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ON INEQUALITIES FOR POLYNOMIALS IN TWO VARIABLES

O. R. GABRIELYAN, H. G. GHAZARYAN AND V. N. MARGARYAN

(Communicated by V. Burenkov)

Abstract. Necessary and sufficient conditions are established for the comparison of the powers
of polynomials in two variables with real coefficients.

0. Introduction, auxiliary results

In this paper for a given polynomial P(ξ) = P(ξ1, ξ2) in two variables (ξ1, ξ2) ∈
R2 , with real coefficients we describe all homogeneous polynomials Q(ξ) = Q(ξ1, ξ2)
which are of less power than P (briefly Q < P ), i.e. for some C > 0

|Q(ξ)| � C[|P(ξ)| + 1] ∀ξ ∈ R2. (0.1)

Such inequalities often are used in the general theory of linear partial differential oper-
ators (see [1]–[3]). Many problems in this theory are reduced to the comparison of the
characteristic polynomials (symbols) of differential operators. While one can add any
lower order terms to an elliptic (or semi-elliptic) operator without violating its ellipticity
(or semi-ellipticity), addition of lower order terms may violate the hypoellipticity (by
L. Hörmander) or hyperbolicity (by I. Petrovski or by L. Görding) of operators.

Therefore naturally arises the problem of the description of lower order terms such
that their addition to the given operator (polynomial) does not change its strength (by
L. Hörmander) or power and consequently does not violate its type.

In [4] S. M. Nikolskii proved the uniqueness of the solution of the first boundary
value problem for linear equations, for which all the monomials entering the character-
istic polynomial are estimated via it.

In [5]–[6] V. I. Burenkov established connection between the behaviour of solutions
of linear partial differential equations at infinity and their differential properties.

In [7] V. P. Mikhailov introduced the class of non-degenerate complete polynomials
to which one can add any lower order terms without changing their powers. This class
is a proper subset of hypoelliptic polynomials and all semi-elliptic polynomials.

Similar results, but in different terms, have been obtained by many authors (see
for example [8]–[12]).
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In [13] the following result has been obtained. Let P be a hypoelliptic polynomial
and let Q be a homogeneous polynomial such that Q < P . Then there exists a number
Δ > 0 such that the polynomial P + aQ is hypoelliptic for all a satisfying |a| � Δ
and, in general, P + aQ is not hypoelliptic for a satisfying |a| > Δ.

In the present paper for a given polynomial P(ξ) = P(ξ1, ξ2) in two variables
(ξ1, ξ2) ∈ R2 with real coefficients we describe all homogeneous polynomials Q(ξ) =
Q(ξ1, ξ2) for which Q < P . Our method does not work in the case n > 2.

In [14] we have obtained necessary and sufficient conditions for |P(ξ1, ξ2)| → ∞
as |ξ | =

√
ξ 2

1 + ξ 2
2 → ∞ . We denote the set of all such polynomials by I2 .

Methods and results of the works [13]–[16] are used here.
Let P be represented as the sum of homogeneous polynomials:

P(ξ) =
M∑

i=0

Pi(ξ) =
M∑

i=0

∑
|α|=di

γαξα , (0.2)

where α = (α1,α2) are multi-indices, |α| = α1 + α2 , ξα = ξα1 · ξα2 , γα are real
numbers and di are the orders of the homogeneous polynomials Pi (i = 0, 1, ...M) ,
d0 > d1 > · · · > dM � 0 .

Let Q(ξ) = Q(ξ1, ξ2) be a homogeneous polynomial of order d > 0 and Σ(Q) =
{ξ ∈ R2, |ξ | = 1, Q(ξ) = 0} . For η ∈ R2 with |η| = 1 we denote by l(η) = l(η, Q)
the order of zero η if η ∈ Σ(Q) and assume that l(η) = 0 if η /∈ Σ(Q) . Since n = 2
Σ(Q) consists of finite number of points and l(η) � d.

For polynomials P represented in form (0.2)wedefine Σ0 ≡ Σ0 (P) = Σ(P0),Σj ≡
Σj(P) = {ξ ∈ Σj−1, Pj(ξ) = 0} (j = 1, 2, · · · , M) . For η ∈ Σj by lj(η) we denote
the order of zero η of the polynomial Pj (0 � j � M) and set

χ(η, δ) = χ(η, δ, P) = max
0�i�M

{di − li(η)δ}, δ ∈ (0,∞). (0.3)

Let η ∈ Σ0 . Denote by A(η) = A(η, P) the set of all numbers δ � 0 for which
there exist integer numbers 0 � i, j � M , such that i �= j and

di − li(η) · δ = dj − lj(η) · δ = χ(η, δ).

It is easily verified that 1) for η ∈ Σ0 the set A(η) is finite, 2) if 0 �= η ∈ R2, Q(η) �= 0
and η ∈ ΣM , or η ∈ ΣM−1 and dM = 0 , then Q ≮ P.

Finally for η ∈ Σ0 , δ ∈ A(η) we set

J(η, δ) = J(η, δ, P) = {i; 0 � i � M, di−li(η)·δ = χ(η, δ), c(η, δ) = card J(η, δ)}.
Let J(η, δ) = {i0, i1, ..., ic}, 0 � i0 < i1 < ... < ic � M , where c = c(η, δ) ,

then it follows immediately that li0(η) > li1(η) > ... > lic(η).

LEMMA 0.1. ([14], Lemma 1.2) Let Q be a homogeneous polynomial of order
d > 0,Σ(Q) �= ∅ . Then, for each η ∈ Σ(Q) there exists ε = ε(η, Q) > 0 such that

1
2
· |Dl

τ(η)| · |(ξ ,η)|d−l · |(ξ , τ)|l � |Q(ξ)| � 3
2
|Dl

τQ(η)| · |(ξ ,η)|d−l · |(ξ , τ)|l



ON INEQUALITIES FOR POLYNOMIALS IN TWO VARIABLES 313

for all ξ ∈ Gε(η) ≡ {
z ∈ R2, |(z, τ)| � ε|(z,η)|} . Here l = l(η, Q) is the order of

zero η ∈ Σ(Q) , τ = τ(η) ∈ R2 , |τ| = 1 , (τ,η) = 0,

Dl
τQ(η) =

∑
|α|=l

DαQ(η)
α!

· τα �= 0. (0.4)

In the sequel all unimportant positive constants will be denoted by C.

DEFINITION 0.1. We say that a polynomial P is more powerful than a polynomial
Q relative to a point η ∈ R2 and write Q <η P if there exist C, ε > 0 such that

|Q(ξ)| � C · [|P(ξ)| + 1] ∀ξ ∈ Gε(η). (0.5)

Since n = 2 , it is easy to verify that Q < P if and only if d � d0 and Q <η P for all
η ∈ Σ0 .

LEMMA 0.2. Let Q be a homogeneous polynomial of order d > 0 , P be a
polynomial represented in form (0.2),η ∈ Σ0 and Q <η P . Then

1) d � d0

2) d − l(η)δ � χ(P,η, δ) for all δ ∈ [0,σ(η))
3) if A(η, P, Q) ≡ A(η, P) ∩ [0,σ(η)) = ∅ then η ∈ Σ(Q) and σ(η) � σ0(η)
4) if η /∈ Σ(Q) then A(η, P) �= ∅.
Here σ (η) = d/l(η) if η ∈ Σ(Q) and σ(η) = ∞ if η /∈ Σ(Q) , σ0(η) =

d0/l0(η) if η ∈ Σ0 and σ0(η) = ∞ if η /∈ Σ0.

Proof. Statement 1) is obvious. To prove statement 2) suppose,to the contrary,
that there exists δ ∈ (0,σ(η)) such that

d − l(η)δ > χ(η, δ, P). (0.6)

Let s ∈ N, ξ s = sηs ≡ s(η + s−δ τ) . Then (ξ s,η) = s , (ξ s, τ) = s1−δ ,
ξ s ∈ Gε(η) for any ε > 0 and for sufficiently large s . By Taylor’s formula (see
(0.4)) and Lemma 0.1 we obtain that for some ε = ε(η, Q, P0, · · · , PM) and for
sufficiently large s

|Q(ξ s)| � 1
2
|Dl

τQ(η)| · |(ξ s,η)|d−l · |(ξ s, τ)|l =
1
2
|Dl

τQ(η)|sd−ls(1−δ)·l � Csd−l·δ .

Similarly for the polynomial P

|P(ξ s)| �
M∑

i=0

|Pi(ξ s)| �
M∑

i=0

3
2
|Dli

τPi(η)|sdi−li·δ � Csχ(η,δ,P).

These inequalities together with (0.6) contradict the condition Q <η P and hence
statement 2) follows.

To prove the first part of statement 3) we assume, to the contrary, that A(η, P, Q) =
∅ and Q(η) �= 0. Then by simple geometric considerations it is easy to see that
Pi(η) = 0 (i = 0, 1, ..., M) and Q(sη)| = sd|Q(η)| → ∞ as s → ∞ , P(sη) = 0
(s ∈ N) , which contradicts (0.5).
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To prove the second part of statement 3),we assume that η ∈ Σ(Q) , A(η, P, Q) = ∅
and σ(η) > σ0(η) . Then A(η, P) ∩ [0, d/l(η)) = ∅ and it follows that in this case
Pi(η) = 0 , χ(η, 0, P) = d0 and χ(η, δ, P) = d0 − l0(η)δ > di − li(η)δ for all
δ ∈ [0,σ0(η)] , i = 1, · · ·, M. As in the proof of statement 2) we have |P(ξ s)| � C
(s ∈ N), |Q(ξ s)| � Csd−l(η)σ0 → ∞ as s → ∞, which contradicts the condition
Q <η P.

