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INTEGRAL REPRESENTATIONS OF GENERALIZED
WHITELEY MEANS AND RELATED INEQUALITIES

J. PECARIC, 1. PERIC AND M. RODIC LIPANOVIC

(Communicated by P. Bullen)

Abstract. The main purpose of this paper is to give two integral representations of generalized
Whiteley means which are natural generalization of complete symmetric means. Various appli-
cations are given, mainly towards obtaining inequalities characteristic for complete symmetric
means such as Schur’s inequality. The Schur convexity of this means and related complete
symmetric functions is also discussed.

1. Introduction

The elementary and complete symmetric polynomials are used to define means
that generalize the geometric and arithmetic means in a very natural way. Inequalities
arising in studying relations between these means generalize many classical inequalities
as for example geometric mean-arithmetic mean inequality. A history of means defined
by elementary and complete symmetric polynomials goes back to I. Newton. Interested
reader in this subject should consult Chapter V of an excellent book by P. S. Bullen [4].

Our primary concern in this paper are complete symmetric polynomials (called
also complete symmetric functions). The complete symmetric polynomial of the rth

degree is defined by
- 11
iiein=r j=1
where r € N, i, ..., i, are nonnegativeintegersand x € R = {(x1,...,x,) 1 x; >0,
i=1,...,n}.Itis customary to define cy (x) =1 forevery x € R, .

The complete symmetric mean of the r th degree of an n— tuple x € R’} is defined
by
1

The basic inequality for the complete symmetric means is

(e <x>)2 <) - (), (1.1)
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which holds for every r € N and every x € R . This inequality was proved by T.
Popoviciu in [16] and 1. Schur (see [7, p. 164]). The proof of I. Schur was based on an
integral representation

Mx) = (n— 1)!/ (Zx,-tl) diy .. .dt,_,, (1.2)
A1 \i=1
and Cauchy inequality, where A,_; = {(t1,...,t,—1) : t; 2 0,i = 1,...,n — 1,
Z;:ll t<l}and f,=1- Z;:ll f.

Schur’s inequality (1.1) in a simple manner implies the following inequalities:

1 1

()" < ()™, ren, (1.3)
cr=slx) el (x) < e Ux)et(x), 0<s<r (1.4)
The inequality (1.3) is classical (see [4] and references therein). The inequality (1.4),
although trivial consequence of (1.1), drew some attention after curious error in [12]
where the reverse inequality was proved for s = 1 and n = 2. In the same paper K. V.
Menon proved (1.1) for r = 1,2,3 and every n € N. In [6] D. W. Detemple and J. M.
Robertson have proved (1.1) for n = 2 and every r € N. Finally, K. Guan in [8] has
proved (1.1), in [9] (1.4) for s = 1 and in [10] (1.4) generally.

The main purpose of this paper is to give integral representations of generalized
Whiteley means which are natural generalization of complete symmetric means (see
Section 2.). The first representation is in the sense of [1, p. 36] and the second one is
a generalization of (1.2), and using this we prove for the generalized Whiteley means
inequalities analogous to (1.1), (1.3), (1.4) and some related inequalities. It is also
interesting to point out that Schur’s idea of using integral representation was somehow
neglected in above mentioned papers.

2. Integral representations of generalized Whiteley means

Let r € NU {0}, x € RY, andlet s = (s1,...,s,) be such that s; > O for every

i=1,...,n. The generalized complete symmetric polynomials W,[,r’s] (x) of degree r
are defined by
o0 n 1
W[”»S] =
; n (X) 11;1[ (1 —x,'t)si

for |¢| small enough.
REMARK 2.1. Notice that for s = (1,...,1) =1, Wy =l

REMARK 2.2. It is easy to see that generalized complete symmetric polynomials
can be written alternatively as

. b (s i — 1
W= T
i1 ip=r j=1 7

(compare [14]).



