,u,ni t

−ni(1−α+βi)−si+μ+Cα−βi,qi,ni ,μ t
ni[qi(α−βi−μ)−1]

qi−ni
−si+μ

}

� Aa tμ−r + Ba

k∑
i=1

[
t−ηi + t−δi

]

and

t b̃i(t) =
ni2ni−1

qi
bi(t) tμ+1

� ni2ni−1

qi
Ab tμ−si+1

� B̃i t
μ−si+1,

where

Ba = Ab max
1�i�k

{
Bα,βi,u,ni , Cα−βi,qi,ni,μ

}
, B̃i =

ni2ni−1

qi
Ab,

ηi = ni(1 − α + βi) + si − μ,

and

δi =
−ni [qi(α − βi − μ) − 1]

qi − ni
+ si − μ.

It follows from (30), (31) and (32) that

μ − r < 0, μ − si + 1 < 0,

ηi = ni(1 − α − βi) + si − μ
> ni − ni(α − βi) + 1

> ni − 1 + 1 = ni � 2,

and

δi =
ni

qi − ni
[1 − qi(α − βi − μ)] + si − μ

>
ni

qi − ni
[1 + qiμ − qi(α − βi)] + 1

=
ni

qi − ni

[
1 + qiμ − qi(α − βi) +

qi

ni
− 1

]

=
ni

qi − ni

[
qiμ − qi(α − βi) +

qi

ni

]

=
qi

qi − ni
[niμ − ni(α − βi) + 1]
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>
qi

qi − ni
[niμ − 1 + 1] =

qiniμ
qi − ni

> 0.

Therefore, ã(t) is uniformly bounded and t b̃i(t) has a power-type decay. The
result follows from Corollary 12. �
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