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INTEGRAL REPRESENTATIONS OF GENERALIZED

WHITELEY MEANS AND RELATED INEQUALITIES

J. PEČARIĆ, I. PERIĆ AND M. RODIĆ LIPANOVIĆ

(Communicated by P. Bullen)

Abstract. The main purpose of this paper is to give two integral representations of generalized
Whiteley means which are natural generalization of complete symmetric means. Various appli-
cations are given, mainly towards obtaining inequalities characteristic for complete symmetric
means such as Schur’s inequality. The Schur convexity of this means and related complete
symmetric functions is also discussed.

1. Introduction

The elementary and complete symmetric polynomials are used to define means
that generalize the geometric and arithmetic means in a very natural way. Inequalities
arising in studying relations between these means generalize many classical inequalities
as for example geometric mean-arithmetic mean inequality. A history of means defined
by elementary and complete symmetric polynomials goes back to I. Newton. Interested
reader in this subject should consult Chapter V of an excellent book by P. S. Bullen [4].

Our primary concern in this paper are complete symmetric polynomials (called
also complete symmetric functions). The complete symmetric polynomial of the r th
degree is defined by

C[r]
n (x) =

∑
i1+···in=r

n∏
j=1

x
ij
j ,

where r ∈ N , i1, . . . , in are nonnegative integers and x ∈ R
n
+ = {(x1, . . . , xn) : xi � 0 ,

i = 1, . . . , n} . It is customary to define C[0]
n (x) = 1 for every x ∈ R

n
+ .

The complete symmetric mean of the r th degree of an n− tuple x ∈ R
n
+ is defined

by

c[r]
n (x) =

1(n+r−1
r

)C[r]
n (x).

The basic inequality for the complete symmetric means is(
c[r]
n (x)

)2
� c[r−1]

n (x) · c[r+1]
n (x), (1.1)
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which holds for every r ∈ N and every x ∈ R
n
+ . This inequality was proved by T.

Popoviciu in [16] and I. Schur (see [7, p. 164]). The proof of I. Schur was based on an
integral representation

c[r]
n (x) = (n − 1)!

∫
Δn−1

(
n∑

i=1

xiti

)r

dt1 . . . dtn−1, (1.2)

and Cauchy inequality, where Δn−1 = {(t1, . . . , tn−1) : ti � 0, i = 1, . . . , n − 1 ,∑n−1
i=1 ti � 1} and tn = 1 −∑n−1

i=1 ti .
Schur’s inequality (1.1) in a simple manner implies the following inequalities:(

c[r]
n (x)

) 1
r �

(
c[r+1]
n (x)

) 1
r+1

, r ∈ N, (1.3)

c[r−s]
n (x)c[r+s]

n (x) � c[r−s−1]
n (x)c[r+s+1]

n (x), 0 � s < r. (1.4)
The inequality (1.3) is classical (see [4] and references therein). The inequality (1.4),
although trivial consequence of (1.1), drew some attention after curious error in [12]
where the reverse inequality was proved for s = 1 and n = 2 . In the same paper K. V.
Menon proved (1.1) for r = 1, 2, 3 and every n ∈ N . In [6] D. W. Detemple and J. M.
Robertson have proved (1.1) for n = 2 and every r ∈ N . Finally, K. Guan in [8] has
proved (1.1), in [9] (1.4) for s = 1 and in [10] (1.4) generally.

The main purpose of this paper is to give integral representations of generalized
Whiteley means which are natural generalization of complete symmetric means (see
Section 2.). The first representation is in the sense of [1, p. 36] and the second one is
a generalization of (1.2), and using this we prove for the generalized Whiteley means
inequalities analogous to (1.1), (1.3), (1.4) and some related inequalities. It is also
interesting to point out that Schur’s idea of using integral representation was somehow
neglected in above mentioned papers.

2. Integral representations of generalized Whiteley means

Let r ∈ N ∪ {0} , x ∈ R
n
+ and let s = (s1, . . . , sn) be such that si > 0 for every

i = 1, . . . , n . The generalized complete symmetric polynomials W [r,s]
n (x) of degree r

are defined by
∞∑
r=0

W [r,s]
n (x)tr =

n∏
i=1

1
(1 − xit)si

for |t| small enough.

REMARK 2.1. Notice that for s = (1, . . . , 1) .= 1 , W [r,1]
n = C[r]

n .