INTEGRAL REPRESENTATIONS OF GENERALIZED WHITELEY MEANS 297

The functions W,Er’s] (x) and their associate means were introduced by C. Gini (see
[4])-
The Whiteley means w,[f *! were defined using generalized complete symmetric

[rs]

polynomials W, ™, with the convention s = s meaning s; =s, i =1,...,n, by

1

(nerrr— 1)

In [1] one can find an integral representation of W,[f’s] in the form

W,[f"‘](x):r / (qu) exp( Z )Hufldul...dun. (2.2)

i=1 i=1

Wil (x) = Wil reNu{o}, s>o. @1)

Similarly, using

1 L[>
_ —ui(1—=xit), si—1 du; =1,...
(T —xi) () /o ‘ .

for |z| small enough, it follows

n n

.- 1 1 T
Wr[lr,s] (X)tr = - = — e Zi:l ui(1—xif) u‘;iil duy ...du,.
; 11 (1 — x;t)% Hi:l '(s;) R H

i= i=1
(2.3)
Derivating (2.3) r— times with respect to variable 7 and setting = 0 we obtain

W) = .H / <Z> e 2 Tl dun ..
r
; i=1

We define generalized Whiteley means by setting

1
sl (x) = —wlsl(x
Wn ( ) C n ( )7
where C = C(r,n,s) is determined by normalization in the sense that if x; = x, i =
1,...,n, then wi™ (x) = x". It follows that

C=C(r,n,s) = 'H s / (Zu,) e Dt Hufi_l duy...du
=1 i= i=1

REMARK 2.3. Notice that for s = s, C(r,n,s) = ("”:_1) (compare (2.1)).
We give two forms of expressing C(r,n,s) in an analogous way.

LEMMA 2.1. Let r € NU {0} and s be suchthat s; >0, i=1,...n. Then

(1)
Clrns)= > H(S’H’ )

ri+trp=r i=1
where r,...,rp are nonnegatlve lntegers.
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r

C(r,n,s) = (Z’ St 1).

Proof. Although the first expression follows from Remark 2.2, we give a short
proof. Using Multinomial theorem and properties of the gamma function we have:

r'HF C(r,n,s) :/ (iu,) e_zzil”"ﬁufi*ldul...dun
R} i-1

+ i=1

> (.0 ) Hreen

ritetm=r

S A I

ritetm=r

r!ﬁr(si) 3y H(S’”’ >

ri+etrp=ri=1

The proof of the second expression is by induction. The equality trivially holds for
r = 0. Suppose that the equality holds for some r € N and every choice of s. To
shorten notation we denote by du the product measure on R’ . We have

n r+1 n
! SRR |
C 1 = i -1 Si d
r+1m8) (r+1)!H?_1F(si)/n<. ) c @

+

(r+ )'H F( )Z/n U; (Zu,) e_zi:luiHM;j_ "

+ j=1

J#

Using inductive assumption we have

n

B 1 . Zjisj—&—s,-—&—r ‘
Crt+tms) = <r+1>sn7_1r<si>;”m’“)( " )gr@,)

= e o () e

i=1 i=1 j=1

1 Tositr " tosir
_ i=1 ZS_: i=1
r+1 r ! r+1 '

i=1
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REMARK 2.4. From Lemma 2.1 we get an interesting combinatorial identity:
Z H(sl—i—rl )_(Z?_ﬂﬁ—r—l)
h r
ritetr=roi=1

where ry,...r, are nonnegative integers.

From Lemma 2.1 follows
ﬂ ; 71
/n (Z ) — i H i 1dufr|HF ( llsr” ) (2.4)
+ i=1

The proof of this equality depends on the assumption » € N U {0}. In the following
lemma we extend this equality on the domain of convergency of the involved integral.
The following standard notation for the extended beta function will be useful:

H?:l F(Si)
r (Z?:l Si) ’

LEMMA 2.2. Let s € R and r € R be such that s; > 0, i = 1,...,n and
r>—>%""si. Then

/ (Z u,-) e Dot H wildu=T (Z si+ r) B(s1,52,.-.,8). (2.5)
R \i=1 i=1 i=1

B(s1,82,.-.,8:) = 5;>0, i=1,...,n

Proof. Denote the integral in (2.5) by I,(r;s1, . . ., s,) . Using change of variables:
ti=uy, i#n—1, t,_; = u,—1 + u, we have:

n r ., n

In(r;Sl,...7Sn) = E u; e_zizluiHuf"_ldu
Rn . 1
i=

+ i=1

n—1 r
n—1
:/ (Z ti) ¢ Zi:l ! H t?i_l (tnfl 7tn)srl7171 dtndt
InSip—y i

i=1 i#n—1
n—1 r
:/ (Ztl> _le H i~ 1
—1
R’}r i=1 i#n

(=}

Tn—1 t Sn—1—1
/ £l (1 — ) dr,dt
th—1

n—1 r P
[ () ez H;;z—l gt
Rnfl -
+ i=1

1
w1 = u)" ! dudt
0
= B(Sn—1,8)li—1(r3 81, - - -, Sp—1 + Sn)-
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Using this recursion formula and the definition of the extended beta function it follows