To prove statement 4) it is sufficient to note that d − l(η)δ = d > χ(P,η, δ) =
d0 − l0(η)δ for δ > (d0 − d)/l0(η) when η ∈ Σ0\Σ(Q) and A(η, P) �= ∅. Lemma
0.2 is proved. �

LEMMA 0.3. Let P and Q be as in Lemma 0.2 and A(η, P, Q) = ∅ for all η ∈ Σ0 .
Then Q < P if and only if 1) d � d0 , 2) η ∈ Σ(Q) and σ(η) � σ0(η) for all η ∈ Σ0.

Proof. The necessity follows from Lemma 0.2. To prove the sufficiency first we
note that conditions 1)–2) and condition A(η, P, Q) = ∅ for all η ∈ Σ0 imply that for
all η ∈ Σ0 and i = 1, 2, · · · , M

d0 − l0(η)δ � d − l(η)δ, d0 − l0(η)δ > di − li(η)δ, 0 � δ < σ(η). (0.7)

Let, to the contrary, there exist a sequence {ξ s} such that

s → ∞ : |ξ s| → ∞, |Q(ξ s)|/[|P(ξ s)| + 1] → ∞. (0.8)

Denote ηs = ξ s/|ξ s| (s ∈ N). By choosing a subsequence (we denote this
subsequence and all the subsequences coming henceforth again by {ηs} ) one may
assume that ηs → η as s→ ∞, for some η ∈ R2, |η| = 1. It is easy to verify that
η ∈ Σ0. Then by condition 2) η ∈ Σ (Q) . Let us expand the vectors {ξ s} via the
orthonormal basis {η, τ} :

ξ s = ϕs · η + ψs · τ = (ξ s,η) · η + (ξ s, τ) .τ (s ∈ N).

Without loss of generality one can assume that ϕs � 1 , ψs > 0 (s ∈ N) (see
[14]). Since ηs → η we have ψs/ϕs → 0 as s → ∞ and ξ s ∈ Gε(η) for any
ε > 0 and sufficiently large s . Let ε = min{ε(η, Q), ε(η, P0), ..., ε(η, PM)} where
ε(η, Q), ε(η, P0), ..., ε(η, PM) are defined in lemma 0.1.

Denote ρs = 1 − lnψs/ lnϕs ⇐⇒ ψs = ϕ1−ρs
s (s ∈ N) .

If ρs � σ(η) for all s ∈ N , then by Lemma 0.1

|Q(ξ s)| � 3
2
|Dl

τQ(η)| · ϕd−l
s ψ l

s =
3
2
|Dl

τQ(η)| · ϕd−ρsl
s � 3

2
|Dl

τQ(η)|,

which contradicts (0.8). Similarly we arrive at a contradiction if the inequality ρs �
σ(η) holds for infinitely many s ∈ N .

Let now ρs < σ = σ(η) (s ∈ N) . Without loss of generality we assume that
ρs → δ as s → ∞ where δ � σ . Consider the following cases a) δ < σ and b)
δ = σ . In the case a) we get by Lemma 0.1 that for all s ∈ N and i = 1, · · ·, M

|P0(ξ s)| � 1
2
|Dl0

τ P0(η)| · ϕd0−l0ρs
s , |Pi(ξ s)| � 3

2
|Dli

τPi(η)| · ϕdi−liρs
s .
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From these inequalities we get by (0.7)

|P(ξ s)| � |P0(ξ s)| −
M∑

i=1

|Pi(ξ s)| � 1
4
|Dl0

τ P0(η)|ϕd0−l0·ρs
s (s ∈ N).

For the polynomial Q we have by Lemma 0.1 |Q(ξ s)| � (3/2)|Dl
τQ(η)|ϕd−lρs

s (s ∈
N). The last two inequalities together with (0.7) contradict (0.8).

In case b) we write xs = ψs · ϕ−(1−σ)
s = ϕσ−ρs

s (s ∈ N) and consider the
following possible subcases: b.1) {xs} is bounded: 0 < xs � C (s ∈ N), b.2) {xs} is
unbounded: without loss of generality xs → ∞ as s → ∞ . In the case b.1) we obtain
by Lemma 0.1 for all s ∈ N

|Q(ξ s)| � 3
2
|Dl

τQ(η)| · ϕd−l
s ψ l

s =
3
2
|Dl

τQ(η)| · ϕd−lσ
s xl

s =
3
2
|Dl

τQ(η)|xl
s � C,

which contradicts (0.8).
Case b.2) in its turn we split into the following subcases : b.2.1) σ /∈ A(η, P) ,

b.2.2) σ ∈ A(η, P) . In case b.2.1) we get by Lemma 0.1

|Q(ξ s)| � 3
2
|Dl

τQ(η)| · xl
s (s ∈ N), (0.9)

|P(ξ s)| � 1
2
|Dl0

τ P0(η)|ϕd0−l0σ
s xl0

s ; |Pi(ξ s)| � 3
2
|Dli

τPi(η)|ϕdi−liσxli
s , (1 � i � M).

Since xm
s .ϕ−ε

s = ϕm(σ−ρs)
s → 0 as s → ∞ for any m � 0 , the last two inequalities

together with (0.7) imply that for sufficiently large s

|P(ξ s)| � |P0(ξ s)| −
M∑

j=1

|Pj(ξ s)| � 1
4
|Dl0

τ P0(η)|ϕd0−l0σxl0
s . (0.10)

If σ(η) < σ0(η) then d0−l0σ(η) > d0−l0σ0(η) = 0 and arguing as abovewe see
that inequalities (0.9)–(0.10) contradict (0.8). If σ(η) = σ0(η), i.e. d0− l0σ(η) = 0 ,
then it is obvious that l0(η) � l(η) and again we arrive at a contradiction.

In case b.2.2) χ(η,σ, P) = d0 − l0σ = di − liσ , l0 > li for all 0 �= i ∈ J(P,η,σ)
and χ(η,σ, P) > di − liσ for i /∈ J(η,σ, P) . Then by Lemma 0.1 we have that for
sufficiently large s (J = J(η,σ, P))

|P(ξ s)| � |P0(ξ s)| −
∑

0�=i∈J

|Pi(ξ s)| −
∑
i∈J

|Pi(ξ s)| � 1
2
|Dl0

τ P0(η)|ϕd0−l0σ
s xl0

s

−3
2

M∑
i=0

|Dli
τPi(η)|ϕdi−liσ

s xli
s =

1
2
ϕd0−l0σ

s xl0
s [|Dl0

τ P0(η)| − 3
∑

0�=i∈J

|Dli
τPi(η)|xli−l0

s ]

+ o(ϕd0−l0σ
s )

=
1
2
|Dl0

τ P0(η)|ϕd0−l0σ
s xl0

s [1 + o(1)].

(0.11)
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If σ < σ0 then d 0 − l0σ > d − lσ and (0.9), (0.11) contradict (0.8). If σ = σ0

then it is obvious that l0 � l and again we arrive at a contradiction. Lemma 0.3 is
proved. �

EXAMPLE 0.1. Let P(ξ) = P0(ξ)+P1(ξ) = (ξ1−ξ2)3 ·(ξ 2
1 +ξ 2

2 )2 +ξ1 , Q(ξ) =
(ξ1 − ξ2)2 · (ξ 2

1 + ξ 2
2 ) . Here d0 = 7, d1 = 1 , d = 4, Σ0 = {η± ={(± 1√

2
,± 1√

2
)} ,

l0(η±) = 3 , l(η±) = 2 , σ(η±) = 2 . Since d0 > d , d0/l0(η±) > d/l(η±) and
A(η±, P)∩ [0,σ(η±)) = ∅ , by Lemma 0.3 Q < P . It is interesting to note that P1 ≮ P
and P /∈ I2 (see [14]).

Our further efforts will be devoted to obtaining conditions ensuring that Q < P
when A(η, P, Q) �= ∅ for some η ∈ Σ0. We denote by Σ0 = Σ0(P0) the set of points
η ∈ Σ0 for which A(η, P, Q) �= ∅. Let Σ1 = Σ0\Σ0 and let B(P, Q) be the set of all
pairs (η, δ) such that η ∈ Σ0, δ ∈ A(η, P, Q).

Let r(x) = anxn + an−1xn−1 + · · · + akxk be a polynomial with real coefficients,
0 � k < n, an · ak �= 0, X(r) = {x : 0 �= x ∈ R1, r(x) = 0} , κ0(r) = 1

2 min{|x| : x ∈
X(r)}, κ1(r) = 2 max{x : x ∈ X(r)}. Let c(r) be the number of nonzero coefficients
of r .

We shall need the following elementary statement.

LEMMA 0.4. 1) There exists C > 0 such that | r(x)| � C|x|k for |x| � κ0(r)
and |r(x)| � C|x|n for |x| � κ1(r) ; 2) c(r) � 3 when r(x) � 0 for all x ∈ R1 and
X(r) �= ∅.