REMARK 2.2. It is easy to see that generalized complete symmetric polynomials
can be written alternatively as

W [r,s]
n (x) =

∑
i1+···+in=r

n∏
j=1

(
sj + ij − 1

ij

)
x
ij
j

(compare [14]).
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The functions W [r,s]
n (x) and their associate means were introduced by C. Gini (see

[4]).
The Whiteley means w[r,s]

n were defined using generalized complete symmetric
polynomials W [r,s]

n , with the convention s = s meaning si = s, i = 1, . . . , n, by

w[r,s]
n (x) =

1(ns+r−1
r

)W [r,s]
n , r ∈ N ∪ {0}, s > 0. (2.1)

In [1] one can find an integral representation of W [r,s]
n in the form

W [r,s]
n (x) =

1
r! [Γ(s)]n

∫
R

n
+

(
n∑

i=1

xiui

)r

exp

(
−

n∑
i=1

ui

)
n∏

i=1

us−1
i du1 . . . dun. (2.2)

Similarly, using

1
(1 − xit)si

=
1

Γ(si)

∫ ∞

0
e−ui(1−xit)usi−1

i dui, i = 1, . . . , n,

for |t| small enough, it follows

∞∑
r=0

W [r,s]
n (x)tr =

n∏
i=1

1
(1 − xit)si

=
1∏n

i=1 Γ(si)

∫
R

n
+

e−
∑n

i=1
ui(1−xit)

n∏
i=1

usi−1
i du1 . . . dun.

(2.3)
Derivating (2.3) r− times with respect to variable t and setting t = 0 we obtain

W [r,s]
n (x) =

1
r!
∏n

i=1 Γ(si)

∫
R

n
+

(
n∑

i=1

xiui

)r

e−
∑n

i=1
ui

n∏
i=1

usi−1
i du1 . . . dun.

We define generalized Whiteley means by setting

w[r,s]
n (x) =

1
C

W [r,s]
n (x),

where C = C(r, n, s) is determined by normalization in the sense that if xi = x, i =
1, . . . , n, then w[r,x]

n (x) = xr . It follows that

C = C(r, n, s) =
1

r!
∏n

i=1 Γ(si)

∫
R

n
+

(
n∑

i=1

ui

)r

e−
∑n

i=1
ui

n∏
i=1

usi−1
i du1 . . . dun.

REMARK 2.3. Notice that for s = s , C(r, n, s) =
(ns+r−1

r

)
(compare (2.1)).

We give two forms of expressing C(r, n, s) in an analogous way.

LEMMA 2.1. Let r ∈ N ∪ {0} and s be such that si > 0, i = 1, . . . n . Then
(1)

C(r, n, s) =
∑

r1+···+rn=r

n∏
i=1

(
si + ri − 1

ri

)
,

where r1, . . . , rn are nonnegative integers.
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(2)

C(r, n, s) =
(∑n

i=1 si + r − 1
r

)
.

Proof. Although the first expression follows from Remark 2.2, we give a short
proof. Using Multinomial theorem and properties of the gamma function we have:

r!
n∏

i=1

Γ(si)C(r, n, s) =
∫

R
n
+

(
n∑

i=1

ui

)r

e−
∑n

i=1
ui

n∏
i=1

usi−1
i du1 . . . dun

=
∑

r1+···+rn=r

(
r

r1, . . . , rn

) n∏
i=1

Γ(si + ri)

=
∑

r1+···+rn=r

(
r

r1, . . . , rn

) n∏
i=1

Γ(si)
(

si + ri − 1
ri

)
ri!

= r!
n∏

i=1

Γ(si)
∑

r1+···+rn=r

n∏
i=1

(
si + ri − 1

ri

)
.

The proof of the second expression is by induction. The equality trivially holds for
r = 0 . Suppose that the equality holds for some r ∈ N and every choice of s . To
shorten notation we denote by du the product measure on R

n
+ . We have

C(r + 1, n, s) =
1

(r + 1)!
∏n

i=1 Γ(si)

∫
R

n
+

(
n∑

i=1

ui

)r+1

e−
∑n

i=1
ui

n∏
i=1

usi−1
i du

=
1

(r + 1)!
∏n

i=1 Γ(si)

n∑
i=1

∫
R

n
+

ui

(
n∑

i=1

ui

)r

e−
∑n

i=1
ui

n∏
j=1

u
sj−1
j du

=
1

(r + 1)!
∏n

i=1 Γ(si)

n∑
i=1

∫
R

n
+

(
n∑

i=1

ui

)r

e−
∑n

i=1
uiusi

i

∏
j�=i

u
sj−1
j du.