L(r;sty...y80) = B(st,..,Su—1,80) (381 + oo+ Sp—1 + 8n)

= B(st, -, Sn—1,8,)0(r + Zs,-).
i=1

Defining the measure u, on R’ by

1 n r non
dty(w) = ; wi | & 2 [ uidu,
C(r+>"0, si)B(s1,...,8) <Z > E

i=1
Lemma 2.2 gives that u, is a probability measure on R’ . Using the measure u, the

generalized Whiteley mean er’s] can be written as follows:

w00 = [ (At duu)
S

where A(x;u) = <z is the arithmetic mean of an x € R” with weight u.

ui

i=1

The measure y, is not suitable for applying some standard inequalities (for example
power mean inequality) because it depends on r. We give an integral representation
of generalized Whiteley mean analogous to Schur’s representation (1.2) which is more
suitable for such purposes.

LEMMA 2.3. Let s € R and r € R be such that s; > 0, i = 1,...,n and
r> —Z:’:l si. Then

[i’,S] — 1. ?'71
W (%) B(sl,...,sn)/Al (i—l xlt’) ,-er’ A dnc, 26)

where Ay—y = {(f1,.. . ty—1);t; 2 0, i =1,...,n— 1, Z;:ll ti < 1} and t, =

1=

Proof. Using change of variables u; = v?, i = 1,...,n we have:
n r u n n r 0,
/ (Z xi”i) e Zi:l i H uf"_ldu =2" / (Z x,-vl-2> e Zi:l Vi H Vl-zsi_ldv.
R \im1 i=1 R \im1 i=1
(2.7)
The next step is to transform (2.7) to polar coordinates. Set:
n—1 n—1
= tH sin®;, vy =tcos ¥ Hsinﬁ,-, k=2,....,.n—1, v,=tcos,_q,
i=1 i—k

SO
n—1

dv=1""! H sin*~! Qdtdd, .. .dO,_1 = " 'didS,_1 = " sin" % O,_1dtdO,_1dS,_»,
k=2
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where r >0, 9; € [0,7/2],i=1,...,n—1 and dS,_, dS,—, areinduced Lebesgue
measures on unit spheres S"~! C R” and §"~2 C R"~!, respectively. Also set:

n—1 n—1
o) = Hsinﬁi, O = cos Ty—1 H sint, k=2,...,n—1, 0,=cos¥,_;.
i=1 i=k
Notice that ¢ = (071, ...,0,) € 8"! C R". Using this and simplifying, (2.7) is equal

to

on /OO tz(r+27:1 Siil) eitZIdt
0
o o
=2""'I'(r + Zsi) ' / ! (Zx' > H oi"™! H sin™" edh ... A0
i—1 s
i—1 s

+

(2.8)
Define new variables by #; = 0'1.2, i=1,...,n—1. Notice that
ot; d0;
— =20—,i=1,...,n—1,j=1,...,n— 1.
79, 79, i n Jj n
Also set 0; = sin®,_16;, i=1,...,n— 1. Notice that (G,...,6,_1) € 8"2. The

elementary properties of determinants give us the following sequence of equalities for
the Jacobian:

8([1,...,@,,1) 1 0'1,.. O',, 1)
— 2}1
(01, .., O H "o(0, (01, ..., 00 1)

8([(_71, ey tﬁn,l)
8(191, ey o, l)

1 29
= 2" Ho;sm V,_1co8,_1

t=1

8(t61, . 7t6n—1)
8(1.91, ey 1.9”,2, t)

b

=1

= ol H o sin" 29,
i=1

where the second equality follows by extracting sin ¥, from the first (n—2)— columns

and cos ¥,_; from the last column of the determinant % It follows:

8(t1,...7t,,_1)