Let P be a polynomial represented in form (0.2), (η, δ) ∈ B(P, Q) and

r0(x) = r0(x,η, δ, P) =
∑

i∈J(η,δ,P)

Dli(η)
τ Pi(η) · xli(η), x ∈ R1. (0.12)

We define the numbers κj(r0,η, δ) (j = 0, 1) as above and set

κ0 = min{κ0(r0,η, δ) : (η, δ) ∈ B(P, Q)} (0.13)

κ1 = max{κ1(r0,η, δ) : (η, δ) ∈ B(P, Q)}, (0.14)

ξ(t, x) = ξ(t, x,η, δ) = t(η + t−δ x · τ), x ∈ R1, t ∈ (0,∞).

The following result was proved in [14] by applying Lemmas 0.1–0.4 (We gave
here the proofs of Lemmas 0.2–0.3 because they were stated in [14] without proofs.)

THEOREM 0.1. Q < P if and only if conditions 1)–2) of Lemma 0.3 for all η ∈ Σ0

and the condition
3) for some C > 0 and for all (η, δ) ∈ B(P, Q)

td−l(η).δ � C. min
κ0�|x|�κ1

[|P[ξ(t, x)]| + 1 ∀t ∈ (0,∞) (0.15)

are satisfied.

Thus the problem of the comparison of the powers of a homogenous polynomial
Q and a polynomial P when B(P, Q) �= ∅ , is reduced to establishing estimate (0.15)
for the finite set of pairs (η, δ) ∈ B(P, Q) .
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Denote f (t, x) = f (t, x,η, δ) = |P[ξ(t, x,η, δ)]| . In [14] it is proved that f can
be represented in the form

f (t, x) = f (t, x,η, δ) =
M0∑
i=0

tχ(η,δ,P)− i
q · ri(x), (0.16)

where M0 = M0(η, δ) ∈ N , χ(η, δ, P) is defined by (0.3), q = q(η, δ) is the smallest
natural number for which qδ ∈ N (it is easy to see that the number δ ∈ A(η, P) is
rational), {ri} are polynomials in one variable x ∈ R1 , which are uniquely defined by
(P,η, δ) , namely

rj(x) = rj(x,η, δ) =
∑

i∈J(η,δ,P)

Dli+j
τ Pi(η) · xli+j (j = 0, 1, · · · , M0). (0.17)

Note that the polynomial r0 was already defined by formula (0.12).

1. Investigation of functions generated by a given polynomial

Let

f (t, x) =
M0∑
i=0

tm− i
q · ri(x) t ∈ (0,∞) x ∈ R1 (1.1)

be a function of type (0.16), X0 = X0(f ) = {0 �= x ∈ R1, r0(x) = 0}. For 0 �= x ∈ R1

let lj(x0) be the order of the zero x0 of the polynomial rj if x0 ∈ X0 and lj(x0) = 0 if
x0 /∈ X0 , (0 � j � M0). We set

χ(f , x0,Δ) = max
0�i�M0

{
m − i

q
− li(x0)Δ

}
, Δ � 0.

We denote by A(x0, f ) the set of all numbers Δ � 0 for which there are indices
i �= j : 0 � i, j � M0 such that m − i

q − li(x0)Δ = m − j
q − lj(x0)Δ = χ(f , x0,Δ) .

For a pair (x0,Δ0) : x0 ∈ X0,Δ0 ∈ A(x0, f ) we denote by J(x0,Δ0, f ) the set of
all integers 0 � k � M0 for which

m − k
q
− lk(x0)Δ0 = χ(f , x0,Δ0) (1.2)

and set c(f , x0,Δ0) = card J(x0,Δ0, f ).
We have introduced the notations {li, χ, A, J, c} both for polynomials in two vari-

ables and for functions of one variable. We hope it will not cause any misunderstanding.
Thus every pair (η, δ) ∈ B(P, Q) generates the unique function f (t, x,η, δ) of

type (1.1). Let (η, δ) be such a pair and

f 0(t, x,η, δ) = |P[t(η + t−δ .x.τ)]| =
M0∑
i=0

tm0− i
q0 · r0

i (x,η, δ), (1.3)
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where M0 = M0(η, δ) , m0 = χ(η, δ, P) , q0 = q0(δ) is the smallest natural number
for which q0δ ∈ N, the polynomials {r0

i } are defined by (0.17), t ∈ (0,∞), κ0
0 �

|x| � κ0
1 , the numbers κ0

j (j = 0, 1) are defined by (0.13)–(0.14).
If X0(f 0,η, δ) = ∅ for all pairs (η, δ) ∈ B(P, Q) then f 0(t, x,η, δ) � Ctm0 :

t � 0 and byTheorem0.1 Q < P when (necessary) conditions 1)–2) of Lemma0.2 and
condition 2) of Lemma 0.3 are satisfied. If X0(f 0,η, δ) �= ∅ for a pair (η, δ) ∈ B(P, Q)
then first we will assume that there is a unique such pair (η, δ) and for simplification
of notations we sometimes omit symbols η or δ. If for some x0 ∈ X0 = X0(f 0,η, δ)
r0
j (x0) = 0 for all j = 0, 1, ..., M0 and δ ∈ [0,σ(Q)) i.e. d − l(η)δ > 0 then

Q ≮ P by Theorem 0.1. Assume therefore that for each x0 ∈ X0 there exists a number
j0 = j0(x0) such that 0 < j0 � M0 and r0

j (x0) = 0 j = 0, 1, · · · , j0 − 1, r0
j0(x0) �= 0.

By Theorem 0.1 Q < P implies that

d − l(η)δ � m0 − j0(x0)
q0

∀x0 ∈ X0. (1.4)

Denote by X0
0 the set of all points x0 ∈ X0 for which A(x0, f 0,η, δ) = ∅,

X1
0 = X0\X0

0 .

Applying Theorem 0.1 one can easily see that inequality (1.4) together with (nec-
essary) conditions 1)–2) of Lemma 0.3 are sufficient for Q < P if X1

0 = ∅ .
Thus the problem of the comparison of polynomials P and Q is solved when

X1
0 = ∅ . We have therefore to consider only the case when X1

0 �= ∅ , i.e. when
B0 = B0(f 0,η, δ) = {(x,Δ) : x ∈ X0(f 0,η, δ),Δ ∈ A(x, f 0,η, δ)} �= ∅.

For simplification of notations in the remainder of this section we will assume that
the set B0 consists of a unique pair (x0,Δ0) and sometimes omit symbols x0 or Δ0 .

In [14] it is proved that

c(P,η, δ) − 1 = card J(P,η, δ) − 1 � l 0
0 (x0) � c(f 0, x0,Δ0) − 1. (1.5)

Next we write

Dkr0
i (x0) =

1
k!

· dk

dxk
r0
i (x0) (1 � i � M0, k = 0, 1, · · · ),

r1
j (y) =

∑
i∈J(f 0,x0,Δ0)

Dli(x0)+jr0
i (x0) · yll(x0)+j (j = 0, 1, · · · ). (1.6)

In [14] it is proved (see Theorem 2.1) that 1) the problem of the behaviour of the
function f 0 at infinity reduces to the study of its behaviour on the set {(t, x0+t−Δ0y), y ∈
R1} as t → ∞ , 2) f 1(t, y) = f 1(t, y, x0,Δ0) = f 0(t, x0 + t−Δ0 .y) can be represented in
the form

f 1(t, y) =
M1∑
i=0

tm1− i
q0·q1 · r1

i (y), (1.7)

where M1 = M1(f 0, x0,Δ0), m1 = χ(f 0, x0,Δ0) < m0, q1 = q1(f 0, x0,Δ0) is the small-
est natural number for which (q0q1)Δ0 ∈ N.
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We introduce also the following notations: X1 = X1(f 1, x0,Δ0) = {0 �= y ∈
R1, r1

0(y) = 0},

κ1
0 = κ1

0 (x0,Δ0) =
1
2
· min

y∈X1

|y|, κ1
1 = κ1

1 (x0,Δ0) = 2 · max
y∈X1

|y|. (1.8)

If X1 = ∅ (X1(f 1, x0,Δ0) = ∅ for all (x0,Δ0) ∈ B0, when the set B0 consists of
more than one pair) then f 1(t, y) � C · tm1 for all t � 0, y ∈ R1. Hence by Theorem
0.1 Q < P if and only if conditions 1)–2) of Lemma 0.3, condition (1.4) and condition
d − l(η)δ � m1 (conditions d − l(η) · δ � m1(x0,Δ0) for all (x0,Δ0) ∈ B0 when B0

consists of more than one pair) hold. If X1 �= ∅ , r1
1(y1) = 0 for all j = 0, 1, · · ·, M1 and

for some y1 ∈ X1 then by Theorem 0.1 Q ≮ P when d− l(η)δ > 0. Assume therefore
that for each y1 ∈ X1 there exists a number j1 = j1(y1) such that 0 < j1 � M1 and
r1
j (y1) = 0 , j = 0, 1, · · · , j1 − 1 , r1

j1(y1) �= 0. By Theorem 0.1 Q < P implies that

d − l(η)δ � m1 − j1
q0.q1

∀y1 ∈ X1. (1.9)

Denote by X0
1 = X0

1(f 1, x0,Δ0) the set of all points y1 ∈ X1 for which A(y1, f 1, x0,
Δ0) = ∅ and X1

1 = X1\X0
1 .