Using inductive assumption we have

C(r + 1, n, s) =
1

(r + 1)!
∏n

i=1 Γ(si)

n∑
i=1

r!Γ(si + 1)
(∑

j�=i sj + si + r
r

)∏
j�=i

Γ(sj)

=
1

(r + 1)
∏n

i=1 Γ(si)

n∑
i=1

si

(∑n
j=1 sj + r

r

) n∏
j=1

Γ(sj)

=
1

r + 1

(∑n
i=1 si + r

r

) n∑
i=1

si =
(∑n

i=1 si + r
r + 1

)
.

�
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REMARK 2.4. From Lemma 2.1 we get an interesting combinatorial identity:

∑
r1+···+rn=r

n∏
i=1

(
si + ri − 1

ri

)
=
(∑n

i=1 si + r − 1
r

)

where r1, . . . rn are nonnegative integers.

From Lemma 2.1 follows∫
R

n
+

(
n∑

i=1

ui

)r

e−
∑n

i=1
ui

n∏
i=1

usi−1
i du = r!

n∏
i=1

Γ(si)
(∑n

i=1 si + r − 1
r

)
. (2.4)

The proof of this equality depends on the assumption r ∈ N ∪ {0} . In the following
lemma we extend this equality on the domain of convergency of the involved integral.

The following standard notation for the extended beta function will be useful:

B(s1, s2, . . . , sn) =
∏n

i=1 Γ(si)
Γ
(∑n

i=1 si
) , si > 0, i = 1, . . . , n.

LEMMA 2.2. Let s ∈ R
n
+ and r ∈ R be such that si > 0, i = 1, . . . , n and

r > −∑n
i=1 si . Then

∫
R

n
+

(
n∑

i=1

ui

)r

e−
∑n

i=1
ui

n∏
i=1

usi−1
i du = Γ

(
n∑

i=1

si + r

)
B(s1, s2, . . . , sn). (2.5)

Proof. Denote the integral in (2.5) by In(r; s1, . . . , sn) . Using change of variables:
ti = ui, i �= n − 1, tn−1 = un−1 + un we have:

In(r; s1, . . . , sn) =
∫

R
n
+

(
n∑

i=1

ui

)r

e−
∑n

i=1
ui

n∏
i=1

usi−1
i du

=
∫

tn�tn−1

(
n−1∑
i=1

ti

)r

e−
∑n−1

i=1
ti
∏

i�=n−1

tsi−1
i (tn−1 − tn)

sn−1−1 dtndt

=
∫

R
n−1
+

(
n−1∑
i=1

ti

)r

e−
∑n−1

i=1
ti
∏
i�=n

tsi−1
i

∫ tn−1

0
tsn−1
n

(
1 − tn

tn−1

)sn−1−1

dtndt

=
∫

R
n−1
+

(
n−1∑
i=1

ti

)r

e−
∑n−1

i=1
ti

n−2∏
i=1

tsi−1
i t

sn−1+sn−1
n−1

∫ 1

0
usn−1 (1 − u)sn−1−1 dudt

= B(sn−1, sn)In−1(r; s1, . . . , sn−1 + sn).
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Using this recursion formula and the definition of the extended beta function it follows

In(r; s1, . . . , sn) = B(s1, . . . , sn−1, sn)I1(r; s1 + . . . + sn−1 + sn)

= B(s1, . . . , sn−1, sn)Γ(r +
n∑

i=1

si).

�
Defining the measure μr on R

n
+ by

dμr(u) =
1

Γ(r +
∑n

i=1 si)B(s1, . . . , sn)

(
n∑

i=1

ui

)r

e−
∑n

i=1
ui

n∏
i=1

usi−1
i du,

Lemma 2.2 gives that μr is a probability measure on R
n
+ . Using the measure μr the

generalized Whiteley mean w[r,s]
n can be written as follows:

w[r,s]
n (x) =

∫
R

n
+

(A(x; u))r dμr(u),

where A(x; u) =
∑n

i=1
uixi∑n

i=1
ui

is the arithmetic mean of an x ∈ R
n
+ with weight u .

Themeasure μr is not suitable for applying some standard inequalities (for example
power mean inequality) because it depends on r . We give an integral representation
of generalized Whiteley mean analogous to Schur’s representation (1.2) which is more
suitable for such purposes.