S dr . d0, =2""" | | oysin" 7 0,1 d0,1dS, .
8(1917~--7l9n—1) ! 1 HG sin 1 1 )

i=1

dty...dt,_ =
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Finally, denoting #, = o, (2.8) is equal to

(o) [ (Sor) oo
i=1 An—i

i=1 i=1
which obviously gives the equality (2.6). O
Defining the measure v on A,_; by

n

1 si—1
dv(u) = B(s1,--.,8) g uidu,

Lemma 2.3 gives that v is a probability measure on A,_;. Using the measure v the

generalized Whiteley mean er’s] can be written as follows:

wlrsl (x) —/Al <2xiui> dv(u). (2.9)

Notice that the integral in this equality is defined for every r € R.

The measure Vv is in [5] called Dirichlet measure. For the connection of Dirichlet
measure and Stolarsky-Tobey mean see [17], where the Stolarsky-Tobey mean E(X;s),
for r(s — r) # 0, is (in our notations) defined by:

1/(s=r)
En(x,s) = [wl= )|

where x" = (x],...,x).

’'n

3. Inequalities

THEOREM 3.1. If rj < 1y, ri,rn € R, then

(wr90) ™ < (e 90) 31

where the cases r1 = 0 or r, = 0 are treated in a standard way using limiting process.
If r € R, then

n n

(W00 <l ). (3.2)

Proof. By (2.9) we can write (3.1) as

</An1 (li:x,-ul) " dv(u)> 0 < (/Anl (iz::x,-ul) h dv(u)> 7

what is true by the integral power mean inequality.
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Similarly, by (2.9) we can write (3.2) as

n n r—1
/ (ZX,‘M,‘) (ZX,‘M,‘) dV(ll)
BAn—r \ =1 i=1
n r—1 n 2 n r—1
< Xill dv(u) ( xi”i) ( xi“i) dv(
o () ) (L () ) v

what is true by integral Cauchy’s inequality as it can be easily seen if we denote
dv(u) = (X0, xu)' " dv(u). O

~—

REMARK 3.1. For sy = ... =5, = s = 1, inequality (3.2) becomes inequality
(1.1).

THEOREM 3.2. Let p1,p2,q1,q2 be real numbers such that p; < q1, p2 < qa2,
P1 < P2, q1 < q2. Then the following inequality is valid

W,anz’s] (X) lﬁ W}[qqz,s] (X) ﬁ
pid S w o : (33)
wa' " (X) wi'" (%)

Proof. Inequality (3.3) can be written by (2.9) as

(fAnl (0 i)™ dV(“)) 7 < (fA,,l (Sor xiwg) ™ dv(u)) war
fA,H (Z?:lxiui)pl dv(u) h fA;H (Z?:lxiui)‘h dv(u)

what is true by the well-known inequality between Gini’s integral means. ]

REMARK 3.2. Set py =r,pp=r+1,q1 =35, g0 =5+ 1. We have for r < s
[r+1,] (X) [s+1.] (X)

Wn Wn

Wi T wh)

i.e.
[rs]

I (X)w[s+1,s] (X) > w[r+1,s] (X)W[s,s] (X)

w n n n

Furtherlet r - r—s—1, s — r+s. We get

(X)W[r+s+l,s] (X) 2 W[V_Svs] (X)W[rJrs,S] (X) N 2 - 1/2

n n n

[r—s—1s]

w
This is a generalization of (1.4).
Of course, using integral representation (2.9) we can give some further extensions
of Cauchy’s inequality.

THEOREM 3.3. The following inequality is valid for positive n-tuple X :

+ai+aj, "
wierarasig T > 0 (3.4)
ij=1
where \A,-j\Z’/:l > 0 denotes the determinant of order m and where ay, a;, a; € R,

ij=1,..m.
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Proof. By (2.9), inequality (3.4) is equivalent to

/ (Z X,‘M,‘) (Z X,‘Mi> (Z X,‘M,‘) dV(ll)
A1 \ =1 i=1 i=1

what is true by the well-known Gram’s inequality
(it I, 20

where the scalar product is defined as

m
20,
ij=1

Uik = / Fi(w)f;(u)dv(u).