Applying Theorem 0.1 one can easily see that inequality (1.9) together with (nec-
essary) conditions 1)–2) of Lemma 0.3 and condition (1.4) are sufficient for Q < P if
X1

1 = ∅ .
Thus we have to consider only the case X1

1 �= ∅ (X1
1(f 1, x0,Δ0) �= ∅ for all pairs

(x0,Δ0) ∈ B0 when B0 consists ofmore than one pair), i.e. when B1 = B1(f 1, x0,Δ0) =
{(y1,Δ1) : y1 ∈ X1,Δ1 ∈ A(y, f 1, x0,Δ0)} �= ∅. For simplification of notations in the
remainder of this section we will assume that the set B1 consists of a unique pair
(y1,Δ1).

In [14] it is proved that 1) the problem of the behaiour of the function f 1 at infinity
reduces to the study of its behaviour on the set {(t, y1 + t−Δ1z), z ∈ R1} as t → ∞,
2) f 2(t, z) = f 2(t, z, y1,Δ1) = f 1(t, y1 + t−Δ1z) can be represented in the form

f 2(t, z) =
M2∑
i=0

tm2− i
q0q1q2 · r2

i (z), (1.10)

where M2 = M2(f 1, y1,Δ1), m2 = χ(f 1, y1,Δ1) < m1, q2 = q2(f 1, y1,Δ1) is the small-
est natural number for which (q0q1q2)Δ1 ∈ N. If X2 = X2(f 2, y1,Δ1) = {0 �= z ∈
R1, r2

0(z) = 0} = ∅ then the problem can be solved as above. If X2 �= ∅ then the
function f 2 generates the function f 3 and so on.

Let the pair (η, δ) ∈ B(P, Q) generate the function f 0(t, x,η, δ) by formula
(1.3) and the set B0(η, δ) = {(x,Δ) : x ∈ X0(η, δ), Δ ∈ A(x0,η, δ)}. Each pair
(x0,Δ0) ∈ B0(η, δ) generates the function f 1(t, x, x0,Δ0,η, δ) by formula (1.7) and
the set B1(x0,Δ0,η, δ) = {(x1,Δ1) : x1 ∈ X1(x0,Δ0,η, δ), Δ1 ∈ A(x1, x0,Δ0,η, δ)}
and so on.

We denote by F0 the set of functions {f 0(t, x,η, δ); (η, δ) ∈ B(P, Q)} , by F1

the set of functions {f 1(t, x, x0,Δ0,η, δ); (η, δ) ∈ B(P, Q), (x0,Δ0) ∈ B0(η, δ)} ,
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by F2 the set of functions {f 2(t, x, x1,Δ1, x0,Δ0,η, δ); (η, δ) ∈ B(P, Q), (x0,Δ0) ∈
B0(η, δ), (x1,Δ1) ∈ B1(x0,Δ0)} and so on. Finally we write for (η, δ) ∈ B(P, Q)

g0(t,η, δ) = 1 + min
κ0

0 �|x|�κ0
1

f 0(t, x,η, δ), g0(t) = min
(η,δ)∈B(P,Q)

g0(t,η, δ).

For (η, δ) ∈ B(P, Q) and (x0,Δ0) ∈ B0(η, δ) we write

G1(t, x0,Δ0,η, δ) = 1 + min
κ1

0 �|x|�κ1
1

f 1(t, x, x0,Δ0,η, δ),

H1(t, x0,η, δ) = min
Δ∈A(x0,η,δ)

G1(t, x0,Δ,η, δ), H1
1(t,η, δ) = min

x0∈X0(η,δ)
H1(t,η, δ),

g1(t) = min
(η,δ)∈B(P,Q)

H1
1(t,η, δ),

or, what is the same
g1(t) = min

f 1∈F1

min
κ1

0 �|x|�κ1
1

f 1(t, x).

Similarly for j � 2

gj(t) = min
f j∈Fj

min
κ j

0 �|x|�κ j
1

f j(t, x). (1.11)

Thus each pair (η, δ) ∈ B(P, Q) generates the unique chain {f 0, f 1, · · · } when
cardB(P, Q) = cardB0 = cardB1 = · · · = 1 and the tree with branches {f j, f j ∈ Fj}
when cardBk > 1 for some k ∈ N0.

Let j ∈ N0, Fj �= ∅ , we say that Fj ∈ I = I[κ j
0 , κ

j
1 ] if gj(t) → ∞ as t → ∞ . If

Fj ∈ I and f j ∈ Fj then we say that f j ∈ I . We will prove that f j ∈ I implies f j+1 ∈ I
for every j ∈ N0 . First we prove following simple lemma.

LEMMA 1.1. Let P and Q be as in Lemma 0.2, Q < P , and {f j} be the chain,
generated by (η, δ) ∈ B(P, Q) . Then d − l(η)δ � χ(f j, xj,Δ) for all xj ∈ Xj

(j = 0, 1, · · · ) and Δ � 0.

Proof. We give the proof only for the case j = 0 , the other cases being similar.
Let, to the contrary, d − l(η)δ > χ(f 0, x0,Δ0) for some pair (x0,Δ0) : x0 ∈

X0,Δ0 � 0 and x(t) = x0 + t−Δ0 , t � 0 . By Taylor’s formula we obtain for
P[ξ(t, x(t))] = P[t(η + t−Δ0x(t)τ)]

|P[ξ(t, x(t))]| = |f 0(t, x(t))| =

∣∣∣∣∣
M0∑
i=0

tm0− i
q0 · r0

i (x0 + t−Δ0)

∣∣∣∣∣ (1.12)

=
M0∑
i=0

tm0− i
q0

−l 0
i (x0)Δ0

∑
j�l 0

i (x0)

|Djr0
i (x0)| · t−(j−l 0

i (x0))Δ0 � Ctχ(f 0,x0,Δ0).

Since Dl(η)Q(η) �= 0 , x0 �= 0 and κ0
0 � |x(t)| � κ0

1 for sufficiently large t , by
Taylor’s formula we obtain

|Q[ξ(t, x(t)]| = td−l(η)δ · |Dl(η)
τ Q(η)| · |x0|l(η)(1 + o(1)) (1.13)
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for t → ∞ . Then (1.12)–(1.13) together with the condition Q < P imply

td−l(η)δ � C|Q[ξ(t, x(t))]| � C[|f 0(t, x(t))| + 1] � Ctχ(f 0 ,x0,Δ0)

for sufficiently large t , which contradicts our assumption and proves the lemma. �

THEOREM 1.1. Let P and Q be as in Lemma 0.2 and X1
0(η, δ) = ∅ for all

(η, δ) ∈ B(P, Q) . Then Q < P if and only if conditions 1)–2) of Lemma 0.3 for all
η ∈ Σ0 and condition 3) d − l(η)δ � 0 for all (η, δ) ∈ B(P, Q) hold.

Proof. We only need to prove the necessity of condition 3). Simple geometric
considerations show that condition X1

0(η, δ) = ∅ implies χ(f 0, x,Δ0) = m0−l 0
0 (x)Δ0 =

0 for x ∈ X1
0(η,Δ0) and Δ0 = m0/l 0

0 (x), which together with Lemma 1.1 proves the
necessity of condition 3).

The sufficiency follows by Theorem 0.1. �
Our further efforts therefore will be devoted to obtaining conditions ensuring that

Q < P (conditions ensuring the validity of inequality (0.18)) when d− l(η)δ > 0 and
X1

0(η,Δ0) �= ∅ for a pair (η, δ) ∈ B(P, Q).
It is obvious (see Theorem 0.1) that Q < P implies Fj ∈ I (j = 0, 1, · · · ). On the

other hand it is clear that if Fj ∈ I then for each pair (f j, xj) : f j ∈ Fj, xj ∈ Xj = Xj(f j)
there is a number kj = kj(xj, f j) such that 0 < kj � Mj , mj − kj/(q0 ·q1 · · · qj) > 0 and

r j
0(xj) = · · · = r j

kj−1(xj) = 0, r j
kj
(xj) �= 0 (j = 0, 1, · · · ) (1.14)

In addition we prove following simple proposition.

LEMMA 1.2. Assume that j ∈ N0 .
1) The inequality

gj(t) � Ctmj t ∈ [0,∞) (1.15)

holds if and only if Xj(f j) = ∅ for all f j ∈ Fj.
2) Let Xj(f j) �= ∅ for f j ∈ Fj , then the inequality

gj(t) � Ctmj+1 t ∈ [0,∞) (1.16)

holds if and only if Xj+1(f j+1) = ∅ for all f j+1 ∈ Fj+1.
3) Let Fj ∈ I and card J(f j) = 2 for all f j ∈ Fj then Xj+1(f j+1) = ∅ for all

f j+1 ∈ Fj+1.

Proof. First two statements immediately follow by the definition of the set Fj.
Statement 3) in turn follows by Lemma 2.3 of [14]. �

Let j ∈ N0 , Fj ∈ I , f j ∈ Fj and the number kj = kj(xj, f j) be defined by (1.14),
then χ(f j, xj,Δ

j
) = mj − kj/(q0 · q1 · · · qj) for a number Δ j

> 0. Let us write

Δ0
j = Δ0

j (xj) = inf
Δ j

{
χ(f j, xj,Δ

j
) = mj − kj

q0 · q1 · · · qj

}
. (1.17)

By continuity of χ we have χ(f j, xj,Δ0
j ) = mj − kj/(q0 · q1 · · · qj), i.e. kj ∈

J(f j, xj,Δ0
j ).
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LEMMA 1.3. Let j ∈ N0, xj ∈ Xj and Fj ∈ I. Then for each f j ∈ Fj

1) Δ0
j ∈ A(xj, f j) ,

2) (Δ0
j ,∞) ∩ A(xj, f j) = ∅ , Δ0

j = max{Δ : Δ ∈ A(xj, f j)}
3) χ(f j, xj,Δ) � mj − kj

q0·q1···qj
= χ(f j, xj,Δ0

j ) : Δ ∈ [0,∞) .