LEMMA 2.3. Let s ∈ R
n
+ and r ∈ R be such that si > 0, i = 1, . . . , n and

r > −∑n
i=1 si . Then

w[r,s]
n (x) =

1
B(s1, . . . , sn)

∫
Δn−1

(
n∑

i=1

xiti

)r n∏
i=1

tsi−1
i dt1 . . . dtn−1, (2.6)

where Δn−1 = {(t1, . . . , tn−1); ti � 0, i = 1, . . . , n − 1,
∑n−1

i=1 ti � 1} and tn =
1 −∑n−1

i=1 ti .

Proof. Using change of variables ui = v2
i , i = 1, . . . , n we have:∫

R
n
+

(
n∑

i=1

xiui

)r

e−
∑n

i=1
ui

n∏
i=1

usi−1
i du = 2n

∫
R

n
+

(
n∑

i=1

xiv
2
i

)r

e−
∑n

i=1
v2
i

n∏
i=1

v2si−1
i dv.

(2.7)
The next step is to transform (2.7) to polar coordinates. Set:

v1 = t
n−1∏
i=1

sinϑi, vk = t cosϑk−1

n−1∏
i=k

sinϑi, k = 2, . . . , n − 1, vn = t cosϑn−1,

so

dv = tn−1
n−1∏
k=2

sink−1 ϑkdtdϑ1 . . . dϑn−1 = tn−1dtdSn−1 = tn−1 sinn−2 ϑn−1dtdϑn−1dSn−2,
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where t � 0 , ϑi ∈ [0, π/2] , i = 1, . . . , n−1 and dSn−1 , dSn−2 are induced Lebesgue
measures on unit spheres Sn−1 ⊂ R

n and Sn−2 ⊂ R
n−1 , respectively. Also set:

σ1 =
n−1∏
i=1

sinϑi, σk = cosϑk−1

n−1∏
i=k

sinϑi, k = 2, . . . , n − 1, σn = cosϑn−1.

Notice that σ = (σ1, . . . ,σn) ∈ Sn−1 ⊂ R
n . Using this and simplifying, (2.7) is equal

to

2n
∫ ∞

0
t2
(

r+
∑n

i=1
si−1
)
e−t2 tdt

×
∫

Sn−1
+

(
n∑

i=1

xiσ2
i

)r n∏
i=1

σ2si−1
i

n−1∏
k=2

sink−1 ϑkdϑ1 . . . dϑn−1

= 2n−1Γ(r +
n∑

i=1

si) ·
∫

Sn−1
+

(
n∑

i=1

xiσ2
i

)r n∏
i=1

σ2si−1
i

n−1∏
k=2

sink−1 ϑkdϑ1 . . . dϑn−1

= 2n−1Γ(r+
n∑

i=1

si) ·
∫

Sn−1
+

(
n∑

i=1

xiσ2
i

)r n∏
i=1

σ2(si−1)
i

n∏
i=1

σi sinn−2 ϑn−1dϑn−1dSn−2.

(2.8)

Define new variables by ti = σ2
i , i = 1, . . . , n − 1 . Notice that

∂ti
∂ϑj

= 2σi
∂σi

∂ϑj
, i = 1, . . . , n − 1, j = 1, . . . , n − 1.

Also set σi = sinϑn−1σ i, i = 1, . . . , n − 1 . Notice that (σ1, . . . ,σn−1) ∈ Sn−2 . The
elementary properties of determinants give us the following sequence of equalities for
the Jacobian:

∂(t1, . . . , tn−1)
∂(ϑ1, . . . ,ϑn−1)

= 2n−1
n−1∏
i=1

σi
∂(σ1, . . . ,σn−1)
∂(ϑ1, . . . ,ϑn−1)

= 2n−1
n−1∏
i=1

σi sin
n−2 ϑn−1 cosϑn−1

∂(tσ1, . . . , tσn−1)
∂(ϑ1, . . . ,ϑn−2, t)

∣∣∣∣
t=1

= 2n−1
n∏

i=1

σi sinn−2 ϑn−1
∂(tσ1, . . . , tσn−1)
∂(ϑ1, . . . ,ϑn−2, t)

∣∣∣∣
t=1

,

where the second equality followsby extracting sinϑn−1 from the first (n−2)− columns

and cosϑn−1 from the last column of the determinant ∂(σ1,...,σn−1)
∂(ϑ1,...,ϑn−1)