It can be easily seen if we denote

n a0
u) = (Z.X,‘M,‘) dv(u
i=1
= (izl.xiui> l: 17 ceeym.
i=1
|

Inequality (3.4)form =2, a0 =0, a1 = (r—r)/2, a2 = (r+r)/2, r,n €R,
implies

(k) < wirshulrens, (3.5)
This is again a generalization of (1.1).

THEOREM 3.4. Let X be a positive n-tuple and let p;, i = 1,...,m, be positive
numbers such that " pi’ = 1. Further, let a; (i =0,1,...,m) be real numbers and

a=Y_1",a;. Then the following inequality is valid
l_
) < H [ lao+aipi.s ]”' _ (3.6)

Proof. 1t is a simple consequence of Holder’s inequality since (3.6) is equivalent

[ () (o) e

n—1 j—=1 i=1

to
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It can be easily seen if we denote

dV(ll) = (ixm,) d\/(ll).
i=1

O

Of course, generalization (3.5) of (1.1) follows from (3.6) for m=2, p;=p,=2,
apy=0,a1=0r—-nr)/2,aa=(r+n)/2, nn eR.

THEOREM 3.5. Let x be a positive n-tuple. Let o, ,a,b be real numbers such
that ab > 0. Then the following inequality is valid

WLaﬂz,s] (X)WLBH)’S] (X) + WLaﬂj’S] (X)Wnﬁ+a,s] (X)

<l i 9 00 -+ i o ), (37)

n

The sign of inequality in (3.7) is reversed for ab < 0.

Proof. The idea is to follow the proof of the Chebyshev inequality. For ab > 0
and fixed x € R and every u,v € R we obviously have

() () () -5 )

from which by multiplying with (37 xiu;)” (Z;’:lx,-vi)ﬁ and integrating over A,_| x
A,—1 with respect to dv(u)dv(v) (3.7) follows. O

From (3.7) (and its reversed form) for a = —1, b = s+ 1/2, o« = r — s,
B =r+1/2 it follows

W[rfsfl,s]

I (X)W[r+s+1,s] (X) < W[rfs,s] (X)W[Prs,s] (X)

n n n

for s < —1/2, and the reversed inequality for s > —1/2. This is a generalization of
inequality (1.4).
Also, from (3.7)fora=r—r;,b=r+r, o« =3 =0 we have

W[r—rl K

£ 00 ) <

n n

assuming |ry| < |r|, and the reversed inequality assuming |r;| > |r|. Using also (3.5)
we obtain

2
(w9))” < wlrr S eowl 9 < W), Il < I,

and
n n n

2
(W) <) < i eowlr ), Il > I,

where the first inequality in the last sequence of inequalities follows again from (3.7)
fora=b=r, o= =0 and holds for every r € R.
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THEOREM 3.6. Let X be a positive n-tuple and let 1, s,t be real numbers such that
r > s>t > 0. Then the following inequality is valid

(w100) < (w00) - (wi00) (8

Proof. By (2.9) inequality (3.8) is true by the integral analogue of the Liapunoff
inequality. |

REMARK 3.3. Inequality (3.8) is equivalent to

-

wisl(x) < (W[”S} (x)) = (wg’s] (x)) ! , r>s>t>0. (3.9)
From (3.9) by AG-inequality we get

s—1 r—s

whssl(x) < ol wirsl (x) + p— wisl(x), r>s>t>0, (3.10)
or
wisl(x) — wlsl(x) < ! (WL‘S] (x) — wiss! (X)) ) r>s>t>0.
r—s

THEOREM 3.7. Let X be a positive n-tuple. Let a,b,p,q be real numbers such
that p > 1, Il) + é = 1. Then the following inequality is valid
(M — m) wlPs\(x) + (mMP — M) wlPs)(x) < (MP — mP) wletPsl(x)  (3.11)

ap—bq
where m and M denote minimum and maximum values of x; * (i =1,...,n).