Proof. For simplification of notations we can assume that j = 0 and write Δ0 =
Δ0

0 , li = l 0
i (x0) (0 � i � M0) , J = J(f 0, x0,Δ0) .

Since k0 ∈ J then to prove statement 1) it is sufficient to prove the existence of a
number i �= k0 (0 � i � M0) such that i ∈ J . Suppose, to the contrary, that

m0 − i
q0

− liΔ0 < m0 − k0

q0
: 1 � i � M0, i �= k0.

Then there exists a number ε ∈ (0,Δ0) such that

m0 − i
q0

− li(Δ0 − ε) < m0 − k0

q0
: 1 � i � M0, i �= k0.

Since lk0 = 0 we have

χ(f 0, x0,Δ0 − ε) = max
0�i�M0

{
m0 − i

q0
− li(Δ0 − ε)

}
= m0 − k0

q0
,

which contradicts the definition of the number Δ0 (see (1.17)) and proves statement
1).

To prove statement 2), notice that for any Δ > Δ0 and i < k0

m0 − i
q0

− liΔ < m0 − i
q0

− liΔ0 � χ(f 0, x0,Δ0) = m0 − k0

q0
.

For i > k0 we have m0 − i
q0
− liΔ � m0 − i

q0
< m0 − k0

q0
. This means that J = {k0}

i.e. Δ /∈ A(x0, f 0) , which proves the first part of 2). The second part of 2) is obvious.
To prove statement 3), notice that by the definition of the numbers k0 and Δ0

χ(f 0, x0,Δ) � m0 − k0

q0
− lk0Δ = m0 − k0

q0
= χ(f 0, x0,Δ0)

for any Δ � 0 , which completes the proof of Lemma 1.3. �

In Lemmas 1.4–1.6 below one can take f j instead of f 0 and f j+1 instead of f 1 for
any j ∈ N0 .

Let U(x, ε) be an ε -neighbourhood of x ∈ R1 and a number ε > 0 be chosen in
such a way that U(x1, ε) ∩U(x2, ε) = ∅ for any pair (x1, x2) : xj ∈ X0 (j = 1, 2) . We
set

Uε(f 0) = [κ0
0 , κ0

1 ]\ ∪
x∈X0

U(x, ε).
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LEMMA 1.4. Let {f j} be the chain generated by the pair (η, δ) ∈ B(P, Q) ,
F0 = {f 0} ∈ I and ε > 0 be chosen as above. Then

max
κ1

0 �|y|�κ1
1

f 1(t, y)/ min
x∈Uε (f 0)

f 0(t, x) → 0, t → ∞. (1.18)

Proof. By the definitions of set Uε(f 0) and the function f 1

min
x∈Uε (f 0)

f 0(t, x) � Ctm0 , max
κ1

0 �|y|�κ1
1

f 1(t, y) � C[tm1 + 1] : t ∈ (0,∞),

where m1 < m0 , which proves Lemma 1.4. �

Let x0 ∈ X0 , |xs| ∈ Uε(f 0) , ts � 0 (s ∈ N) and

ρs = − ln |xs − x0|/ ln ts. (1.19)

LEMMA 1.5. Let the assumptions of Lemma 1.4 hold, xs → x0 , ts → ∞ and
ρs → ρ ∈ A(x0, f 0) as s → ∞ . Then

H1(ts, x0) � C[f 0(ts, xs) + 1] ∀s ∈ N. (1.20)

Proof. Without loss of generality we can assume that ρs � 0 for all s ∈ N .
Consider the two possibilities : ρ = 0 , ρ > 0 .

In the first case we have for sufficiently large s

f 0(ts, xs) � tm0
s · |r0

0(xs)| − C1t
m0− 1

q0 , C1 � 0.

By the definition of the number l0 = l 0
0 (x0) it follows that r0

0(x) = (x−x0)l0 ·r 0
0 (x) ,

where r 0
0 (x0) �= 0 . Therefore (see. (1.19))

f 0(ts, xs) � C2t
m0
s |xs − x0|l0 − C1t

m0− 1
q0

s = C2t
m0−l0.ρs
s − C1t

m0− 1
q0

s , C2 > 0.

Since in the first case ρsl0 < 1/(2q0) for sufficiently large s , we have

f 0(ts, xs) � C3t
m0− 1

q0
s , C3 > 0 (1.21)

for sufficiently large s .
On the other hand by the definition of H1 , k0 and Δ0 = Δ0

0 we have

H1(ts, x0) � G1(ts, x0,Δ0) � C4t
χ(f 0 ,x0,Δ0) � C4t

m0− k0
q0

s � C4t
m0− 1

q0
s , C4 > 0.

Combining these inequalities with (1.21) we get (1.20).
In the second case ρ ∈ A(x0, f 0), which means that there is a unique number j0

such that 0 � j0 � M0 and

χ(f 0, x0, ρ) = m0 − j0
q0

− lj0(x0)ρ > m0 − j0
q0

− lj(x0)ρ : j0 �= j ∈ [0, M0].
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Then there exists ε > 0 such that the inequality

m0 − j0
q0

− lj0(x0)ρs > m0 − j0
q0

− l(x0)ρs : j0 �= j ∈ [0, M0]

holds for s : |ρs − ρ| � ε , |xs| ∈ Uε(f 0).
Arguing as in the first case we get for all s ∈ N

t
m0− j0

q0
s |r0

j0(xs)| � C5t
m0− j0

q0
s |xs − x0|lj0 (x0) = C5t

m0− j0
q0

−lj0 (x0).ρs
s , C5 > 0,

t
m0− j

q0
s |r0

j0(xs)| � C6t
m0− j

q0
−lj(x0)ρs

s , j0 �= j ∈ [0, M0], C6 > 0.

Let numbers ε > 0 and s0 ∈ N be chosen in such a way that |ρs − ρ| � ε and
|xs| ∈ Uε(f 0) for s � s0 . Then combining the last three inequalities we obtain for a
constant C7 > 0 that

f 0(ts, xs) � t
m0− k0

q0
s |r0

j0(xs)| −
∑
j�=j0

t
m0− j

q0
s |r0

j0(xs)| � C7t
m0− j0

q0
−lj0 (x0)ρs

s

= C7t
χ(f 0 ,x0,ρs), s � s0.

For the function H1 similarly

H1(ts, x0) � G1(ts, x0,Δ0) � C8t
χ(f 0,x0,Δ0), C8 � 0.

Combining the last two inequalities with statement 3) of Lemma 1.3 we get (1.20).
Lemma 1.5 is proved. �

LEMMA 1.6. Let (η, δ) ∈ B(P, Q) , k ∈ N0 , Fk = Fk(η, δ) ∈ I. Then there exists
C > 0 such that

C−1gk(t) � gk+1(t) � Cg(t), t � 0. (1.22)

Proof. We give the proof only for the case k = 0 , the cases k � 1 being similar.
Let a number t0 be chosen in such a way that

κ0
0 � |x + t−Δy| � κ0

1 ∀x ∈ X0, Δ ∈ A(x, f 0), |y| ∈ [κ1
0 , κ1

1 ], t � t0.

Then for any pair (x0,Δ) ∈ B0

g0(t) � 1 + min
κ0

0 �|x|�κ0
1

f 0(t, x,η, δ) � 1 + min
κ0

0 �|x|�κ0
1

f 0(t, x0 + t−Δy)

= 1 + min
κ0

0 �|x|�κ0
1

f 0(t, y, x0,Δ) = G1(t, x0,Δ),

i.e. g0(t) � g1(t) for t � t0 . Since g1(t) � 1 for all t � 0 , this proves the
left-hand-side inequality of (1.22).

To prove the right-hand-side inequality of (1.22) suppose, to the contrary, that for
a sequence {ts} :

ts → ∞, g1(ts)/g0(ts) → ∞, s → ∞. (1.23)
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By the compactness of the set [κ0
0 , κ0

1 ] and by the continuity of f 0 it follows that
for each s ∈ N there is a number xs : |xs| ∈ [κ0

0 , κ0
1 ] such that g0(ts) = f 0(ts, xs) + 1 .