. It follows:

dt1 . . . dtn−1 =
∂(t1, . . . , tn−1)

∂(ϑ1, . . . ,ϑn−1)
dϑ1 . . . dϑn−1 = 2n−1

n∏
i=1

σi sinn−2 ϑn−1dϑn−1dSn−2.
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Finally, denoting tn = σ2
n , (2.8) is equal to

Γ

(
r +

n∑
i=1

si

)∫
Δn−1

(
n∑

i=1

xiti

)r n∏
i=1

tsi−1
i dt1 . . . dtn−1

which obviously gives the equality (2.6). �
Defining the measure ν on Δn−1 by

dν(u) =
1

B(s1, . . . , sn)

n∏
i=1

usi−1
i du,

Lemma 2.3 gives that ν is a probability measure on Δn−1 . Using the measure ν the
generalized Whiteley mean w[r,s]

n can be written as follows:

w[r,s]
n (x) =

∫
Δn−1

(
n∑

i=1

xiui

)r

dν(u). (2.9)

Notice that the integral in this equality is defined for every r ∈ R .
The measure ν is in [5] called Dirichlet measure. For the connection of Dirichlet

measure and Stolarsky-Tobey mean see [17], where the Stolarsky-Tobeymean Er,s(x; s) ,
for r(s − r) �= 0 , is (in our notations) defined by:

Er,s(x, s) =
[
w[(s−r)/r,s]

n (xr)
]1/(s−r)

,

where xr = (xr
1, . . . , x

r
n) .

3. Inequalities

THEOREM 3.1. If r1 < r2 , r1, r2 ∈ R , then

(
w[r1,s]

n (x)
) 1

r1 �
(
w[r2,s]

n (x)
) 1

r2 (3.1)

where the cases r1 = 0 or r2 = 0 are treated in a standard way using limiting process.
If r ∈ R , then (

w[r,s]
n (x)

)2
� w[r−1,s]

n (x)w[r+1,s]
n (x). (3.2)

Proof. By (2.9) we can write (3.1) as

(∫
Δn−1

(
n∑

i=1

xiui

)r1

dν(u)

) 1
r1

�
(∫

Δn−1

(
n∑

i=1

xiui

)r2

dν(u)

) 1
r2

what is true by the integral power mean inequality.
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Similarly, by (2.9) we can write (3.2) as⎛
⎝∫

Δn−1

(
n∑

i=1

xiui

)(
n∑

i=1

xiui

)r−1

dν(u)

⎞
⎠

2

�

⎛
⎝∫

Δn−1

(
n∑

i=1

xiui

)r−1

dν(u)

⎞
⎠
⎛
⎝∫

Δn−1

(
n∑

i=1

xiui

)2( n∑
i=1

xiui

)r−1

dν(u)

⎞
⎠

what is true by integral Cauchy’s inequality as it can be easily seen if we denote

dν(u) =
(∑n

i=1 xiui
)r−1

dν(u) . �

REMARK 3.1. For s1 = ... = sn = s = 1 , inequality (3.2) becomes inequality
(1.1).

THEOREM 3.2. Let p1, p2, q1, q2 be real numbers such that p1 � q1 , p2 � q2 ,
p1 < p2 , q1 < q2 . Then the following inequality is valid(

w[p2 ,s]
n (x)

w[p1 ,s]
n (x)

) 1
p2−p1

�
(

w[q2 ,s]
n (x)

w[q1 ,s]
n (x)

) 1
q2−q1

. (3.3)

Proof. Inequality (3.3) can be written by (2.9) as(∫
Δn−1

(∑n
i=1 xiui

)p2 dν(u)∫
Δn−1

(∑n
i=1 xiui

)p1 dν(u)

) 1
p2−p1

�
(∫

Δn−1

(∑n
i=1 xiui

)q2 dν(u)∫
Δn−1

(∑n
i=1 xiui

)q1 dν(u)

) 1
q2−q1

what is true by the well-known inequality between Gini’s integral means. �

REMARK 3.2. Set p1 = r , p2 = r + 1 , q1 = s , q2 = s + 1 . We have for r � s

w[r+1,s]
n (x)

w[r,s]
n (x)

� w[s+1,s]
n (x)

w[s,s]
n (x)

i.e.
w[r,s]

n (x)w[s+1,s]
n (x) � w[r+1,s]

n (x)w[s,s]
n (x).