Proof. The reversed Holder’s inequality for positive functional

Alf) = f(w)dv(u)

An—i

(see [2] or [13, p. 136]) says that if 0 < m < f(u)g(u) 7 < M, then the following

inequality is valid
(M —m)A(f?) + (mMP — MmP)A(g?) < (MP —mP)A(f g). (3.12)

Inequality (3.11) follows if we set the functions f(u) = (X1, xu;)", g(u) =
(30, xa)” in (3.12). D

REMARK 3.4. If m < M, then the inequality (3.11) is equivalent to

wiethsl(x) > M=—m - wlapsl(x)

mMP = Mm"” iy
“ MP — mp

MP — mp n
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THEOREM 3.8. Let X be a positive n-tuple. Let a,b,p,q be real numbers such
that p > 1, Il) + é = 1. Then the following inequality is valid

w5 0) > 4 - ()7 - (w15 ) (.13)

where
1

MP — mp

<-

A =prqi(M —m)7 (mMP — Mm")

ap—bq
and m and M denote minimum and maximum values of x; © , i=1,...,n.

Proof. Using the appropriate form of the reversed Holders’s inequality (see [2] or
[15, p. 136]) the proof is analogous to the proof of the previous theorem. O

REMARK 3.5. As it holds by Holder’s inequality that

w3 ) < (w0 - (wl0)

we now have

3 (wrd0) - (w9)) T < w90 < (w0 - (w00)

REMARK 3.6. In the special case p = g = 2 we get

N

4mM 2
(mjrniM)z . WLZa,s] (X) . W’[12b,s] (X) < (WLsz,s] (X)) < WLZQ’S] (X) . WLZb’S] (X)
where m and M are minimum and maximum values of X~ (i = 1,...,n).
Setting @ = =L, b = 5! we get the generalization of (3.2)
4mM - . i 2 . -
CEYiE wl s (x) w18 (x) < (WL’S] (X)) < Wi () - w19l (x)

where m and M are minimum and maximum of x; (i =1,...,n).

4. Remarks on the Schur convexity of the generalized
complete symmetric functions

For the basic definitions and properties of the Schur convex functions the interested
reader can consult Marshall-Olkin’s book [11].

It is obvious from the Minkowski inequality and integral representations of W,[f’s]
that for r > 1

1

Wedx+y)] " < [wiloo]” + [wilm)] (4.1)

1
Inequality (4.1) is reversed for r < 1. Because {W,[f’s] (x)} " is homogeneous of degree

one in x, inequality (4.1) says that this function is convex for r > 1 (concave for
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r < 1). It follows that W,Er’s]( ) is convex function for r > 1 or r < 0, and concave

for O<r<1.Fors =...=s,=s, W& Y]( X) is symmetric, so it is Schur convex
for » > 1 or r < 0 and Schur concave for 0 < r < 1. This is a result from [18] for

r € N. Guan in [9] and [10] proved this for wy! and r 6 N by different method.

Guan in the same papers has proved that wl ( x)/W, =L ( x) is Schur convex for
r € N. We notice that from Dresher’s inequality (see [1]) we have for 1 < r <2

wilx+y) o owilx o wi)
wy oty Wi ) W )

(4.2)

Arguing as above we conclude that Wi ( x)/ wi (x) is Schurconvex for 1 < r < 2.
Finally, following Guan (see [9] and [10]), we give a sketch of the proof that

®(x) = W (x)/ W) "(x) is Schur convex for r € N. It is enough to prove that

od 0D
x) [ — -2 ) > .
(x; xj)(@x,- 3xj)/0 (4.3)

for i #j and x € R’} (see [11]). Easy calculation gives:
o 0D 1

Ox; - 3_xj (Wr[;r_l’s])z

8W[r,s] aW[r,s] aW[r—l,s] 8W[r—l,s]
[r—1,] n _Ye ) sl n o n ) 4.4
% lW" ( Ox; 0x; Wi Ox; 0x; (44)

Repeated use of the identity
ow,”

Ox; oxj

which is deduced in [14] for r € N (this can be also obtained for real r > 1 from

integral representation of W,Er’s]

=Wy 4

and integration by parts), gives

r—1

oWy’ ;
3 :stj’fW,[f_k_l’A]7 j=1,...,n
Xj

Using this in (4.4) and rearranging we obtain
o 0D 1

r—2
% [ ( r lv [r—1—k,s] Wr[lr,s]W[r72fk,s]) ()5,( o xjk) + Wr[lrfl,s] (xffl 7)(’»’_1)
k=0

Having in mind the inequality

(W[r,s])z > Wr[lrfl,s]W[rJrl,s]

n n

proven by Menon in [14], (4.5) implies (4.3).
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