Without loss of generality one may assume that the sequence {xs} is convergent. Let
xs → x as s → ∞ then |x| ∈ [κ0

0 , κ0
1 ] . By assumption (1.23) and by Lemma 1.4

x ∈ X0 . If for infinite number of s ∈ N xs = x then by choosing a subsequence one
can assume that xs = x for all s ∈ N . Since F0 = {f 0} ∈ I, we get for the number
k0 = k0(x) � 1 defined by (1.14)

f 0(ts, xs) = f 0(ts, x) � t
m0− k0

q0
s |r0

k0
(x)| −

∑
j>k0

t
m0− j

q0
s |r0

j (x)|

� 1
2
|r0

k0
(x)|tm0− k0

q0
s

(1.24)

for sufficiently large s . On the other hand for s ∈ N

g1(ts) � H1(ts, x) � G1(ts, x,Δ0(x)) � Ctχ(ts,x,Δ0(x)) = Ct
m0− k0

q0
s , (1.25)

where the number Δ0(x) = Δ0
0(x) is defined by (1.17). This together with (1.24)

contradict (1.23).
The case when xs �= x for sufficiently large s is still to be considered. Let xs �= x

for all s ∈ N and the numbers {ρs} be defined by formula (1.19) for x0 = x . If for
infinite number of s ∈ N ρs > 2Δ0(x) then by choosing a subsequence one can assume
that ρs > 2Δ0(x) for all s ∈ N. In this case

f 0(ts, xs) � t
m0− k0

q0
s |r0

k0
(xs)| −

∑
j<k0

t
m0− j

q0
s |r0

j (xs)| −
∑
j>k0

t
m0− j

q0
s |r0

j (xs)|. (1.26)

Since r0
k0
(x) �= 0, we have

|r0
k0
(xs)| � 1

2
|r0

k0
(x)| (1.27)

for sufficiently large s.
On the other hand by the definition of the numbers k0 = k0(x) and Δ0(x) and by

Taylor’s formula we obtain for j < k0 as s → ∞

t
m0− j

q0
s · |r0

j (xs)| = t
m0− j

q0
s ·

∣∣∣∣∣∣∣
∑

i�l0j (x)

(xs − x)i

i!
Dir0

j (x)

∣∣∣∣∣∣∣ � Ct
m0− j

q0
s (xs − x)l0j (x)

= Ct
m0− j

q0
−2l0j (x)Δ

0(x)
s � Ctχ(f 0,x,Δ0(x))

s t
−.l0j (x).Δ

0(x)
s

= o(tχ(f 0,x,Δ0(x))
s ).

(1.28)

For j > k0 relation (1.28) is obvious. Combining (1.26)–(1.28) we get (1.24).
Similarly we get relation (1.25) which contradicts (1.23).

Thus without loss of generality we can assume that ρs ∈ [0, 2Δ0(x)] for all s ∈ N
and that ρs → ρ ∈ [0, 2Δ0(x)] as s → ∞ . If ρ /∈ A(x, f 0) then we arrive at a
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contradiction immediately by Lemma 1.5. Therefore we only need to consider the case
x ∈ X0 , ρ ∈ A(x, f 0) .

Denote ys = (xs − x)tρs or, which is the same, xs = x + t−ρ
s ys (s ∈ N). Then for

any ε > 0 and l > 0

|ys|l · tεs → ∞ : |ys|l · t−ε
s → 0, s → ∞. (1.29)

Since for each i /∈ J = J(f 0, x, ρ) m0 − i
q0
− l 0

i (x)ρ < χ(f 0, x, ρ), by Taylor’s

formula and by the definition of the polynomial r1
0 we get

f 0(tsxs) � tχ(f 0,x,ρ)
s

∣∣∣∣∣
∑
i∈J

Dl 0
i (x)r0

i (x)y
l 0
i (x)
s

∣∣∣∣∣ −
∑
i /∈J

t
m0− i

q0
−l 0

i (x)ρ
s |Dl 0

i (x)r0
i (x)||ys|l 0

i (x)

= tχ(f 0,x,ρ)
s ·

[
|r1

0(ys)| −
∑
i /∈J

t−εi
s |Dl 0

i (x)r0
i (x)||ys|l 0

i (x)

]
, (s ∈ N),

where εi = χ(f 0, x, ρ) −
[
m0 − i

q0
− l 0

i (x)ρ
]

> 0 . Hence by (1.29)

|f 0(tsxs)| � tχ(f 0 ,x,ρ)
s [|r1

0(ys)| + o(1)], s → ∞. (1.30)

Let us consider the following two possibilities: 1) ρ < Δ0(x) , 2) ρ = Δ0(x) .
The first case in turn we divide into the following three subcases (for a subsequence of
the sequence {ys} , which we alsodenote by {ys} ):

1.1) |ys| � κ1
1 , 1.2) |ys| � κ1

0 , 1.3) κ1
0 � |ys| � κ1

1 (s ∈ N), (1.31)

where the numbers κ1
j = κ1

j (x, ρ) (j = 0, 1) are defined by formula (1.8).
Applying Lemma 0.4 we get in subcases 1.1) and 1.2)

|r1
0(ys)| � C · min{|ys|l

0
i0

(x), |ys|l0ic (x)} (s ∈ N), C > 0,

where i0 and ic are the smallest, the largest respectively, numbers of J(f 0, x, ρ).
Combining this together with (1.30) we obtain

|f 0(tsxs)| � Ctχ(f 0,x,ρ)
s · min{|ys|l

0
i0

(x), |ys|l0ic (x)} (s ∈ N).

Since in case 1) ρ < Δ0(x) we have χ(f 0, x, ρ) > χ(f 0, x,Δ0(x) ). Let a number
ε > 0 be chosen in such a way that χ(f 0, x, ρ) − ε > χ(f 0, x,Δ0(x) ). Then applying
the last inequality together with (1.29) we obtain

|f 0(tsxs)| � Ctχ(f 0,x,ρ)−ε
s · min{|ys|l

0
i0

(x), |ys|l0ic (x)}.tεs
� Ctχ(f 0,x,ρ)−ε

s � Ctχ(f 0,x,Δ0(x))
s (s ∈ N).

(1.32)

In the same manner as in the case ρs > 2.Δ0(x) ( s ∈ N) we get inequality (1.25)
in cases 1.1) and 1.2). Then (1.25) together with (1.32) contradict (1.23). In case 1.3)
we have for any s ∈ N

f 0(tsxs) = f 0(ts, x + t−ρ
s ys) = f 1(ts, ys, x, ρ)

� min
κ1

0 �|ys|�κ1
1

f 1(ts, ysx, ρ) = G1(ts, x, ρ) − 1 � g1(ts) − 1,
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which contradicts (1.23).
We also divide case 2) into three subcases (see (1.31)). Proceeding as in case 1),

we get contradiction in subcases 2.1) and 2.2). Consider subcase 2.3) κ1
0 � |ys| � κ1

1
(s ∈ N) . It is obvious that in this case k0 = k0(x) ∈ J(f 0, x, ρ) . Then r1

0(0) �= 0 and
|r1

0(x)| � C > 0 for |x| � κ1
0 . Applying this, we obtain by (1.30) for sufficiently large

s

|f 0(tsxs)| � Ctχ(f 0 ,x,ρ)
s = Ctχ(f 0 ,x,Δ0(x))

s = Ct
m0− k0

q0
s , C > 0.

This together with (1.25) contradict (1.23). Lemma 1.6 is proved. �
From Lemma 1.6 immediately follows

COROLLARY 1.1. Let P and Q be as in Lemma 0.2, (η, δ) ∈ B(P, Q). Then
Fk (η, δ) ∈ I if and only if Fk+1 (η, δ) ∈ I (k ∈ N0).

2. Comparison of polynomials. The main result

Let polynomials P and Q be as above, f 0(t, x,η, δ) be the function, generated
by a pair (η, δ) ∈ B(P, Q) (see (1.3)), the polynomial r0

0 and the numbers κj(P)
(j = 0, 1) be defined by (0.12)–(0.14).

It is easy to verify that F0 (η, δ) = {f 0} ∈ I when Q < P and d − l(η)δ > 0.
On the other hand (see Lemmas 1.1, 2.1 of [14]) X0(f 0,η, δ) = ∅ if F0(η, δ) ∈ I and
c(r0

0,η, δ) � 2.
We will show below that the general case of the comparison of the polynomials P

and Q , when X0(f 0,η, δ) �= ∅ is reduced to the special case c(r0
0 ,η, δ) � 3. Therefore

we will first concentrate our attention on the case c(r0
0 ,η, δ) = 3.

LEMMA 2.1. Let a pair (η, δ) ∈ B(P, Q) generate the set {Fi = Fi(η, δ)},
f i ∈ Fi (i = 0, 1, · · · ), F0 ∈ I, c(r j

0) = c(r j
0,η, δ) = 3 for some j ∈ N0, (xj,Δj) ∈ Bj

and Xj+1(f j+1, xj,Δj) �= ∅. Then
1) c(f j) = card Jj = card J(f j, xj,Δj) = 3, 0 ∈ Jj , kj = kj(xj) ∈ Jj

2) qj+1 = qj+1(xj,Δj) = 1
3) mj+1 � mj − 2/(q0 · q1 · · · qj)
4) cardAj(xj, f j) = 1.

Proof. By Corollary 1.1 f j+1 ∈ I hence rj+1
0 (y) � 0 for all y ∈ R1. Since

c(rj+1
0 ) = c(f j) by the definition of the polynomial rj+1

0 ,and Xj+1 �= ∅ by ourassumption
hence c(f j) � 3 by Lemma 0.4. On the other hand since f j ∈ I and c(r j

0) = 3 we
have l j

0 = l j
0(xj) = 2 by Lemma 4.1 of [14] (see also formula (2.6) of [17]). By the

same lemma c(f j) = c(rj+1
0 ) � l j

0 + 1 � c(r j
0) = 3 , i.e. c(f j) = 3 .

Let Jj = {i0, i1, i2}, 0 � i0 < i1 < i2 � Mj, then for k = 0, 1, 2

mj − ik
q0 · q1 · · · qj

− l j
ik
Δj = χ(f j, xj,Δj) � mj − l j

0Δj = mj − 2Δj. (2.1)

This means that 2 = l j
0 � l j

i0 > l j
i1 > l j

i2 � 0 , i.e. i0 = 0, l j
i0 = 2, l j

i1 = 1,

l j
i2 = 0. thus 0 = i0 ∈ Jj. On the other hand, since i2 ∈ Jj and l j

i2 = 0 we have i2 � kj



328 O. R. GABRIELYAN, H. G. GHAZARYAN AND V. N. MARGARYAN

and mi − i/(q0 · q1 · · · qj)− l j
iΔj < mk − kj/(q0 · q1 · · · qj) for all i > kj hence i2 � kj,

i.e. kj = i2 ∈ Jj, which proves the first statement.
Let us prove the second statement. Since i2 = kj and l j

i1 = 1 then mj −
i1/(q0 · q1 · · · qj)− Δj = mj − kj/(q0 · q1 · · · qj) by (2.1), which means that the number
Δj(q0 · q1 · · · qj) is natural, i.e. qj+1 = 1 , which proves the second statement.