Further let r → r − s − 1 , s → r + s . We get

w[r−s−1,s]
n (x)w[r+s+1,s]

n (x) � w[r−s,s]
n (x)w[r+s,s]

n (x) s � −1/2.

This is a generalization of (1.4).
Of course, using integral representation (2.9) we can give some further extensions

of Cauchy’s inequality.

THEOREM 3.3. The following inequality is valid for positive n-tuple x :∣∣∣w[a0+ai+aj ,s]
n (x)

∣∣∣m
i,j=1

� 0 (3.4)

where |Aij|mi,j=1 � 0 denotes the determinant of order m and where a0, ai, aj ∈ R ,
i, j = 1, ...m.
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Proof. By (2.9), inequality (3.4) is equivalent to∣∣∣∣∣
∫
Δn−1

(
n∑

i=1

xiui

)a0
(

n∑
i=1

xiui

)ai ( n∑
i=1

xiui

)aj

dν(u)

∣∣∣∣∣
m

i,j=1

� 0,

what is true by the well-known Gram’s inequality

|〈 f i, f j〉 |mi,j=1 � 0

where the scalar product is defined as

〈 f i, f j〉 =
∫
Δn−1

f i(u)f j(u)dν(u).

It can be easily seen if we denote

dν(u) =

(
n∑

i=1

xiui

)a0

dν(u)

f i(u) =

(
n∑

i=1

xiui

)ai

i = 1, ..., m.

�
Inequality (3.4) for m = 2 , a0 = 0 , a1 = (r−r1)/2 , a2 = (r+r1)/2 , r, r1 ∈ R ,

implies (
w[r,s]

n

)2
� w[r−r1,s]

n w[r+r1,s]
n . (3.5)

This is again a generalization of (1.1).

THEOREM 3.4. Let x be a positive n-tuple and let pi , i = 1, ..., m, be positive
numbers such that

∑m
i=1

1
pi

= 1 . Further, let ai (i = 0, 1, ..., m) be real numbers and

a =
∑m

i=0 ai . Then the following inequality is valid

w[a,s]
n (x) �

m∏
i=1

[
w[a0+aipi,s]

n (x)
] 1

pi
. (3.6)

Proof. It is a simple consequence of Hölder’s inequality since (3.6) is equivalent
to

∫
Δn−1

m∏
i=1

(
n∑

i=1

xiui

)ai ( n∑
i=1

xiui

)a0

dν(u)

�
m∏

i=1

[∫
Δn−1

(
n∑

i=1

xiui

)aipi

·
(

n∑
i=1

xiui

)a0

dν(u)

] 1
pi

.
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It can be easily seen if we denote

dν(u) =

(
n∑

i=1

xiui

)a0

dν(u).

�
Of course, generalization (3.5) of (1.1) follows from (3.6) for m=2 , p1=p2=2 ,

a0 = 0 , a1 = (r − r1)/2 , a2 = (r + r1)/2 , r, r1 ∈ R .

THEOREM 3.5. Let x be a positive n-tuple. Let α, β , a, b be real numbers such
that ab > 0 . Then the following inequality is valid

w[α+a,s]
n (x)w[β+b,s]

n (x) + w[α+b,s]
n (x)w[β+a,s]

n (x)

� w[α,s]
n (x)w[β+a+b,s]

n (x) + w[β ,s]
n (x)w[α+a+b,s]

n (x). (3.7)

The sign of inequality in (3.7) is reversed for ab < 0 .

Proof. The idea is to follow the proof of the Chebyshev inequality. For ab > 0
and fixed x ∈ R

n
+ and every u, v ∈ R

n
+ we obviously have

((
n∑

i=1

xiui

)a

−
(

n∑
i=1

xivi

)a)⎛⎝
(

n∑
i=1

xiui

)b

−
(

n∑
i=1

xivi

)b
⎞
⎠ � 0,

fromwhich bymultiplyingwith
(∑n

i=1 xiui

)α (∑n
i=1 xivi

)β
and integratingover Δn−1×

Δn−1 with respect to dν(u)dν(v) (3.7) follows. �
From (3.7) (and its reversed form) for a = −1 , b = s + 1/2 , α = r − s ,

β = r + 1/2 it follows

w[r−s−1,s]
n (x)w[r+s+1,s]

n (x) � w[r−s,s]
n (x)w[r+s,s]

n (x)

for s < −1/2 , and the reversed inequality for s > −1/2 . This is a generalization of
inequality (1.4).