Since i2 = kj � 2 we have mj+1 = χ(f j, xj,Δj) = mj − kj/(q0 · q1 · · · qj) �
mj − 2/(q0 · q1 · · · qj), which proves the third statement.

To prove statement 4) we introduce notation (1.17) and write Δ1
j = max{Δ :

Δ � 0, mj − 2Δ = mj− l j
0Δ = χ(f j, xj,Δ)}. Then

[0,Δ1
j ] ∩ Aj = ∅, Δ1

j ∈ Aj, (Δ0
j , +∞) ∩ Aj = ∅, Δ0

j ∈ Aj. (2.2)

It is therefore sufficient to show that Δ0
j = Δ1

j . By the definition of the number Δ1
j

0 ∈ Jj and by the definition of the set Aj there is a number n ∈ J(f j, xj, Δ1
j ), n > 0 ,

i.e.
mj − 2Δ1

j = mj − n
q0 · q1 · · · qj

− l j
nΔ1

j = χ(f j, xj,Δ1
j ). (2.3)

On the other hand since Δ j ∈ Aj, kj ∈ Jj (see statement 1)) we have

χ(f j, xj,Δ1
j ) = mj − kj/(q0 · q1 · · · qj) = χ(f j, xj,Δ0

j ). (2.4)

Since Δ j ∈ Aj, Δ0
j ∈ Aj hence by (2.2) Δ j � Δ0

j and χ(f j, xj,Δj) > mj − kj/(q0 ·
q1 · · · qj) for Δ < Δ0

j we have Δ j � Δ0
j by (2.4), i.e. Δ j = Δ0

j .

By the definition of the number Δ1
j Δ j � Δ0

j , i.e. Δ0
j = Δ1

j . It remains to prove
that Δ0

j � Δ1
j . Let, to the contrary, Δ0

j < Δ1
j then by (2.3)–(2.4) we obtain

mj − 2Δ0
j = χ(f j, xj,Δ0

j ) = mj − kj/(q0 · q1 · · · qj) = χ(f 0, xj,Δ1
j )

= mj − n/(q0 · q1 · · · qj) − l j
nΔ1

j < mj − n/(q0 · q1 · · · qj) − l j
nΔ0

j .
(2.5)

This means that either l j
n = 0 or l j

n = 1. In the first case n � kj by the definition of
the number kj. On the other hand since n ∈ J(f 0, xj,Δ1

j ) and i /∈ J(f j, xj,Δ1
j ) for i > kj

then n � kj, i.e. n = kj. This together with statement 1) of our lemma immediately
imply Δ1

j = Δj = Δ0
j . In the case l j

n = 1 by (2.3) we have Δ1
j = n/(q0 · q1 · · · qj) and

by (2.5) Δ0
j � n/(q0 · q1 · · · qj), i.e. Δ0

j � Δ1
j , which contradicts our assumption and

proves statement 4). Lemma 2.1 is proved. �

For simplification of notations, first we assume that each set Fi(η, δ), generated
by a pair (η, δ) ∈ B(P, Q) , consists of a unique function f i (i = 0, 1, · · · ), i.e. we
assume that the pair (η, δ) generates the unique chain {f i}. By Corollary 1.1 f j ∈ I
(j = 1, 2, · · · ) if f 0 ∈ I and by the definition of the functions {f j}

ord f 0 = χ(P,η, δ) � ord f 1 = χ(f 0, x0,Δ0) � ord f 2 = χ(f 1, x1,Δ1) � · · · .

If for some j ∈ N0ord f j < d − l(η)δ then Q ≮ P by Theorem 0.1. It is natural
therefore to introduce the following definition.
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DEFINITION 2.1. Let γ ∈ N0. We call the chain {f j} γ -finite if either ord f γ <
d − l(η)δ or Xγ = X(f γ ) = ∅ or Bγ = B(f γ ) = ∅.

LEMMA 2.2. Let {f j} be the chain, generated by a pair (η, δ) ∈ B(P, Q), f 0 ∈ I
and c(rj0

0 ) � 3 for j0 ∈ N0. Then the chain {f j} is γ -finite for any γ , satisfying the
inequality γ � γj0 = [ 1

2m0 · q0 · q1 · · · qj0 ], where [a] denotes the integer part of a.

Proof. Without loss of generality we can assume that j0 = 0. If either ord f 0 <
d − l(η)δ or X0 = ∅ then the chain {f j} is 0 -finite. Let ord f 0 � d − l(η)δ and
X0 = ∅ then the chain {f j} is 0 -finite. Let ord f 0 � d − l(η)δ and X0 �= ∅. If
c(r0

0) � 2 then X1 = ∅ by Lemma 1.2 and the chain {f j} is 1-finite.
Let now c(r0

0) = 3 . To prove our lemma it is sufficient to prove that ord f γ <

d − l(η)δ or Xγ = ∅ for a number γ � γ0 = [ 1
2m0 · q0]. Let, to the contrary,

ord f 0 � d − l(η).δ and Xγ �= ∅ for all γ = 0, 1, · · ·, γ0.
Since f γ ∈ I for all γ = 0, 1, · · · (see. Corollary 1.1) then rγ0 (x) � 0 for all

γ = 0, 1, · · · and c(rγ0 ) � 3 for all γ = 0, 1, · · · , γ0 by Lemma 1.2
On the other hand by Lemma 4.1 of [14] 3 � c(rγ00 ) � c(rγ0−1

0 ) � · · · � c(r0
0) = 3,

i.e. c(rγ0 ) = 3 (γ = 0, 1, · · · , γ0).
Now let us note that byLemma2.1 and by the definition of the number γ0ord f γ0+1 =

χ(f γ0 , xγ0 ,Δγ0 ) � mγ0 − 2
q0

� mγ0−1− 2
q0
− 2

q0
� · · · � mγ0 − 2(γ0+1)

q0
� 0, i.e. f γ0+1 /∈ I ,

which contradicts the assumption f 0 ∈ I and proves Lemma 2.2. �
In [14] it is proved that for the chain {f j} , f 0 ∈ I there exists a number γ1 ∈ N0

for which either Bγ1 = ∅ or c(rγ10 ) � 3 . This, together with Lemma 2.2, imply

COROLLARY 2.1. Let {f j} be the chain generated by a pair (η, δ) ∈ B(P, Q) and
f 0 ∈ I, then the chain {f j} is finite.

Let now cardB(P, Q) � 1 and (η, δ) ∈ B(P, Q). Then the pair (η, δ) generates
the function f 0 = f 0,(η,δ) of type (1.3). If ord f 0 = χ(P,η, δ) < d − l(η)δ for
such a pair then Q ≮ P. Let us assume therefore that ord f 0 � d − l(η)δ for all
(η, δ) ∈ B(P, Q). If either X0(f 0,η, δ) = ∅ or B0(f 0,η, δ) = ∅ then we write
m0(η, δ) = ord f 0,(η,δ)·

If X0(f 0,η, δ) �= ∅ and B0(f 0,η, δ) �= ∅ then the function f 0,(η,δ) generates the
finite set of pairs (x,Δ) ∈ B0(f 0,η, δ) and the set F1 = F1(η, δ) of functions of
types(1.6)–(1.7).

If ord f 1 = χ(f 0, x,Δ) < d− l(η)δ for some f 1 ∈ F1 then Q ≮ P by Lemma 1.1.
Let us assume therefore that ord f 1 � d − l(η)δ for all (η, δ) ∈ B(P, Q) and for all
f 1 ∈ F1(η, δ) and denote

m1(η, δ) = min
f 1∈F0

1(η,δ)
ord f 1, (η, δ) ∈ B(P, Q),

where F0
1(η, δ) is the set of functions f 2 ∈ F2(η, δ) for which either X1(f 1) = ∅ or

B1(f 1) = ∅.
If F1

1(η, δ) = F1(η, δ)\F0
1(η, δ) = ∅ for all (η, δ) ∈ B(P, Q) then the process

terminates. If F1
1(η, δ) �= ∅ for apair (η, δ) ∈ B(P, Q) then each function f 1 ∈
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F1
1(η, δ) generates the finite set F2(f 1) = {f 2} of functions of type (1.10). Let us

denote

F2(η, δ) = ∪
f 1∈F1

1(η,δ)
F2(f 1), m2 = min

f 2∈F0
2(η,δ)

ord f 2,

where F0
2(η, δ) is the set of functions f 2 ∈ F2(η, δ) for which either X2(f 2) = ∅ or

B2(f 2) = ∅ .
If F1

2(η, δ) = F2(η, δ)\F0
2(η, δ) = ∅ for all (η, δ) ∈ B(P, Q) then the process

terminates. If F1
2(η, δ) �= ∅ for a pair (η, δ) ∈ B(P, Q) then each function f 2 ∈

F1
2(η, δ) generates the finite set F2(f 1) = {f 2} etc.