Also, from (3.7) for a = r − r1 , b = r + r1 , α = β = 0 we have

w[r−r1,s]
n (x)w[r+r1,s]

n (x) � w[2r,s]
n (x)

assuming |r1| < |r| , and the reversed inequality assuming |r1| > |r| . Using also (3.5)
we obtain (

w[r,s]
n (x)

)2
� w[r−r1,s]

n (x)w[r+r1,s]
n (x) � w[2r,s]

n (x), |r1| < |r|,

and (
w[r,s]

n (x)
)2

� w[2r,s]
n (x) � w[r−r1,s]

n (x)w[r+r1,s]
n (x), |r1| > |r|,

where the first inequality in the last sequence of inequalities follows again from (3.7)
for a = b = r , α = β = 0 and holds for every r ∈ R .
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THEOREM 3.6. Let x be a positive n-tuple and let r, s, t be real numbers such that
r > s > t > 0 . Then the following inequality is valid

(
w[s,s]

n (x)
)r−t

�
(
w[r,s]

n (x)
)s−t

·
(
w[t,s]

n (x)
)r−s

. (3.8)

Proof. By (2.9) inequality (3.8) is true by the integral analogue of the Liapunoff
inequality. �

REMARK 3.3. Inequality (3.8) is equivalent to

w[s,s]
n (x) �

(
w[r,s]

n (x)
) s−t

r−t ·
(
w[t,s]

n (x)
) r−s

r−t
, r > s > t > 0. (3.9)

From (3.9) by AG-inequality we get

w[s,s]
n (x) � s − t

r − t
· w[r,s]

n (x) +
r − s
r − t

· w[t,s]
n (x), r > s > t > 0, (3.10)

or

w[s,s]
n (x) − w[t,s]

n (x) � s − t
r − s

(
w[r,s]

n (x) − w[s,s]
n (x)

)
, r > s > t > 0.

THEOREM 3.7. Let x be a positive n-tuple. Let a, b, p, q be real numbers such
that p > 1 , 1

p + 1
q = 1 . Then the following inequality is valid

(M − m) w[ap,s]
n (x) + (mMp − Mmp) w[bq,s]

n (x) � (Mp − mp) w[a+b,s]
n (x) (3.11)

where m and M denote minimum and maximum values of x
ap−bq

p
i (i = 1, ..., n).

Proof. The reversed Hölder’s inequality for positive functional

A(f ) =
∫
Δn−1

f (u)dν(u)

(see [2] or [15, p. 136]) says that if 0 < m � f (u)g(u)−
q
p � M , then the following

inequality is valid

(M − m) A(f p) + (mMp − Mmp) A(gq) � (Mp − mp) A(f g). (3.12)

Inequality (3.11) follows if we set the functions f (u) =
(∑n

i=1 xiui
)a

, g(u) =(∑n
i=1 xiui

)b
in (3.12). �

REMARK 3.4. If m < M , then the inequality (3.11) is equivalent to

w[a+b,s]
n (x) � M − m

Mp − mp
· w[ap,s]

n (x) +
mMp − Mmp

Mp − mp
· w[bq,s]

n (x),
1
p

+
1
q

= 1.
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THEOREM 3.8. Let x be a positive n-tuple. Let a, b, p, q be real numbers such
that p > 1 , 1

p + 1
q = 1 . Then the following inequality is valid

w[a+b,s]
n (x) � λ ·

(
w[ap,s]

n (x)
) 1

p ·
(
w[bq,s]

n (x)
) 1

q
(3.13)

where

λ = p
1
p q

1
q (M − m)

1
p (mMp − Mmp)

1
q

1
Mp − mp

and m and M denote minimum and maximum values of x
ap−bq

p
i , i = 1, ..., n.

Proof. Using the appropriate form of the reversed Hölders’s inequality (see [2] or
[15, p. 136]) the proof is analogous to the proof of the previous theorem. �

REMARK 3.5. As it holds by Hölder’s inequality that

w[a+b,s]
n (x) �

(
w[ap,s]

n (x)
) 1

p ·
(
w[bq,s]

n (x)
) 1

q

we now have

λ ·
(
w[ap,s]

n (x)
) 1

p ·
(
w[bq,s]

n (x)
) 1

q � w[a+b,s]
n (x) �

(
w[ap,s]

n (x)
) 1

p ·
(
w[bq,s]

n (x)
) 1

q
.