To sum up, the pair (P, Q) generates a tree. The branches of this tree are a finite
number of the chains {f 0, f 1, · · · }. We have proved above that each such chain is
γ -finite. Finally for (η, δ) ∈ B(P, Q) we denote

m(η, δ) = min
0�k�γ

mk(η, δ) = min
0�k�γ

χ(f k−1, xk−1,Δk−1). (2.6)

By the definition of the number γ = γ (η, δ) for any a ∈ (0, 1) there exists a
constant c = c(a) > 0 such that for all f k ∈ F0

k (η, δ) (k = 0, 1, · · · , γ )

c−1[tord f k + 1] � f k(t, x) + 1 � c[tord f k + 1], t > 0, a � |x| � a−1. (2.7)

THEOREM 2.1. Let P and Q be as in Lemma 0.2, (η, δ) ∈ B(P, Q), ξ(t, x) =
ξ(t, x,η, δ) = t(η + t−δ x · τ). Then there exists C > 0 such that the inequality

|Q[ξ(t, x)]| � C[|P[ξ(t, x)]| + 1], t > 0, κ0
0 � |x| � κ0

1 , (2.8)

holds if and only if 1) f 0 = f 0,(η,δ) (t, x) = |P[ξ(t, x)]| ∈ I and 2) d−l(η)δ � m(η, δ).

Proof. Necessity. Let (2.8) hold. Since ξ(t, x) ∈ Dε(η) for any ε > 0 and for
sufficiently large t by Lemma 0.1 we have

1
2
|Dl(η)

τ Q(η)| · td−l(η)δ � |Q[ξ(t, x)]| � C[|P[ξ(t, x)]| + 1]

for all |x| ∈ [ κ0
0 , κ0

1 ] and for sufficiently large t, where Dl(η)
τ Q(η) �= 0, i.e.

td−l(η)δ � C · g0(t). (2.9)

Since d − l(η)δ > 0, this means that f 0 ∈ I, which proves the necessity of
statement 1).

Let {f 0, f 1, · · · , f γ } be a chain for which ord f γ = m(η, δ). Applying Lemma 1.6
and inequalities (2.7) and (2.9) we have

td−l(η)δ � C · g0(t) � C1 · g1(t) � · · · � Cγ · gγ (t) � Cγ+1 · [tm(η,δ) + 1]

for sufficiently large t , which proves the necessity of statement 2).
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Sufficiency. Let {f j} be the chain generated by (η, δ). This chain is γ -finite.
Then by Lemma 1.6 and inequality (2.7) wehave for some C′

j > 0 (j = 1, 2, · · · , γ+1)

g0(t) � C′
1 · g1(t) � · · · � C′

γ · gγ (t) � C′
γ+1 · tm(η,δ), ∀t > 0. (2.10)

On the other hand by Lemma 0.1

max
κ0

0 �|x|�κ0
1

|Q[ξ(t, x)]| � 3
2
|Dl(η)

τ Q(η)|td−l(η)δ

for sufficiently large t. This together with (2.10) and condition 2) prove inequality
(2.8). Theorem 2.1 is proved. �

The complete solution of the problem we have set at the beginning of the paper is
given by the following main theorem.

THEOREM 2.2. Let P and Q be as in Lemma 0.2, d � d0,Σ0 �= ∅. Then Q < P
if and only if η ∈ Σ(Q) and σ(η) � σ0(η) for such η ∈ Σ0 that A(η, P, Q) = ∅ and
conditions 1)–2) of Theorem 2.1 hold for such (η, δ) ∈ B(P, Q) that A(η, P, Q) �= ∅.

Proof. The necessity is proved above (see Theorem 2.1 and Lemma 0.3).
Sufficiency. Let ε ∈ (0, 1) be arbitrary when cardΣ0 = 1 and ε ∈ (0, 1) be

chosen in such a way that Uε(η1) ∩ Uε(η2) = ∅ for any pair (η1,η2) : η j ∈ Σ0

(j = 1, 2) when cardΣ(P0) > 1 . Here Uε(η) is an ε -neighbourhood of η ∈ R2 .
Since the points η ∈ Σ0 of the homogeneous polynomial P0 are isolated, the existence
of such ε ∈ (0, 1) is obvious.

Let for η ∈ Σ0 and ε ∈ (0, 1) the set Gε(η) is defined as in Introduction then
Gε(η1) ∩ Gε(η2) = ∅ for any pair (η1,η2) : η j ∈ Σ0 , (j = 1, 2) ,η1 �= η2 . Let us
denote

Gε(Σ0) = ∪
η∈Σ0

Gε(η), G0
ε(Σ0) = R2\Gε(Σ0).

It is easy to verify that Q < P if and only if Q <η P for all η ∈ Σ(P0) (see
Definition 0.1).

Let Σ0 = {η ∈ Σ0, A(η, P, Q) �= ∅} , Σ1 = Σ0\Σ0 then Gε(Σ0) = Gε(Σ0) ∪
Gε(Σ1).

By Theorem 0.1 Q <η P for all η ∈ Σ0 if inequality (2.8) holds for all δ ∈
A(η, P, Q) . By Theorem 2.1 inequality (2.8) holds if the conditions 1)–2) of Theorem
2.1 are satisfied. By Lemma 0.2 and Lemma 0.3 Q <η P for all η ∈ Σ1 if condition
3) of our theorem is satisfied. Theorem 2.2 is proved. �

For illustration of results consider following examples

EXAMPLE 2.1. Let P(ξ) = P(ξ1, ξ2) = P0(ξ) + P1(ξ) + P2(ξ) = ξ 6
1 (ξ 4

1 +
ξ 4

2 ) − ξ 3
1ξ 5

2 + ξ 6
2 . Then ord P = 10, Σ0 ≡ Σ(P0) = {±η} = {(0,±1)}, τ = (0, 1),

A(η, P) = {2/3}, χ(±η, 2/3, P) = 6, q0 = 3, ξ(t, x,±η, 2/3) ≡ t(±η+t−2/3x·τ) =
(t1/3x,±t) and

f 0(t, x,±η) ≡ P(t1/3x,±t) = t6r0
0(x) + t6−8/3r0

8(x) ≡ t6(x6 − x3 + 1) + t10/3x10,
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r0
1(x) ≡ · · · ≡ r0

7(x) ≡ 0. Since r0
0(x) = x6 − x3 + 1 �= 0 for all x ∈ R1,

m(±η, 2/3, P) = 6.
Let Q(ξ1, ξ2) = ξ 3

1 ξ 5
2 + ξ 4

1ξ 4
2 = ξ 3

1 ξ 4
2 (ξ1 + ξ2) be a homogeneous polynomial of

order 8. Since ±η ∈ Σ(Q), l = l(±η, Q) = 3, and ordQ − (2/3)l = 8 − (2/3)3 =
6 � 6 = m(±η, 2/3, P), by Theorem 2.1. Q < P.

On the other hand for homogeneous polynomial R(ξ1, ξ2) = ξ1ξ 6
2 also ±η ∈

Σ(R). Since l = l(±η, R) = 1 and ordR − (2/3)l = 7 − 2/3 = 19/3 > 6 =
m(±η, 2/3, P), by Theorem 2.1. R ≮ P.

EXAMPLE 2.2. Let P(ξ) = P(ξ1, ξ2) = P0(ξ) + · · · + P5(ξ) = ξ 8
1 (ξ 8

1 + ξ 8
2 ) +

ξ 8
1 ξ 6

2 − 2ξ 4
1ξ 9

2 − ξ 4
1 ξ 7

2 + ξ 10
2 + ξ 6

2 . Then ordP = 16, Σ0 = {±η} = {(0,±1)},
τ = (1, 0), A(±η, P) = {3/4} , q0 = 4 , ξ(t, x,±η, 3/4) = t(±η + t−3/4x · τ) =
(t1/4x,±t) and f 0(t, x,±η) ≡ P(t1/4x,±t) = t10r0

0(x)+ t10−8/4r0
8(x)+ t10−16/4r0

16(x)+
t10−24/4r0

24(x) = t10(x8 ∓ 2x4 + 1) + t8(x8 ∓ x4) + t6 + t4x10, r0
1(x) ≡ · · · ≡ r0

7(x) ≡
r0
9(x) ≡ · · · ≡ r0

15(x) ≡ r0
17(x) ≡ · · · ≡ r0

23(x) ≡ 0.
Since X0

0(f 0) = {±1}, A(±1, f 0) = {2}, x ≡ ±1 + t−2y, one can easily see that
f 1(t, y,±η,±1) ≡ f 0(t,±1 + t−2y,±η) = t6(16y2 + 4y + 1) + o(t6) ≡ t6r1

0(y) + o(t6)
as t → ∞. Since r1

0(y) �= 0 for all y ∈ R1, m(±η, 3/4) = 6 = (ord f 1).
Let Q(ξ1, ξ2) = ξ 8

1 (ξ 4
1 + ξ 4

2 ). Then ±η ∈ Σ(Q), l(±η) = 8. Since ordQ −
(3/4)l = 12 − (3/4)8 = 6 = m(±η, 3/4), by Theorem 2.2. Q < P.

On the other hand for homogeneous polynomial R(ξ1, ξ2) = ξ 4
1 ξ 10

2 also ±η ∈
Σ(R). Here l = l(±η, R) = 10. Since ordR − (3/4)l = 14 − (3/4)10 = = 13/2 >
6 = m(±η, 3/4), by Theorem 2.2. R ≮ P.
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