REMARK 3.6. In the special case p = q = 2 we get

4mM
(m + M)2

· w[2a,s]
n (x) · w[2b,s]

n (x) �
(
w[a+b,s]

n (x)
)2

� w[2a,s]
n (x) · w[2b,s]

n (x)

where m and M are minimum and maximum values of xa−b
i (i = 1, ..., n).

Setting a = r+1
2 , b = r−1

2 we get the generalization of (3.2)

4mM
(m + M)2

· w[r+1,s]
n (x) · w[r−1,s]

n (x) �
(
w[r,s]

n (x)
)2

� w[r+1,s]
n (x) · w[r−1,s]

n (x)

where m and M are minimum and maximum of xi (i = 1, ..., n).

4. Remarks on the Schur convexity of the generalized
complete symmetric functions

For the basic definitions and properties of the Schur convex functions the interested
reader can consult Marshall-Olkin’s book [11].

It is obvious from the Minkowski inequality and integral representations of W [r,s]
n

that for r � 1 [
W [r,s]

n (x + y)
] 1

r �
[
W [r,s]

n (x)
] 1

r
+
[
W [r,s]

n (y)
] 1

r
. (4.1)

Inequality (4.1) is reversed for r < 1 . Because
[
W [r,s]

n (x)
] 1

r
is homogeneous of degree

one in x , inequality (4.1) says that this function is convex for r � 1 (concave for
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r < 1 ). It follows that W [r,s]
n (x) is convex function for r � 1 or r < 0 , and concave

for 0 < r < 1 . For s1 = . . . = sn = s , W [r,s]
n (x) is symmetric, so it is Schur convex

for r � 1 or r < 0 and Schur concave for 0 < r < 1 . This is a result from [18] for
r ∈ N . Guan in [9] and [10] proved this for W [r,1]

n and r ∈ N by different method.
Guan in the same papers has proved that W [r,1]

n (x)/W [r−1,1]
n (x) is Schur convex for

r ∈ N . We notice that from Dresher’s inequality (see [1]) we have for 1 � r � 2

W [r,s]
n (x + y)

W [r−1,s]
n (x + y)

� W [r,s]
n (x)

W [r−1,s]
n (x)

+
W [r,s]

n (y)

W [r−1,s]
n (y)

. (4.2)

Arguing as abovewe conclude that W [r,s]
n (x)/W [r−1,s]

n (x) is Schur convex for 1 � r � 2 .
Finally, following Guan (see [9] and [10]), we give a sketch of the proof that

Φ(x) = W [r,s]
n (x)/W [r−1,s]

n (x) is Schur convex for r ∈ N . It is enough to prove that

(xi − xj)
(

∂Φ
∂xi

− ∂Φ
∂xj

)
� 0 (4.3)

for i �= j and x ∈ R
n
+ (see [11]). Easy calculation gives:

∂Φ
∂xi

− ∂Φ
∂xj

=
1(

W [r−1,s]
n

)2

×
[
W [r−1,s]

n

(
∂W [r,s]

n

∂xi
− ∂W [r,s]

n

∂xj

)
− W [r,s]

n

(
∂W [r−1,s]

n

∂xi
− ∂W [r−1,s]

n

∂xj

)]
. (4.4)

Repeated use of the identity

∂W [r,s]
n

∂xj
= sW [r−1,s]

n + xj
∂W [r−1,s]

n

∂xj
, j = 1, . . . , n,

which is deduced in [14] for r ∈ N (this can be also obtained for real r � 1 from

integral representation of W [r,s]
n and integration by parts), gives

∂W [r,s]
n

∂xj
= s

r−1∑
k=0

xk
j W

[r−k−1,s]
n , j = 1, . . . , n.

Using this in (4.4) and rearranging we obtain

∂Φ
∂xi

− ∂Φ
∂xj

=
1(

W [r−1,s]
n

)2

×
[

r−2∑
k=0

(
W [r−1,s]

n W [r−1−k,s]
n − W [r,s]

n W [r−2−k,s]
n

) (
xk
i − xk

j

)
+ W [r−1,s]

n

(
xr−1
i − xr−1

j

)]
.

(4.5)

Having in mind the inequality(
W [r,s]

n

)2
� W [r−1,s]

n W [r+1,s]
n

proven by Menon in [14], (4.5) implies (4.3).
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[2] P. E. BEESACK AND J. E. PEČARIĆ, On Jessen’s inequality for convex functions, J. Math. Anal. Appl.

110 (1985), 536–552.
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